Performance Evaluation and Degradation Analysis of Suspended Dense Broken Stone Road Foundation Stabilized by Cement under Conditions of Freezing and Thawing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Gradations and Specimen
2.3. Experimental Methods
2.3.1. Freeze–Thaw Cycle Test
2.3.2. Compressive Strength and Resilience Modulus Test
2.3.3. Acoustic Detection Test
3. Results and Discussions
3.1. Performance Deterioration Analysis of Suspended Dense Graded Broken Stone Road Foundation Stabilized by Cement Exposed to Freeze–Thaw Cycles
3.1.1. Mass Analysis
3.1.2. Compressive Strength Analysis
3.1.3. Resilience Modulus Analysis
3.2. Freeze–Thaw Damage Assessment of Suspended Dense Graded Broken Stone Road Foundation Stabilized by Cement by Acoustic Parameters
3.2.1. Ultrasonic Wave Velocity Analysis
3.2.2. Acoustic Emission Parameter Analysis
4. Conclusions
- (1)
- The mechanical properties of the cement-stabilized base are significantly affected by freezing and thawing processes. The compressive strength and modulus of elasticity decrease with an increase in freezing and thawing processes. The mechanical properties follow the parabola fitting pattern relationships with freezing and thawing processes, with an R2 above 0.95.
- (2)
- The mass loss of the suspended dense graded broken stone road foundation stabilized by cement increases with an increase in freezing and thawing processes. A decrease in the velocity of ultrasonic waves after exposure to freezing and thawing processes is observed. This indicates the presence of damage and deterioration in the material’s structure.
- (3)
- AE technology is effective in monitoring the development of damage in a suspended dense graded broken stone road foundation stabilized by cement, including initial, stationary, and failure stages. The duration of the initial stage increases three-fold, indicating that it takes a larger stress level to initiate macro-cracks. The duration of the failure stage decreases to around one fifth, indicating that internal defects and cracks expand rapidly under freezing and thawing process action.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jumassultan, A.; Sagidullina, N.; Kim, J.; Ku, T.; Moon, S.W. Performance of cement-stabilized sand subjected to freeze-thaw cycles. Geomech. Eng. 2021, 25, 41–48. [Google Scholar] [CrossRef]
- Jiang, W.Q.; Liu, S.T.; Wu, C.; Wang, C.H.; Liang, J.; Zhou, X.L. Impact Factors of Performance of Rubber Particle Cement Stabilized Gravel Base. J. Munic. Technol. 2023, 41, 118–123. [Google Scholar] [CrossRef]
- Park, D.W.; Vo, H.V. Evaluation of air-foam stabilized soil of dredged soil waste as a pavement subgrade layer. Ksce J. Civ. Eng. 2015, 19, 2091–2097. [Google Scholar] [CrossRef]
- Fan, Y.B.; Wei, F.; Wu, Q.; Tang, K.; Zhang, J. Study on Compaction Properties of Cement Stabilized Macadam in Gobi Saline Soil Area. Highw. Eng. J. 2023, 48, 128–135. [Google Scholar] [CrossRef]
- Ahmed, A.; Ugai, K. Environmental effects on durability of soil stabilized with recycled gypsum. Cold Reg. Sci. Technol. 2011, 66, 84–92. [Google Scholar] [CrossRef]
- Su, P.L.; Bi, J.Y.; Pei, Y.; Zhu, D.J. Analysis of Performance Improvement of Carbide Slag Stabilized Loess by Adding Fly Ash. Highw. Eng. J. 2022, 47, 146–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Johnson, A.E.; White, D.J. Freeze-thaw performance of cement and fly ash stabilized loess. Transp. Geotech. 2019, 21, 100279. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.Y.; Ni, Z.T.; Liu, Y.Q. Study on Influence Mechanism of Gradation of Porous Basalt Macadam Subgrade Filling on Resilient Modulus. J. Munic. Technol. 2023, 41, 138–142. [Google Scholar] [CrossRef]
- Jamshidi, R.J.; Lake, C.B.; Barnes, C.L. Evaluating Impact Resonance Testing As a Tool for Predicting Hydraulic Conductivity and Strength Changes in Cement-Stabilized Soils. J. Mater. Civ. Eng. 2015, 27, 04015051. [Google Scholar] [CrossRef]
- Tan, S.Y.; Wang, C.H.; Zheng, Q.; Chen, F.; Huang, Y.J. Durability Performance of PVA Fiber Cement-Stabilized Macadam. Sustainability 2022, 14, 16953. [Google Scholar] [CrossRef]
- Zhang, E.M.; Wang, X.R.; Wang, W.S.; Wang, H.Y. Mechanical Properties, Durability and Leaching Toxicity of Cement-Stabilized Macadam Incorporating Reclaimed Clay Bricks as Fine Aggregate. Sustainability 2022, 14, 8432. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Y.L.; Zhang, F.; Lim, S.M.; Wu, W.Y.; Wang, W. Unconfined Compressive Properties of Fiber-Stabilized Coastal Cement Clay Subjected to Freeze-Thaw Cycles. J. Mar. Sci. Eng. 2021, 9, 143. [Google Scholar] [CrossRef]
- Lu, J.G.; Tan, L.L.; Yang, H.H.; Wan, X.S.; Wang, Y.D.; Yan, Z.R. Experimental study on the hydro-thermal-deformation characteristics of cement-stabilized soil exposed to freeze-thaw cycles. Front. Earth Sci. 2023, 10, 1041249. [Google Scholar] [CrossRef]
- Wang, T.L.; Song, H.F.; Yue, Z.R.; Hu, T.F.; Sun, T.C.; Zhang, H.B. Freeze-thaw durability of cement-stabilized macadam subgrade and its compaction quality index. Cold Reg. Sci. Technol. 2019, 160, 13–20. [Google Scholar] [CrossRef]
- Li, S.A.; Zhang, C.Z.; Zhang, T.B.; Li, W.T.; Jia, P.J. Experimental study on the strength, collapsibility, and microstructure of cement and micro-silica-stabilized saline soil under freeze-thaw cycles. Case Stud. Constr. Mat. 2023, 19, e02518. [Google Scholar] [CrossRef]
- Rhardane, A.; Sleiman, S.A.; Alam, S.Y.; Grondin, F. A quantitative assessment of the parameters involved in the freeze-thaw damage of cement-based materials through numerical modelling. Constr. Build. Mater. 2021, 272, 121838. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Kalipcilar, I.; Sezer, G.I.; Sezer, A.; Altun, S. Freeze-thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack. Appl. Clay Sci. 2015, 115, 179–188. [Google Scholar] [CrossRef]
- Sahlabadi, S.H.; Bayat, M.; Mousivand, M.; Saadat, M. Freeze-Thaw Durability of Cement-Stabilized Soil Reinforced with Polypropylene/Basalt Fibers. J. Mater. Civ. Eng. 2021, 33, 04021232. [Google Scholar] [CrossRef]
- Qi, S.Z.; Fu, C.M. Study on Road Performance of Fiber Cement Stabilized Construction Waste. J. China Foreign Highw. 2022, 42, 206–210. [Google Scholar] [CrossRef]
- Xue, Z.H.; Guan, B.W.; Fan, X.H. Research on Road Performance of Cement Stabilized Reclaimed Gravel Base Mixed with Basalt Fiber. J. China Foreign Highw. 2021, 41, 269–273. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Tan, Y.Q.; Guo, M.; Wang, X.L. Influence of Emulsified Asphalt on the Mechanical Property and Microstructure of Cement-Stabilized Gravel under Freezing and Thawing Cycle Conditions. Materials 2017, 10, 504. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.T.; Zhang, F.; Ling, X.Z.; Lin, B. Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Reg. Sci. Technol. 2018, 154, 155–165. [Google Scholar] [CrossRef]
- Ding, P.C.; Hou, Y.B.; Han, D.; Zhang, X.; Cao, S.X.; Li, C.Q. Effect of Freeze-Thaw Cycles on Mechanical and Microstructural Properties of Tailings Reinforced with Cement-Based Material. Minerals 2022, 12, 413. [Google Scholar] [CrossRef]
- Ying, L.B.; Wang, Y.X.; Wang, W. Strength and freeze-thaw cycle resistance of cement stabilized coastal clay mixed with shell powder. Mater. Res. Express 2023, 10, 065509. [Google Scholar] [CrossRef]
- Zhang, Y.; Johnson, A.E.; White, D.J. Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials. Cold Reg. Sci. Technol. 2016, 122, 50–57. [Google Scholar] [CrossRef]
- Tan, G.J.; Zhu, Z.Q.; Wang, W.S.; Wu, C.L.; Ou, J.; Cui, G.J.; Zhang, D.M. Flexural ductility and crack-controlling capacity of polypropylene fiber reinforced ECC thin sheet with waste superfine river sand based on acoustic emission analysis. Constr. Build. Mater. 2021, 277, 1–16. [Google Scholar] [CrossRef]
- Liang, J.L.; Li, Y.L.; Yang, X.L.; Rong, H.L.; Meng, Y.J.; Wu, B.C.; Zhou, S.B. Study on vibratory leaching behavior and damage evolution of cement stabilized macadam (CSM). Case Stud. Constr. Mat. 2022, 17, e01151. [Google Scholar] [CrossRef]
- Li, H.B.; Yan, P.F.; Tian, J.C.; Sun, H.; Yin, J.G. Study on Mechanical and Frost Resistance Properties of Slag and Macadam Stabilized with Cement and Fly Ash. Materials 2021, 14, 7241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.X.; Han, Z.J.; Qin, L.; Cao, D.F.; Guo, C.C.; Wang, F.M.; Ma, B.S.; Wu, J.H. Identification of bending fracture characteristics of cement-stabilized coral aggregate in four-point bending tests based on acoustic emission. Constr. Build. Mater. 2023, 402, 132999. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement. China Architecture & Building Press: Beijing, China, 2007.
- BS EN 197-1: 2000; Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2000.
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. China Communications Press Co., Ltd.: Beijing, China, 2005.
- JTG/T F20-2015; Technical Guidelines for Construction of Highway Roadbases. Ministry of Transport of the People’s Republic of China: Beijing, China, 2015.
- UNE-EN 1097-6; Ensayos Para Determinar las Propiedades Mecánicas y Físicas de los Áridos, Parte 3: Determinación de la Densidad Aparente y la Porosidad. Normas UNE; Aenor: Madrid, Spain, 1999.
- JTG E 51-2009; Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2009.
- Wu, H.R.; Jin, W.L.; Yan, Y.D.; Xia, P. Environmental zonation and life prediction of concrete in frost environments. J. Zhejiang Univ. (Eng. Sci.) 2012, 46, 650–657. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Tan, Y.Q.; Guo, M.; Liu, Z.Y.; Wang, X.L. Study on the dynamic compressive resilient modulus and frost resistance of semi-rigid base materials. Road Mater. Pavement 2017, 18, 259–269. [Google Scholar] [CrossRef]
- Xiao, R.; An, B.P.; Wu, F.; Wang, W.S.; Sui, Y.; Wang, Y.H. Freeze-Thaw Damage Characterization of Cement-Stabilized Crushed Stone Base with Skeleton Dense Gradation. Materials 2024, 17, 1228. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.H.; Cui, S.; Wang, G.Q.; Hu, W.J.; Liang, Y.P.; Zhang, Z.B. Evolution Law and Mechanism of Freeze-Thaw Damage of Cement-Stabilized Weathered Sand. Coatings 2022, 12, 272. [Google Scholar] [CrossRef]
- Shi, X.; Yang, P.; Li, L.; Geng, X.Y.; Liu, X.; Zhao, J.L. Strength and microscopic pore structure characterization of cement-fly ash stabilized organic soil under freeze-thaw cycles. Constr. Build. Mater. 2024, 420, 135635. [Google Scholar] [CrossRef]
- Kalpokaite-Dickuviene, R.; Pitak, I.; Baltusnikas, A.; Cesniene, J.; Kriukiene, R.; Lukosiute, S.I. Functional and microstructural alterations in hydrated and freeze-thawed cement-oil shale ash composites. Case Stud. Constr. Mat. 2023, 19, e02302. [Google Scholar] [CrossRef]
Performance Indexes | Results | Standard |
---|---|---|
Initial setting time (h) | 2 | ≥0.75 |
Final setting time (h) | 3 | ≤10 |
3 d compressive strength (MPa) | 25 | ≥21 |
28 d compressive strength (MPa) | 53 | ≥42.5 |
3 d flexural strength (MPa) | 5.2 | ≥4.0 |
28 d flexural strength (MPa) | 8.5 | ≥6.5 |
Indexes | Values | Standard |
---|---|---|
Apparent relative density | 2.766 | /(T0308) |
Water absorption (%) | 1.24 | /(T0307) |
Needle-like content (%) | 10.6 | ≤18 (T0312) |
Crushing value (%) | 21.5 | ≤22 (T0316) |
Indexes | Values | Standard |
---|---|---|
Apparent relative density | 2.682 | /(T0328) |
Water absorption (%) | 1.72 | /(T0330) |
Plasticity index | 10.6 | ≤17 (T0118) |
Liquid limit (%) | 23.2 | /(T0118) |
Plastic limit (%) | 12.6 | /(T0118) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Huang, K.; Wu, F.; Wang, Y. Performance Evaluation and Degradation Analysis of Suspended Dense Broken Stone Road Foundation Stabilized by Cement under Conditions of Freezing and Thawing. Buildings 2024, 14, 1828. https://doi.org/10.3390/buildings14061828
Deng H, Huang K, Wu F, Wang Y. Performance Evaluation and Degradation Analysis of Suspended Dense Broken Stone Road Foundation Stabilized by Cement under Conditions of Freezing and Thawing. Buildings. 2024; 14(6):1828. https://doi.org/10.3390/buildings14061828
Chicago/Turabian StyleDeng, Haihong, Kainan Huang, Fei Wu, and Yinghan Wang. 2024. "Performance Evaluation and Degradation Analysis of Suspended Dense Broken Stone Road Foundation Stabilized by Cement under Conditions of Freezing and Thawing" Buildings 14, no. 6: 1828. https://doi.org/10.3390/buildings14061828
APA StyleDeng, H., Huang, K., Wu, F., & Wang, Y. (2024). Performance Evaluation and Degradation Analysis of Suspended Dense Broken Stone Road Foundation Stabilized by Cement under Conditions of Freezing and Thawing. Buildings, 14(6), 1828. https://doi.org/10.3390/buildings14061828