Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eco-Friendly Acoustic Panels Made from PET
2.2. Biocompatibility Assessment
2.2.1. Antifungal Resistance
2.2.2. Volatile Organic Compounds (VOC) Emission
2.2.3. Cell Viability
2.3. Thermal Conductivity and Thermal Resistance Tests
2.4. Sound Absorption Performance Assessment
3. Results
3.1. Biocompatibility Assays
3.2. Thermal Conductivity and Thermal Resistance Results
3.3. Sound Absorption Results
3.4. Case Studies for Noise Pollution Reduction and Acoustic Comfort Improvement in Healthcare Environments
3.4.1. Case Study I: Office Building
3.4.2. Case Study II: Childcare Room
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; Brown, L. Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- Passchier-Vermeer, W.; Passchier, W.F. Noise exposure and public health. Environ. Health Perspect. 2000, 108, 123–131. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637786/ (accessed on 5 September 2024). [PubMed]
- Hahad, O.; Prochaska, J.H.; Daiber, A.; Muenzel, T. Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders. Oxid. Med. Cell. Longev. 2019, 2019, 4623109. Available online: https://pubmed.ncbi.nlm.nih.gov/31814877/ (accessed on 5 September 2024). [CrossRef]
- Willershausen, B.; Callaway, A.; Wolf, T.G.; Ehlers, V.; Scholz, L.; Wolf, D.; Letzel, S. Hearing assessment in dental practitioners and other academic professionals from an urban setting. Head Face Med. 2014, 10, 1. Available online: https://pubmed.ncbi.nlm.nih.gov/24438539/ (accessed on 5 September 2024). [CrossRef]
- Al-Omoush, S.A.; Abdul-Baqi, K.J.; Zuriekat, M.; Alsoleihat, F.; Elmanaseer, W.R.; Jamani, K.D. Assessment of occupational noise-related hearing impairment among dental health personnel. J. Occup. Health 2020, 62, e12093. Available online: https://pubmed.ncbi.nlm.nih.gov/31674128/ (accessed on 5 September 2024). [CrossRef]
- Choiniere, D.B. The effects of hospital noise. Nurs. Adm. Q. 2010, 34, 327–333. Available online: https://pubmed.ncbi.nlm.nih.gov/20838178/ (accessed on 5 September 2024). [CrossRef] [PubMed]
- Cabrera, I.N.; Lee, M.H. Reducing noise pollution in the hospital setting by establishing a department of sound: A survey of recent research on the effects of noise and music in health care. Prev. Med. 2000, 30, 339–345. Available online: https://pubmed.ncbi.nlm.nih.gov/10731463/ (accessed on 5 September 2024). [CrossRef] [PubMed]
- Antoniadou, M.; Tziovara, P.; Antoniadou, C. The Effect of Sound in the Dental Office: Practices and Recommendations for Quality Assurance-A Narrative Review. Dent. J. 2022, 10, 228. Available online: https://pubmed.ncbi.nlm.nih.gov/36547044/ (accessed on 5 September 2024). [CrossRef]
- Alabdulwahhab, B.M.; Alduraiby, R.I.; Ahmed, M.A.; Albatli, L.I.; Alhumain, M.S.; Softah, N.A.; Saleh, S. Hearing loss and its association with occupational noise exposure among Saudi dentists: A cross-sectional study. BDJ Open 2016, 2, 16006. Available online: https://pubmed.ncbi.nlm.nih.gov/29607067/ (accessed on 5 September 2024). [CrossRef]
- Al-Rawi, N.H.; Al Nuaimi, A.S.; Sadiqi, A.; Azaiah, E.; Ezzeddine, D.; Ghunaim, Q.; Abbas, Z. Occupational noise-induced hearing loss among dental professionals. Quintessence Int. 2019, 50, 245–250. Available online: https://pubmed.ncbi.nlm.nih.gov/30773576/ (accessed on 5 September 2024). [CrossRef]
- Sartoretti, E.; Sartoretti, T.; Wyss, M.; van Smoorenburg, L.; Eichenberger, B.; van der Duim, S.; Cereghetti, D.; Binkert, C.A.; Sartoretti-Schefer, S.; Najafi, A. Impact of Acoustic Noise Reduction on Patient Experience in Routine Clinical Magnetic Resonance Imaging. Acad. Radiol. 2022, 29, 269–276. Available online: https://pubmed.ncbi.nlm.nih.gov/33158702/ (accessed on 11 September 2024). [CrossRef]
- Busch-Vishniac, I.J.; West, J.E.; Barnhill, C.; Hunter, T.; Orellana, D.; Chivukula, R. Noise levels in Johns Hopkins Hospital. J. Acoust. Soc. Am. 2005, 118, 3629–3645. Available online: https://pubmed.ncbi.nlm.nih.gov/16419808/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Cordova, A.C.; Logishetty, K.; Fauerbach, J.; Price, L.A.; Gibson, B.R.; Milner, S.M. Noise levels in a burn intensive care unit. Burns 2013, 39, 44–48. Available online: https://pubmed.ncbi.nlm.nih.gov/22541620/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Hagerman, I.; Rasmanis, G.; Blomkvist, V.; Ulrich, R.; Eriksen, C.A.; Theorell, T. Influence of intensive coronary care acoustics on the quality of care and physiological state of patients. Int. J. Cardiol. 2005, 98, 267–270. Available online: https://pubmed.ncbi.nlm.nih.gov/15686777/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Althahab, A.Q.J.; Vuksanovic, B.; Al-Mosawi, M.; Machimbarrena, M.; Arias, R. Noise in ICUs: Review and Detailed Analysis of Long-Term SPL Monitoring in ICUs in Northern Spain. Sensors 2022, 22, 9038. Available online: https://www.mdpi.com/1424-8220/22/23/9038 (accessed on 11 September 2024). [CrossRef] [PubMed]
- Lestard, N.D.R.; Valente, R.C.; Lopes, A.G.; Capella, M.A.M. Direct effects of music in non-auditory cells in culture. Noise Health 2013, 15, 307–314. Available online: https://pubmed.ncbi.nlm.nih.gov/23955127/ (accessed on 11 September 2024). [CrossRef]
- Dal Lin, C.; Radu, C.M.; Vitiello, G.; Romano, P.; Polcari, A.; Iliceto, S.; Simioni, P.; Tona, F. Sounds Stimulation on In Vitro HL1 Cells: A Pilot Study and a Theoretical Physical Model. Int. J. Mol. Sci. 2020, 22, 156. Available online: https://pubmed.ncbi.nlm.nih.gov/33375749/ (accessed on 11 September 2024). [CrossRef]
- Kumeta, M.; Takahashi, D.; Takeyasu, K.; Yoshimura, S.H. Cell type-specific suppression of mechanosensitive genes by audible sound stimulation. PLoS ONE 2018, 13, e0188764. Available online: https://pubmed.ncbi.nlm.nih.gov/29385174/ (accessed on 11 September 2024). [CrossRef]
- Ambattu, L.A.; Yeo, L.Y. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. Biophys. Rev. 2023, 4, 021301. Available online: https://pubmed.ncbi.nlm.nih.gov/38504927/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Tassinari, R.; Olivi, E.; Cavallini, C.; Taglioli, V.; Zannini, C.; Marcuzzi, M.; Fedchenko, O.; Ventura, C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2023, 26, 105875. Available online: https://pubmed.ncbi.nlm.nih.gov/36647385/ (accessed on 11 September 2024). [CrossRef]
- Tortorella, I.; Argentati, C.; Emiliani, C.; Morena, F.; Martino, S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022, 11, 3093. Available online: https://pubmed.ncbi.nlm.nih.gov/36231055/ (accessed on 11 September 2024). [CrossRef]
- Kennedy, J.W.; Tsimbouri, P.M.; Campsie, P.; Sood, S.; Childs, P.G.; Reid, S.; Young, P.S.; Meek, D.R.M.; Goodyear, C.S.; Dalby, M.J. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. Sci. Rep. 2021, 11, 22741. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611084/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Lei, Z.; Jiang, H.; Liu, J.; Liu, Y.; Wu, D.; Sun, C.; Du, Q.; Wang, L.; Wu, G.; Wang, S.; et al. Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation. ACS Appl. Mater. Interfaces 2023, 15, 53859–53870. Available online: https://pubmed.ncbi.nlm.nih.gov/37909306/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Shaobin, G.; Wu, Y.; Li, K.; Li, S.; Ma, S.; Wang, Q.; Wang, R. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf. B Biointerfaces 2010, 78, 367–371. Available online: https://pubmed.ncbi.nlm.nih.gov/20338730/ (accessed on 11 September 2024). [CrossRef]
- Jiang, P.; Atherton, M.A.; Millar, B.J. A Passive Noise Attenuation Earplug Designed to Minimise Unwanted Air Turbine Driven High-Speed Dental Drill Noise. Eur. J. Prosthodont. Restor. Dent. 2023, 31, 262–277. Available online: https://pubmed.ncbi.nlm.nih.gov/37194582/ (accessed on 11 September 2024). [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. Available online: https://www.sciencedirect.com/science/article/pii/S1364032116301551 (accessed on 12 September 2024). [CrossRef]
- Jean, F.; Allard, N.A. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Trevor, J.; Cox, P.D. Acoustic Absorbers and Diffusers: Theory, Design and Application; Taylor & Francis: New York, NY, USA, 2004. [Google Scholar]
- Hopkins, C. Sound Insulation; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Joshi, S.; Drzal, L.; Mohanty, A.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. Available online: https://www.researchgate.net/publication/222403148_Are_natural_fiber_composites_environmentally_superior_to_glass_fiber_reinforced_composites_Compos_A (accessed on 11 September 2024). [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. Available online: https://www.sciencedirect.com/science/article/pii/S036013231530007X (accessed on 11 September 2024). [CrossRef]
- Hesterberg, T.W.; Hart, G.A. Synthetic vitreous fibers: A review of toxicology research and its impact on hazard classification. Crit. Rev. Toxicol. 2001, 31, 1–53. Available online: https://pubmed.ncbi.nlm.nih.gov/11215691/ (accessed on 11 September 2024). [CrossRef]
- Jang, E. Sound Absorbing Properties of Selected Green Material—A Review. Forests 2023, 14, 1366. Available online: https://www.mdpi.com/1999-4907/14/7/1366 (accessed on 11 September 2024). [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. Available online: https://www.sciencedirect.com/science/article/pii/S0003682X10002458 (accessed on 11 September 2024). [CrossRef]
- Fontoba-Ferrándiz, J.; Juliá-Sanchis, E.; Crespo Amorós, J.E.; Segura Alcaraz, J.; Gadea Borrell, J.M.; Parres García, F. Panels of eco-friendly materials for architectural acoustics. J. Compos. Mater. 2020, 54, 3743–3753. Available online: https://pubs.aip.org/asa/jasa/article-abstract/54/2/557/750263/The-Modulation-Transfer-Function-in-Room-Acoustics?redirectedFrom=fulltext (accessed on 11 September 2024). [CrossRef]
- Rubino, C.; Bonet Aracil, M.; Gisbert-Payá, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Cantó, M.; Martellotta, F. Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials 2019, 12, 4020. Available online: https://pubmed.ncbi.nlm.nih.gov/31816936/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Ramis, J.; Rey, R.d.; Alba, J.; Godinho, L.; Carbajo, J. A model for acoustic absorbent materials derived from coconut fiber. Mater. Construcc. 2014, 64, e008. Available online: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1466 (accessed on 11 September 2024). [CrossRef]
- Mitrevska, M.J.; Mickovski, V.; Samardzioska, T.; Iannace, G. Experimental and Numerical Investigation of Sound Absorption Characteristics of Rebonded Polyurethane Foam. Appl. Sci. 2022, 12, 12936. Available online: https://www.mdpi.com/2076-3417/12/24/12936 (accessed on 12 September 2024). [CrossRef]
- Alabdulkarem, A.; Ali, M.; Iannace, G.; Sadek, S.; Almuzaiqer, R. Thermal analysis, microstructure and acoustic characteristics of some hybrid natural insulating materials. Constr. Build. Mater. 2018, 187, 185–196. Available online: https://www.sciencedirect.com/science/article/pii/S0950061818318853 (accessed on 12 September 2024). [CrossRef]
- Iannace, G.; Ciaburro, G.; Guerriero, L.; Trematerra, A. Use of cork sheets for room acoustic correction. J. Green Build. 2020, 15, 45–55. Available online: https://www.researchgate.net/publication/342937329_USE_OF_CORK_SHEETS_FOR_ROOM_ACOUSTIC_CORRECTION (accessed on 12 September 2024). [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K. A Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–312. Available online: https://www.researchgate.net/publication/235288360_A_Review_of_Sustainable_Materials_for_Acoustic_Applications (accessed on 11 September 2024). [CrossRef]
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. Available online: https://www.sciencedirect.com/science/article/pii/S0003682X16302377 (accessed on 12 September 2024). [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. Available online: https://www.sciencedirect.com/science/article/pii/S0360132316305285 (accessed on 12 September 2024). [CrossRef]
- Cavagnoli, S.; Fabiani, C.; Landi, F.; Pisello, A.L. Advancing sustainable construction through comprehensive analysis of thermal, acoustic, and environmental properties in prefabricated panels with recycled PET materials. Energy Build. 2024, 312, 114218. [Google Scholar] [CrossRef]
- SCS-103 Recycled Content Standard V7.0. SCS Standards 2014. Available online: https://cdn.scsglobalservices.com/files/standards/scs_stn_recycledcontent_v7-0_070814.pdf (accessed on 1 January 2024).
- ASTM G21-15; Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. ASTM International: West Conshohocken, PA, USA, 2021.
- D’Amico, A.; Pini, A.; Zazzini, S.; D’Alessandro, D.; Leuzzi, G.; Currà, E. Modelling VOC Emissions from Building Materials for Healthy Building Design. Sustainability 2021, 13, 184. Available online: https://www.mdpi.com/2071-1050/13/1/184 (accessed on 12 September 2024). [CrossRef]
- Zhang, J.J.; Chen, W.; Liu, N.; Guo, B.B.; Zhang, Y. Testing and Reducing VOC Emissions from Building Materials and Furniture. In Handbook of Indoor Air Quality; Zhang, Y., Hopke, P.K., Mandin, C., Eds.; Springer Nature: Singapore, 2022; pp. 1591–1636. [Google Scholar]
- UNE-EN 16516; Construction Products: Evaluation of the Emission of Hazardous Substances. Determination of Indoor Air Emissions. UNE Normalización Española: Madrid, Spain, 2018.
- ISO 16000-6; Indoor Air. Part 6: Determination of Volatile Organic Compounds in Indoor Air and Test Chambers by Active Sampling with Tenax TA Adsorbent, Thermal Desorption, and Gas Chromatography Using MS or MS-FID. UNE Normalización Española: Madrid, Spain, 2019.
- Tan, E.; Ding, X.; Saadi, A.; Agarwal, N.; Naash, M.I.; Al-Ubaidi, M.R. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci. 2004, 45, 764–768. Available online: https://pubmed.ncbi.nlm.nih.gov/14985288/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Sayyad, Z.; Sirohi, K.; Radha, V.; Swarup, G. 661W is a retinal ganglion precursor-like cell line in which glaucoma-associated optineurin mutants induce cell death selectively. Sci. Rep. 2017, 7, 16855. Available online: https://www.nature.com/articles/s41598-017-17241-0 (accessed on 11 September 2024). [CrossRef]
- BS EN 12667:2001; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance. Normas AENOR: Madrid, Spain, 2001.
- ISO 11654; Acoustics. Acoustic Absorbers for Use in Buildings. Evaluation of Acoustic Absorption. UNE, Normalización Española: Madrid, Spain, 1997.
- Cox, T.J.; D'Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, 2nd ed.; CRC Press: London, UK, 2014. [Google Scholar]
- Vorlaender, M.; Summers, J. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual Reality. J. Acoust. Soc. Am. 2008, 123, 4028. Available online: https://www.researchgate.net/publication/5318827_Auralization_Fundamentals_of_Acoustics_Modelling_Simulation_Algorithms_and_Acoustic_Virtual_Reality (accessed on 12 September 2024). [CrossRef]
- Carrión Isbert, A. Diseño Acústico de Espacios Arquitectónicos; Edicions UPC: Barcelona, España, 1998. [Google Scholar]
- Celenit Isolanti Naturali. Celenit Technical Guide. Available online: https://pdf.archiexpo.com/pdf/celenit/acoustic-design-technical-guide/55534-383941.html (accessed on 1 January 2024).
- ISO 3382-1; Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces. International Organization for Standardization: Geneva, Switzerland, 2009.
- ASTM E2235-04; Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods. ASTM International: West Conshohocken, PA, USA, 2020.
- IEC 60268-16; Equipment for Electroacoustic Systems. Part 16: Objective Assessment of Speech Intelligibility Using the Speech Transmission Index. (Ratified by the Spanish Association for Standardization in January 2021). UNE Normalización Española: Madrid, Spain, 2020.
- Motovilova, E.; Winkler, S.A. Overview of Methods for Noise and Heat Reduction in MRI Gradient Coils. Front. Phys. 2022, 10, 907619. Available online: https://pubmed.ncbi.nlm.nih.gov/36506821/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Iyendo, T.O. Exploring the effect of sound and music on health in hospital settings: A narrative review. Int. J. Nurs. Stud. 2016, 63, 82–100. Available online: https://pubmed.ncbi.nlm.nih.gov/27611092/ (accessed on 11 September 2024). [CrossRef]
- Tsiou, C.; Efthymiatos, G.; Katostaras, T. Noise in the operating rooms of Greek hospitals. J. Acoust. Soc. Am. 2008, 123, 757–765. Available online: https://pubmed.ncbi.nlm.nih.gov/18247880/ (accessed on 11 September 2024). [CrossRef]
- Kooshanfar, Z.; Ashrafi, S.; Paryad, E.; Salmanghasem, Y.; Khaleghdoost Mohammadi, T.; Kazemnezhad Leili, E.; Mohammad Javad Golhosseini, S. Sources of noise and their effects on nurses in intensive care units: A cross sectional study. Int. J. Afr. Nurs. Sci. 2022, 16, 100403. Available online: https://www.sciencedirect.com/science/article/pii/S2214139122000105 (accessed on 11 September 2024). [CrossRef]
- Vreman, J.; Lemson, J.; Lanting, C.; van der Hoeven, J.; van den Boogaard, M. The Effectiveness of the Interventions to Reduce Sound Levels in the ICU: A Systematic Review. Crit. Care Explor. 2023, 5, e0885. Available online: https://pubmed.ncbi.nlm.nih.gov/36998528/ (accessed on 11 September 2024). [CrossRef]
- Rasmussen, B.; Carrascal, T.; Secchi, S. A Comparative Study of Acoustic Regulations for Hospital Bedrooms in Selected Countries in Europe. Buildings 2023, 13, 578. Available online: https://www.mdpi.com/2075-5309/13/3/578 (accessed on 11 September 2024). [CrossRef]
- MacLeod, M.; Dunn, J.; Busch-Vishniac, I.; West, J.; Reedy, A. Quieting Weinberg 5C: A case study in hospital noise control. J. Acoust. Soc. Am. 2007, 121, 3501–3508. Available online: https://www.researchgate.net/publication/6283409_Quieting_Weinberg_5C_A_case_study_in_hospital_noise_control (accessed on 11 September 2024). [CrossRef] [PubMed]
- Blomkvist, V.; Eriksen, C.A.; Theorell, T.; Ulrich, R.; Rasmanis, G. Acoustics and psychosocial environment in intensive coronary care. Occup Env. Med 2005, 62, e1. Available online: https://pubmed.ncbi.nlm.nih.gov/15723873/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Fietze, I.; Barthe, C.; Hölzl, M.; Glos, M.; Zimmermann, S.; Bauer-Diefenbach, R.; Penzel, T. The Effect of Room Acoustics on the Sleep Quality of Healthy Sleepers. Noise Health 2016, 18, 240–246. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187651/ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Bottalico, P.; Graetzer, S.; Hunter, E.J. Effects of speech style, room acoustics, and vocal fatigue on vocal effort. J. Acoust. Soc. Am. 2016, 139, 2870–2879. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392070/ (accessed on 12 September 2024). [CrossRef] [PubMed]
- Rollins, M.K.; Leishman, T.W.; Whiting, J.K.; Hunter, E.J.; Eggett, D.L. Effects of added absorption on the vocal exertions of talkers in a reverberant room. J. Acoust. Soc. Am. 2019, 145, 775. Available online: https://pubmed.ncbi.nlm.nih.gov/30823814/ (accessed on 12 September 2024). [CrossRef]
- Taghipour, A.; Athari, S.; Gisladottir, A.; Sievers, T.; Eggenschwiler, K. Room Acoustical Parameters as Predictors of Acoustic Comfort in Outdoor Spaces of Housing Complexes. Front. Psychol. 2020, 11, 344. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065602/ (accessed on 12 September 2024). [CrossRef]
- Houtgast, T.; Steeneken, H.J.M. The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility. J. Acoust. Soc. Am. 1973, 54, 557. Available online: https://journals.sagepub.com/doi/10.1177/0021998320918914 (accessed on 11 September 2024). [CrossRef]
- IEC 60268-16; Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index. International Organization for Standardization: Geneva, Switzerland, 2011.
Parameter | Value | Parameter | Value |
---|---|---|---|
Chamber volume | 119 L | Relative humidity of supply air | 50 ± 3% |
Air Change rate | 0.5 h−1 | Temperature of supply air | 23 ± 1 °C |
Area-specific ventilation rate | 0.5 m/h | Loading factor | 1 m2/m3 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Temperature difference | 15 K | Average temperature during test | 10 °C |
Sample thickness | 25 mm | Flow heat density | 24.17 W/m2 |
Thermal resistance | 0.62 m2·K/W | Thermal conductivity | 0.04 W/m·K |
Parameter | Without Acoustic Treatment | With Acoustic Treatment |
---|---|---|
RT (s) | 7.08 | 1.03 |
C50 (dB) | −12 | −1.35 |
STI | 0.27 | 0.58 |
%Alcons (%) | 39.12 | 7.56 |
Parameter | Without Acoustic Treatment | With Acoustic Treatment |
---|---|---|
RT (s) | 2.14 | 0.74 |
C50 (dB) | −6.3 | 2.1 |
STI | 0.41 | 0.8 |
%Alcons (%) | 19.82 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Rosario-Gilabert, D.; Carbajo, J.; Hernández-Pozo, M.; Valenzuela-Miralles, A.; Ruiz, D.; Poveda-Martínez, P.; Esquiva, G.; Gómez-Vicente, V. Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments. Buildings 2024, 14, 3151. https://doi.org/10.3390/buildings14103151
del Rosario-Gilabert D, Carbajo J, Hernández-Pozo M, Valenzuela-Miralles A, Ruiz D, Poveda-Martínez P, Esquiva G, Gómez-Vicente V. Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments. Buildings. 2024; 14(10):3151. https://doi.org/10.3390/buildings14103151
Chicago/Turabian Styledel Rosario-Gilabert, David, Jesús Carbajo, Miguel Hernández-Pozo, Antonio Valenzuela-Miralles, Daniel Ruiz, Pedro Poveda-Martínez, Gema Esquiva, and Violeta Gómez-Vicente. 2024. "Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments" Buildings 14, no. 10: 3151. https://doi.org/10.3390/buildings14103151
APA Styledel Rosario-Gilabert, D., Carbajo, J., Hernández-Pozo, M., Valenzuela-Miralles, A., Ruiz, D., Poveda-Martínez, P., Esquiva, G., & Gómez-Vicente, V. (2024). Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments. Buildings, 14(10), 3151. https://doi.org/10.3390/buildings14103151