Study on Rheological Properties of Waste Cooking Oil and Organic Montmorillonite Composite Recycled Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Original Asphalt
2.1.2. Waste Cooking Oil
2.1.3. Organic Montmorillonite
2.1.4. Composite Rejuvenator
2.2. Test Methods
2.2.1. Preparation of Asphalt Samples
2.2.2. Measurement of Brookfield Rotational Viscosity
2.2.3. Rheological Properties
2.2.4. Microscopic Characterization
3. Results
3.1. Study on the Rheological Properties of Composite Reclaimed Asphalt
3.1.1. Viscosity
3.1.2. Rutting Factor
3.1.3. High-Temperature Creep Recovery Rate
3.1.4. Performance Grade
- (1)
- High-temperature Performance Grade (PG)
- (2)
- Low-temperature Performance Grade (PG)
3.2. Study on Micro-Rejuvenation Mechanism of Composite Recycled Asphalt
3.2.1. Analysis of Fourier-Transform Infrared Spectroscopy Tests
3.2.2. Analysis of Scanning Electron Microscopy Tests
3.2.3. Analysis of Gel Permeation Chromatography Tests
4. Conclusions
- (1)
- Aged asphalt can be effectively softened by WCO. The enhancement of low-temperature properties and decrease in high-temperature properties occur on recycled asphalt as the WCO level rises. However, the high-temperature grade of recycled asphalt will fall below the level of the OA by 8% WCO.
- (2)
- The high-temperature performance of recycled asphalt could be improved by the addition of OMMT, but the low-temperature property of recycled asphalt would be reduced by 2% OMMT content. The best recovery effect was achieved when the WCO-OMMT content was 6% + 1%. Composite recycled asphalt had higher high-temperature and low-temperature PG grades than OA and performed with better short-term aging resistance than OA after adding OMMT.
- (3)
- The colloidal structure of aged asphalt was improved by the supplementing function of the light component and the physical dilution of the WCO-OMMT rejuvenator; in the process of rejuvenation of the asphalt surface, fold structures were reduced and the relative content of small molecules increased, and there was no production of new substances.
- (4)
- According to the results of this paper, the WCO-OMMT rejuvenator developed in this study may be applied to the environment with higher mixing temperature when rejuvenating aged asphalt in actual construction, and the prepared rejuvenated asphalt can be used in the roadway with heavier traffic loads.
5. Future Research Interests
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boarie, A.; Abdelsalam, M.; Gamal, A.; Rabah, M. Laboratory and Environmental Assessment of Asphalt Mixture Modified with a Compound of Reclaimed Asphalt Pavement and Waste Polyethylene. Buildings 2024, 14, 1186. [Google Scholar] [CrossRef]
- Zhang, L.; Shan, M.; Xing, C.; Cui, Y.; Wang, P.; Liu, M. Mechanism of Physical Hardening on the Fracture Characteristics of Polymer-Modified Asphalt Binder. Constr. Build. Mater. 2023, 409, 134091. [Google Scholar] [CrossRef]
- Ohm, B.-S.; Kim, K.; Kim, Y.-M.; Le, T.H.M. Assessing the Viability of Waste Plastic Aggregate in Stone-Modified Asphalt Concrete Mix for Bus Rapid Transit Pavement Maintenance. Buildings 2023, 13, 3069. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Wu, S.; Jiang, Q.; Xu, H.; Zhao, Z.; Lv, Y. Effects of Waterborne Polyurethane on Storage Stability, Rheological Properties, and VOCs Emission of Crumb Rubber Modified Asphalt. J. Clean. Prod. 2022, 340, 130682. [Google Scholar] [CrossRef]
- Math, M.C.; Kumar, S.P.; Chetty, S.V. Technologies for Biodiesel Production from Used Cooking Oil—A Review. Energy Sustain. Dev. 2010, 14, 339–345. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Wang, H.; Kazemi, M.; Fini, E. Research Progress on Resource Utilization of Waste Cooking Oil in Asphalt Materials: A State-of-the-Art Review. J. Clean. Prod. 2023, 385, 135427. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, K. Review on Performance of Asphalt and Asphalt Mixture with Waste Cooking Oil. Materials 2023, 16, 1341. [Google Scholar] [CrossRef]
- Suo, Z.; Nie, L.; Xiang, F.; Bao, X. The Effect of Waste Plant Oil on the Composition and Micro-Morphological Properties of Old Asphalt Composition. Buildings 2021, 11, 407. [Google Scholar] [CrossRef]
- Kazemi, M.; Mohammadi, A.; Goli, A.; Fini, E. Introducing a Sustainable Bio-Based Polyurethane to Enhance the Healing Capacity of Bitumen. J. Mater. Civ. Eng. 2022, 34, 04021465. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, Y.; Gao, Y.; Zhao, X.; Li, F.; Huo, J.; Zhang, Z. Low-Temperature Performance of Acrylonitrile-Butadiene-Styrene and Crumb Rubber Compound-Modified Asphalt Activated by Waste Cooking Oil Surface Treatment. J. Mater. Civ. Eng. 2024, 36, 04024276. [Google Scholar] [CrossRef]
- Yuan, J.; Lu, H.; Yin, W.; Wu, Y. Influences of Naphthenic Oil on SBS-Modified Asphalt Binder. J. Mater. Civ. Eng. 2019, 31, 04019162. [Google Scholar] [CrossRef]
- Zargar, M.; Ahmadinia, E.; Asli, H.; Karim, M.R. Investigation of the Possibility of Using Waste Cooking Oil as a Rejuvenating Agent for Aged Bitumen. J. Hazard. Mater. 2012, 233–234, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, C.; Zou, P.; Hu, M.; Cao, P. A Novel WCO-MDI Reactive Rejuvenation Method for Aged SBS Modified Asphalt toward Sustainable Asphalt Pavements. J. Clean. Prod. 2024, 434, 140199. [Google Scholar] [CrossRef]
- Jain, S.; Chandrappa, A.K. Investigating the Potential of Untreated and Treated Waste Cooking Oil for Rejuvenation of Aged Asphalt Binder. J. Transp. Eng. Part B Pavements 2024, 150, 04023041. [Google Scholar] [CrossRef]
- Th, V.K.; Mayakrishnan, M.; Somasundaram, M. Evaluation of the Properties of Bio-Asphalt Derived from Waste Cooking Oil and Low-Density Polyethylene through the Pyrolysis Process. Case Stud. Constr. Mater. 2024, 21, e03604. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Liu, J.; Amirkhanian, S. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties. Materials 2017, 10, 508. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Kang, H. Effect of Waste Cooking Oil on the Performance of EVA Modified Asphalt and Its Mechanism Analysis. Sci. Rep. 2024, 14, 14072. [Google Scholar] [CrossRef]
- Wen, H.; Bhusal, S.; Wen, B. Laboratory Evaluation of Waste Cooking Oil-Based Bioasphalt as an Alternative Binder for Hot Mix Asphalt. J. Mater. Civ. Eng. 2013, 25, 1432–1437. [Google Scholar] [CrossRef]
- Tan, Y.; Xie, J.; Wang, Z.; Li, K.; He, Z. Effect of Halloysite Nanotubes (HNTs) and Organic Montmorillonite (OMMT) on the Performance and Mechanism of Flame Retardant-Modified Asphalt. J. Nanopart. Res. 2023, 25, 74. [Google Scholar] [CrossRef]
- He, Y.; Zhang, T.; Mao, S.; Zeng, S.; Wu, L.; Yu, J. Investigation of Antiaging Performance and Service Life of OMMT/SBS Modified Bitumen Waterproof Membranes. J. Mater. Civ. Eng. 2024, 36, 04024025. [Google Scholar] [CrossRef]
- Cai, F.; Feng, Z.; Song, W.; Liu, J.; Cui, Q.; Wang, Z.; Zhang, L. Aging Properties of Ultraviolet Absorber Intercalated Organo-Montmorillonite-Modified Bitumen Based on Rheological and Chemical Analysis. J. Mater. Civ. Eng. 2024, 36, 04023554. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, F.; Zhang, L.; Dong, D.; Jiang, K.; Lu, Y. Effects of the Loading Levels of Organically Modified Montmorillonite on the Flame-Retardant Properties of Asphalt. J. Appl. Polym. Sci. 2014, 131, 40972. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Zhang, Y. Influence of Layered Silicate Types on Physical, Rheological and Aging Properties of SBS Modified Asphalt with Multi-Dimensional Nanomaterials. Constr. Build. Mater. 2019, 228, 116735. [Google Scholar] [CrossRef]
- Pei, J.; Wen, Y.; Li, Y.; Zhang, Z.; Shi, X.; Zhang, J.; Li, R.; Cao, L.; Du, Q. Organic Montmorillonite Modified Asphalt Materials: Preparation and Characterization. J. Test. Eval. 2014, 42, 118–125. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Wei, L.; Wu, X.; Cui, X.; Zhang, H.; Lv, W.; Zhang, Q. Study on Properties and Mechanism of Organic Montmorillonite Modified Bitumens: View from the Selection of Organic Reagents. Constr. Build. Mater. 2019, 217, 331–342. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Wang, Y.-M.; Zhang, W.-K.; Du, W.; Li, X.; Wang, X.-N.; Liu, X.-C. Adhesion Characteristics of Montmorillonite Modified Asphalt Unveiled by Surface Free Energy and AFM. Int. J. Adhes. Adhes. 2024, 132, 103699. [Google Scholar] [CrossRef]
- Ye, F.; Yin, W.; Lu, H.; Dong, Y. Property Improvement of Nano-Montmorillonite/SBS Modified Asphalt Binder by Naphthenic Oil. Constr. Build. Mater. 2020, 243, 118200. [Google Scholar] [CrossRef]
- Hong, Z.; Yan, K.; Wang, M.; Zhang, X. Performance Investigation of Phenol-Formaldehyde Resin (PF) and Organic Montmorillonite (OMMT) Compound-Modified Bituminous Mixture. Int. J. Pavement Eng. 2024, 25, 2301451. [Google Scholar] [CrossRef]
- Lu, H.; Ye, F.; Yuan, J.; Yin, W. Properties Comparison and Mechanism Analysis of Naphthenic Oil/SBS and Nano-MMT/SBS Modified Asphalt. Constr. Build. Mater. 2018, 187, 1147–1157. [Google Scholar] [CrossRef]
- ASTM D5; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D113; Standard Test Method for Ductility of Asphalt Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D4402; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D92; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D2042-22; Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene or Toluene. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D70; Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder. ASTM International: West Conshohocken, PA, USA, 2021.
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of Waste Cooking Oil to Produce A Sustainable Rejuvenator for Aged Asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- ASTM D1298; Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D445; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM D974; Standard Test Method for Acid and Base Number by Color-Indicator Titration. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D5558; Standard Test Method for Determination of the Saponification Value of Fats and Oils. ASTM International: West Conshohocken, PA, USA, 2023.
- Zhou, B.; Ji, X.; Gong, G.; Wang, Z.; Wang, C. Multi-Scale Study of Compound Modified Asphalt Materials by Waste Cooking Oil and Organic Montmorillonite on High Temperature Performance. Constr. Build. Mater. 2023, 408, 133580. [Google Scholar] [CrossRef]
- Ji, J.; Yao, H.; Suo, Z.; You, Z.; Li, H.; Xu, S.; Sun, L. Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders. J. Mater. Civ. Eng. 2017, 29, D4016003. [Google Scholar] [CrossRef]
- ASTM D2872; Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). ASTM International: West Conshohocken, PA, USA, 2022.
- Ren, S.; Liang, M.; Fan, W.; Zhang, Y.; Qian, C.; He, Y.; Shi, J. Investigating the Effects of SBR on the Properties of Gilsonite Modified Asphalt. Constr. Build. Mater. 2018, 190, 1103–1116. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, P.; Li, Y.; Yang, Z.; Chen, J. Effect of Nanomontmorillonite on Rheology and Fatigue-Healing Performance of Asphalt Binder. J. Mater. Civ. Eng. 2022, 34, 04022311. [Google Scholar] [CrossRef]
- Liang, B.; Chen, Y.; Lan, F.; Zheng, J. Evaluation of Rheological and Aging Behavior of Modified Asphalt Based on Activation Energy of Viscous Flow. Constr. Build. Mater. 2022, 321, 126347. [Google Scholar] [CrossRef]
- He, W.; Zhao, Z.; Zhang, Z.; Xiao, F. Modification and Application of the Arrhenius Equation Based on Activated Energy Methods from Various Asphalt Binders. J. Mater. Civ. Eng. 2024, 36, 04024123. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, M.; Liu, Z.; He, B.; Yu, J.; Xue, L. Effect of Different Rejuvenators on the Rheological Properties of Aged SBS Modified Bitumen in Long Term Aging. Constr. Build. Mater. 2019, 215, 709–717. [Google Scholar] [CrossRef]
- Zhang, G.; Qiu, J.; Zhao, J.; Wei, D.; Wang, H. Development of Interfacial Adhesive Property by Novel Anti-Stripping Composite between Acidic Aggregate and Asphalt. Polymers 2020, 12, 473. [Google Scholar] [CrossRef]
- Joumblat, R.; Al Basiouni Al Masri, Z.; Al Khateeb, G.; Elkordi, A.; El Tallis, A.R.; Absi, J. State-of-the-Art Review on Permanent Deformation Characterization of Asphalt Concrete Pavements. Sustainability 2023, 15, 1166. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Liu, W.; Zhang, D.K.; Wan, C.X. Effect of Organic Montmorillonite on Microstructure and Properties of the OMMT/EVA/Asphalt Composites. Polym. Compos. 2018, 39, 1959–1966. [Google Scholar] [CrossRef]
- Huang, J.; Yan, K.; Wang, M.; Zhang, X. Enhancing Rheological and Aging Performance of Matrix Asphalt through Thermoplastic Phenol-Formaldehyde Resin-Based Intercalated Clay Nanocomposites: Mechanisms and Effects. Constr. Build. Mater. 2024, 411, 134351. [Google Scholar] [CrossRef]
- Wu, H.; Shen, A.; He, Z.; Deng, S.; Wang, K.; Li, Y. Mechanism of a Warm-Mix Agent and Its Effects on the Rheological Properties and Thermal Stability of Aluminum Hydroxide and Organic Montmorillonite Composite Flame-Retardant Asphalt. J. Mater. Civ. Eng. 2023, 35, 04023058. [Google Scholar] [CrossRef]
- ASTM D7643-22; Standard Practice for Determining the Continuous Grading Temperatures and Continuous Grades for PG Graded Asphalt Binders. ASTM International: West Conshohocken, PA, USA, 2022.
- Ren, S.; Liu, X.; Fan, W.; Qian, C.; Nan, G.; Erkens, S. Investigating the Effects of Waste Oil and Styrene-Butadiene Rubber on Restoring and Improving the Viscoelastic, Compatibility, and Aging Properties of Aged Asphalt. Constr. Build. Mater. 2021, 269, 121338. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, S.; Pang, J.; Chen, J.; Xuan, W. Effects of Aging on Rheological Properties and Microstructural Evolution of SBS Modified Asphalt and Crumb Rubber Modified Asphalt Binders. Buildings 2024, 14, 1722. [Google Scholar] [CrossRef]
- Shi, K.; Ma, F.; Liu, J.; Song, R.; Fu, Z.; Dai, J.; Li, C.; Wen, Y. Development of a New Rejuvenator for Aged SBS Modified Asphalt Binder. J. Clean. Prod. 2022, 380, 134986. [Google Scholar] [CrossRef]
- Ortega, F.J.; Roman, C.; Navarro, F.J.; Garcia-Morales, M.; McNally, T. Physico-Chemistry Control of the Linear Viscoelastic Behaviour of Bitumen/Montmorillonite/MDI Ternary Composites: Effect of the Modification Sequence. Fuel Process. Technol. 2016, 143, 195–203. [Google Scholar] [CrossRef]
- Ye, Q.; Yang, Z.; Lv, S.; Jin, J.; Zhang, S. Study on Components Selection and Performance of Bio-Oil Based Asphalt Rejuvenator Based on Softening and Asphaltene Deagglomeration Effect. J. Clean. Prod. 2023, 419, 138238. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xie, J.; Gui, Z.; Li, N.; Xu, Y. Analysis of OMMT Strengthened UV Aging-Resistance of Sasobit/SBS Modified Asphalt: Its Preparation, Characterization and Mechanism. J. Clean. Prod. 2021, 315, 128139. [Google Scholar] [CrossRef]
- Ma, J.; Sun, G.; Sun, D.; Yu, F.; Hu, M.; Lu, T. Application of Gel Permeation Chromatography Technology in Asphalt Materials: A Review. Constr. Build. Mater. 2021, 278, 122386. [Google Scholar] [CrossRef]
Technical Indexes | Requirements | Test Results | Test Specifications |
---|---|---|---|
Penetration at 25 °C (0.1 mm) | 60–70 | 65 | ASTM D5 [30] |
Softening point (°C) | ≥46 | 50.0 | ASTM D36 [31] |
Ductility at 15 °C (cm) | ≥25 | >100 | ASTM D113 [32] |
Viscosity at 135 °C (Pa·s) | - | 611.9 | ASTM D4402 [33] |
Flash point (°C) | ≥260 | 290 | ASTM D92 [34] |
Solubility (%) | ≥99.5 | 99.90 | ASTM D2042-22 [35] |
Density (g/cm3) | - | 1.036 | ASTM D70 [36] |
Technical Indexes | Test Results | Test Specifications |
---|---|---|
Density at 15 °C (g/cm3) | 0.91 | ASTM D1298 [38] |
Viscosity at 60 °C (mPa·s) | 19 | ASTM D445 [39] |
Acid (mgKOH/g) | 65.28 | ASTM D974 [40] |
Iodine value (g/100 g) | 131.13 | ASTM D5558 [41] |
Color | Blackish brown | - |
Technical Indexes | Technical Indicators |
---|---|
Appearance | Off-white powder |
Diameter/thickness ratio | 200 |
Stack thickness nm | ≤25 |
Montmorillonite content | 96–98% |
Dry powder particle size | 200 mesh |
Moisture content % | ≤3 |
Apparent density, g/cm3 | 0.45 |
Name of Rejuvenator Sample | Dosage of WCO | Dosage of OMMT |
---|---|---|
2%W | 2% | 0 |
4%W | 4% | 0 |
6%W | 6% | 0 |
8%W | 8% | 0 |
2%W + 1%O | 2% | 1% |
4%W + 1%O | 4% | 1% |
6%W + 1%O | 6% | 1% |
8%W + 1%O | 8% | 1% |
2%W + 2%O | 2% | 2% |
4%W + 2%O | 4% | 2% |
6%W + 2%O | 6% | 2% |
8%W + 2%O | 8% | 2% |
Type of Asphalt | |G*|/sinδ = 1.0 kPa Temperature (°C) | |G*|/sinδ = 2.2 kPa Temperature (°C) | PG Temperature (°C) | PG |
---|---|---|---|---|
OA | 70.18 | 64.11 | 64.11 | PG64 |
2%W | 80.90 | 79.05 | 79.05 | PG76 |
4%W | 76.73 | 75.31 | 75.31 | PG70 |
6%W | 70.50 | 66.25 | 66.25 | PG64 |
8%W | 65.21 | 63.21 | 63.21 | PG58 |
6%W + 1%O | 72.14 | 70.36 | 70.36 | PG70 |
6%W + 2%O | 74.58 | 73.59 | 73.59 | PG70 |
Type of Asphalt | PG |
---|---|
RA | P-22 |
2%W | P-22 |
4%W | P-28 |
6%W | P-28 |
8%W | P-28 |
6%W + 1%O | P-28 |
6%W + 2%O | P-22 |
Type of Asphalt | Degree of Aging | SMS (%) | MMS (%) | LMS (%) |
---|---|---|---|---|
OA | RTFO | −5.5 | −1.0 | +4.4 |
PAV | −0.7 | −0.3 | +1.0 | |
Total | −6.2 | −1.3 | +5.4 | |
WOA | RTFO | −4.3 | +0.7 | +3.6 |
PAV | −1.5 | +0.8 | +0.7 | |
Total | −5.8 | +1.5 | +4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Ye, Q.; Fan, L.; Weng, A.; Liu, H. Study on Rheological Properties of Waste Cooking Oil and Organic Montmorillonite Composite Recycled Asphalt. Buildings 2024, 14, 3149. https://doi.org/10.3390/buildings14103149
Xie C, Ye Q, Fan L, Weng A, Liu H. Study on Rheological Properties of Waste Cooking Oil and Organic Montmorillonite Composite Recycled Asphalt. Buildings. 2024; 14(10):3149. https://doi.org/10.3390/buildings14103149
Chicago/Turabian StyleXie, Cheng, Qunshan Ye, Lingyi Fan, Anqi Weng, and Haobin Liu. 2024. "Study on Rheological Properties of Waste Cooking Oil and Organic Montmorillonite Composite Recycled Asphalt" Buildings 14, no. 10: 3149. https://doi.org/10.3390/buildings14103149
APA StyleXie, C., Ye, Q., Fan, L., Weng, A., & Liu, H. (2024). Study on Rheological Properties of Waste Cooking Oil and Organic Montmorillonite Composite Recycled Asphalt. Buildings, 14(10), 3149. https://doi.org/10.3390/buildings14103149