A Systematic Review of the Digital Twin Technology in Buildings, Landscape and Urban Environment from 2018 to 2024
Abstract
:1. Introduction
2. Literature Reviews Related to the Subject and Research Significance
- (1)
- What are the predominant, emerging, and pivotal technologies in the application of DT technologies within the BLU industry? Alternatively, what frameworks, systems, and design processes for DT technologies are suitable for the BLU industry?
- (2)
- Which countries/regions have made noteworthy contributions to the application of DT technologies in the BLU industry? Furthermore, how much emphasis is placed on this in developed and developing countries?
- (3)
- How can various stakeholders collaborate to advance the application of DT technologies in the BLU industry and attempt to predict future development trends and focal points through this study to promote digitization within the BLU industry?
- (4)
- From the practitioners’ perspective, what potential impacts will DT and their related technologies have on design theory, design tools, and talent cultivation within the BLU industry?
3. Systematic Literature Review Methodology
3.1. Bibliographic Retrieval
3.2. Scientometric Analysis
3.3. Data Visualization and Discussion
4. Results and Classification Analysis
4.1. Article Sample Characteristics with BLU Industry
4.1.1. Quantity and Regional Characteristics
4.1.2. Journal and Citation Features
4.2. Keyword Analysis of BLU Industry
4.2.1. JSON Analysis
4.2.2. Weight Analysis
4.2.3. Citation Score Evaluation
4.3. Cocitation Analysis of BLU Industry
4.3.1. Document Cocitation Network
4.3.2. Author Cocitation Network
4.3.3. Journal Cocitation Network
4.4. Application of Digital Twin Technology in Buildings
4.4.1. Heritage Building
4.4.2. Public Building
4.4.3. Healthcare Building
4.4.4. Residential Building
4.4.5. Small Residential Settlement
4.5. Application of Digital Twin Technology in Landscape
4.6. Application of Digital Twin Technology in Urban Environment
4.6.1. Urban Planning
4.6.2. Smart City
5. Discussion and Research Trends of the BLU Industry
5.1. Digital Twin in Design and Planning Stage of BLU Industry
5.2. Design Tools Based on DT Models
5.3. The Potential Impact of DT on BLU-Related Discipline Education
5.4. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
AI | Artificial Intelligent |
BIM | Building Information Modeling |
CHP | Combined Heat and Power |
CIM | City Information Modeling |
CPS | Cyber Physical System |
CPLS | Cyber Physical Logistics System |
DFR | Design Flow Rate |
DT | Digital Twin |
DTBIM | Digital Twin Building Information Modeling |
DTH | Digital Twin Healthcare |
EV | Electric Vehicle |
GeoAI | Geographic Artificial Intelligence |
HVAC | Heating, Ventilation and Air Conditioning |
IMB | Inter Model Broker |
IoT | Internet of Things |
LiDAR | Light Laser Detection and Ranging |
PV | Photovoltaic |
SEM | Structural Equation Modeling |
UE | Unreal Engine |
VR | Virtual Reality |
WOS | Web of Science |
References
- Arditi, D.; Mochtar, K. Trends in productivity improvement in the US construction industry. Constr. Manag. Econ. 2000, 18, 15–27. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, H.; Chen, Q.; Garcia de Soto, B. Developing a Conceptual Framework for the Application of Digital Twin Technologies to Revamp Building Operation and Maintenance Processes. J. Build. Eng. 2022, 49, 104028. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital Twin-Driven Product Design, Manufacturing and Service with Big Data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Bruynseels, K.; Santoni de Sio, F.; van den Hoven, J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Pooyandeh, M.; Sohn, I. Smart Lithium-Ion Battery Monitoring in Electric Vehicles: An AI-Empowered Digital Twin Approach. Mathematics 2023, 11, 4865. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, M.; Qiu, L.; Mujumdar, A.S.; Ma, Y. Visual Early Warning and Prediction of Fresh Food Quality Deterioration: Research Progress and Application in Supply Chain. Food Biosci. 2024, 58, 103671. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-Driven Ship Digital Twin for Estimating the Speed Loss Caused by the Marine Fouling. Ocean Eng. 2019, 186, 106063. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Berlin/Heidelberg, Germany, 2016; pp. 85–113. [Google Scholar] [CrossRef]
- Ozturk, G.B. Digital Twin Research in the AECO-FM Industry. J. Build. Eng. 2021, 40, 102730. [Google Scholar] [CrossRef]
- Herterich, M.; Eck, A.; Uebernickel, F. Exploring how digitized products enable industrial service innovation–an affordance perspective. In Proceedings of the 24th European Conference on Information Systems, ECIS 2016, Istanbul, Turkey, 12–15 June 2016. [Google Scholar]
- Bolton, R.N.; McColl-Kennedy, J.R.; Cheung, L.; Gallan, A.; Orsingher, C.; Witell, L.; Zaki, M. Customer experience challenges: Bringing together digital, physical and social realms. J. Serv. Manag. 2018, 29, 776–808. [Google Scholar] [CrossRef]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Redelinghuys, A.J.H.; Basson, A.H.; Kruger, K.A. Six-Layer Architecture for the Digital Twin: A Manufacturing Case Study Implementation. J. Intell. Manuf. 2020, 31, 1383–1402. [Google Scholar] [CrossRef]
- Chen, G.; Wang, P.; Feng, B.; Li, Y.; Liu, D. The Framework Design of Smart Factory in Discrete Manufacturing Industry Based on Cyber-Physical System. Int. J. Comput. Integr. Manuf. 2020, 33, 79–101. [Google Scholar] [CrossRef]
- Ye, Z.; Ye, Y.; Zhang, C.; Zhang, Z.; Li, W.; Wang, X.; Wang, L.; Wang, L. A Digital Twin Approach for Tunnel Construction Safety Early Warning and Management. Comput. Ind. 2023, 144, 103783. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The Digital Twin of the City of Zurich for Urban Planning. PFG 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Havard, V.; Jeanne, B.; Lacomblez, M.; Baudry, D. Digital Twin and Virtual Reality: A Co-Simulation Environment for Design and Assessment of Industrial Workstations. Prod. Manuf. Res. 2019, 7, 472–489. [Google Scholar] [CrossRef]
- Cai, Z.; Newman, G.; Lee, J.; Ye, X.; Retchless, D.; Zou, L.; Ham, Y. Simulating the Spatial Impacts of a Coastal Barrier in Galveston Island, Texas: A Three-Dimensional Urban Modeling Approach. Geomat. Nat. Hazards Risk 2023, 14, 2192332. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Alnmr, A.N.; Svennevig, P.R.; Svidt, K. A Review of the Digital Twin Technology for Fault Detection in Buildings. Front. Built Environ. 2022, 8, 1013196. [Google Scholar] [CrossRef]
- Tuhaise, V.V.; Tah, J.H.M.; Abanda, F.H. Technologies for digital twin applications in construction. Autom. Constr. 2023, 152, 104931. [Google Scholar] [CrossRef]
- Adu-Amankwa, N.A.N.; Pour Rahimian, F.; Dawood, N.; Park, C. Digital Twins and Blockchain Technologies for Building Lifecycle Management. Autom. Constr. 2023, 155, 105064. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Adhikari, S. The Role of BIM in Integrating Digital Twin in Building Construction: A Literature Review. Sustainability 2023, 15, 10462. [Google Scholar] [CrossRef]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Hämäläinen, M. Urban Development with Dynamic Digital Twins in Helsinki City. IET Smart Cities 2021, 3, 201–210. [Google Scholar] [CrossRef]
- Faliagka, E.; Christopoulou, E.; Ringas, D.; Politi, T.; Kostis, N.; Leonardos, D.; Tranoris, C.; Antonopoulos, C.P.; Denazis, S.; Voros, N. Trends in Digital Twin Framework Architectures for Smart Cities: A Case Study in Smart Mobility. Sensors 2024, 24, 1665. [Google Scholar] [CrossRef] [PubMed]
- Shahat, E.; Hyun, C.T.; Yeom, C. City Digital Twin Potentials: A Review and Research Agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Caldarelli, G.; Arcaute, E.; Barthelemy, M.; Batty, M.; Gershenson, C.; Helbing, D.; Mancuso, S.; Moreno, Y.; Ramasco, J.J.; Rozenblat, C.; et al. The Role of Complexity for Digital Twins of Cities. Nat. Comput. Sci. 2023, 3, 374–381. [Google Scholar] [CrossRef]
- Batty, M. Digital Twins in City Planning. Nat. Comput. Sci. 2024, 4, 192–199. [Google Scholar] [CrossRef]
- Park, K.T.; Son, Y.H.; Noh, S.D. The Architectural Framework of a Cyber Physical Logistics System for Digital-Twin-Based Supply Chain Control. Int. J. Prod. Res. 2021, 59, 5721–5742. [Google Scholar] [CrossRef]
- Luo, M. A Digital Twin-Based Big Data Virtual and Real Fusion Learning Reference Framework Supported by Industrial Internet towards Smart Manufacturing. J. Manuf. Syst. 2021, 58, 16–32. [Google Scholar] [CrossRef]
- Tan, J.; Leng, J.; Zeng, X.; Feng, D.; Yu, P. Digital Twin for Xiegong’s Architectural Archaeological Research: A Case Study of Xuanluo Hall, Sichuan, China. Buildings 2022, 12, 1053. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Research on Intelligent Dispatching System Management Platform for Construction Projects Based on Digital Twin and BIM Technology. Adv. Civ. Eng. 2022, 2022, e8273451. [Google Scholar] [CrossRef]
- Wolf, K.; Dawson, R.J.; Mills, J.P.; Blythe, P.; Morley, J. Towards a Digital Twin for Supporting Multi-Agency Incident Management in a Smart City. Sci. Rep. 2022, 12, 16221. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, S.J.; Jagoda, J.A.; Hoisington, A.J.; Delorit, J.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments. Autom. Constr. 2021, 125, 103642. [Google Scholar] [CrossRef]
- AlBalkhy, W.; Karmaoui, D.; Ducoulombier, L.; Lafhaj, Z.; Linner, T. Digital Twins in the Built Environment: Definition, Applications, and Challenges. Autom. Constr. 2024, 162, 105368. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRlSMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Pouris, A.; Pouris, A. Scientometrics of a Pandemic: HIV/AIDS Research in South Africa and the World. Scientometrics 2011, 86, 541–552. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: New York, NY, USA, 2016. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. The CiteSpace Manual; College of Computing and Informatics: Philadelphia, PA, USA, 2014; Available online: https://cluster.ischool.drexel.edu/∼cchen/citespace/CiteSpaceManual.pdf (accessed on 29 December 2014).
- ECMA; ECMA-404. The JSON Data Interchange Syntax, 1st ed.; ECMA: Geneva, Switzerland, 2018; Available online: https://www.ecma-international.org/publications-and-standards/standards/ecma-404/ (accessed on 2 September 2021).
- El-Gohary, M.; El-Abed, R.; Omar, O. Prediction of an Efficient Energy-Consumption Model for Existing Residential Buildings in Lebanon Using an Artificial Neural Network as a Digital Twin in the Era of Climate Change. Buildings 2023, 13, 3074. [Google Scholar] [CrossRef]
- Bastos Porsani, G.; Casquero-Modrego, N.; Echeverria Trueba, J.B.; Fernández Bandera, C. Empirical Evaluation of EnergyPlus Infiltration Model for a Case Study in a High-Rise Residential Building. Energy Build. 2023, 296, 113322. [Google Scholar] [CrossRef]
- Henzel, J.; Wróbel, Ł.; Fice, M.; Sikora, M. Energy Consumption Forecasting for the Digital-Twin Model of the Building. Energies 2022, 15, 4318. [Google Scholar] [CrossRef]
- Sagarna, M.; Otaduy, J.P.; Mora, F.; Leon, I. Analysis of the State of Building Conservation through Study of Damage and Its Evolution with the State of Conservation Assessment BIM Model (SCABIM). Appl. Sci. 2022, 12, 7259. [Google Scholar] [CrossRef]
- Zhan, S.; Wichern, G.; Laughman, C.; Chong, A.; Chakrabarty, A. Calibrating Building Simulation Models Using Multi-Source Datasets and Meta-Learned Bayesian Optimization. Energy Build. 2022, 270, 112278. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Digital Twin Framework for Automated Fault Source Detection and Prediction for Comfort Performance Evaluation of Existing Non-Residential Norwegian Buildings. Energy Build. 2023, 281, 112732. [Google Scholar] [CrossRef]
- Liu, H.; Zoh, K. Smart landscaping design for sustainable net-zero energy smart cities: Modeling energy hub in digital twin. Sustain. Energy Technol. Assess. 2024, 65, 103769. [Google Scholar] [CrossRef]
- Zhang, J.; Chan, C.C.C.; Kwok, H.H.L.; Cheng, J.C.P. Multi-Indicator Adaptive HVAC Control System for Low-Energy Indoor Air Quality Management of Heritage Building Preservation. Build. Environ. 2023, 246, 110910. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Zhang, J.; Kwok, H.H.L.; Tong, J.C.K. Thermal Performance Improvement for Residential Heritage Building Preservation Based on Digital Twins. J. Build. Eng. 2024, 82, 108283. [Google Scholar] [CrossRef]
- Leng, J.; Chun, Q.; Wang, H.; Zhou, K. A Year-Long Field Investigation on the Spatio-Temporal Variations of Occupant’s Thermal Comfort in Chinese Traditional Courtyard Dwellings. Build. Environ. 2023, 228, 109836. [Google Scholar] [CrossRef]
- Qian, Y.; Leng, J.; Wang, H.; Liu, K. Evaluating Carbon Emissions from the Operation of Historic Dwellings in Cities Based on an Intelligent Management Platform. Sustain. Cities Soc. 2024, 100, 105025. [Google Scholar] [CrossRef]
- Jia, Z. Garden Landscape Design Method in Public Health Urban Planning Based on Big Data Analysis Technology. J. Environ. Public Health 2022, 2022, 2721247. [Google Scholar] [CrossRef] [PubMed]
- Banfi, F.; Brumana, R.; Salvalai, G.; Previtali, M. Digital Twin and Cloud BIM-XR Platform Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building Comfort, Efficiency and Costs. Energies 2022, 15, 4497. [Google Scholar] [CrossRef]
- Koo, J.; Yoon, S. Simultaneous in-situ calibration for physical and virtual sensors towards digital twin-enabled building operations. Adv. Eng. Inform. 2024, 59, 102239. [Google Scholar] [CrossRef]
- Park, H.-A.; Byeon, G.; Son, W.; Kim, J.; Kim, S. Data-Driven Modeling of HVAC Systems for Operation of Virtual Power Plants Using a Digital Twin. Energies 2023, 16, 7032. [Google Scholar] [CrossRef]
- Jradi, M.; Madsen, B.E.; Kaiser, J.H. DanRETwin: A Digital Twin Solution for Optimal Energy Retrofit Decision-Making and Decarbonization of the Danish Building Stock. Appl. Sci. 2023, 13, 9778. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Rungskunroch, P.; Welsh, J. A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings. Sustainability 2019, 11, 159. [Google Scholar] [CrossRef]
- Bastos Porsani, G.; Fernández-Vigil Iglesias, M.; Echeverría Trueba, J.B.; Fernández Bandera, C. Infiltration Models in EnergyPlus: Empirical Assessment for a Case Study in a Seven-Story Building. Buildings 2024, 14, 421. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, F.; Wang, C.; Huang, M.M.; Wu, M.; Li, H.; Li, Z. Vertical Greenery System (VGS) Renovation for Sustainable Arcade-Housing: Building Energy Efficiency Analysis Based on Digital Twin. Sustainability 2023, 15, 2310. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Kerinnonta, L. Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal. Sustainability 2019, 11, 6631. [Google Scholar] [CrossRef]
- Mohamad Zaidi, N.H.; Lim, C.H.; Razali, H. Mitigating the Energy Consumption and Carbon Emissions of a Residential Area in a Tropical City Using Digital Twin Technology: A Case Study of Bertam, Penang. Buildings 2024, 14, 638. [Google Scholar] [CrossRef]
- Pereira, P.F.; Ramos, N.M.M. Low-Cost Arduino-Based Temperature, Relative Humidity and CO2 Sensors–An Assessment of Their Suitability for Indoor Built Environments. J. Build. Eng. 2022, 60, 105151. [Google Scholar] [CrossRef]
- Dai, X.; Shang, W.; Liu, J.; Xue, M.; Wang, C. Achieving Better Indoor Air Quality with IoT Systems for Future Buildings: Opportunities and Challenges. Sci. Total Environ. 2023, 895, 164858. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Yoon, S. Neural network-based nonintrusive calibration for an unobserved model in digital twin-enabled building operations. Autom. Constr. 2024, 159, 105261. [Google Scholar] [CrossRef]
- Both, M.; Kämper, B.; Cartus, A.; Beermann, J.; Fessler, T.; Müller, J.; Diedrich, C. Automated Monitoring Applications for Existing Buildings through Natural Language Processing Based Semantic Mapping of Operational Data and Creation of Digital Twins. Energy Build. 2023, 300, 113635. [Google Scholar] [CrossRef]
- Harode, A.; Thabet, W.; Dongre, P. A Tool-Based System Architecture for a Digital Twin: A Case Study in a Healthcare Facility. J. Inf. Technol. Constr. 2023, 28, 107–137. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, X. Use of Digital Twins-Based Intelligent Navigation Visual Sensing Technology in Environmental Art Design of Scenic Spots. Adv. Civ. Eng. 2022, 2022, 6399515. [Google Scholar] [CrossRef]
- Kong, X.; Hucks, R.G. Preserving Our Heritage: A Photogrammetry-Based Digital Twin Framework for Monitoring Deteriorations of Historic Structures. Autom. Constr. 2023, 152, 104928. [Google Scholar] [CrossRef]
- Gros, A.; Guillem, A.; De Luca, L.; Baillieul, É.; Duvocelle, B.; Malavergne, O.; Leroux, L.; Zimmer, T. Faceting the Post-Disaster Built Heritage Reconstruction Process within the Digital Twin Framework for Notre-Dame de Paris. Sci. Rep. 2023, 13, 5981. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Bamdad, K.; Famakinwa, T. Digital Twin for Indoor Condition Monitoring in Living Labs: University Library Case Study. Autom. Constr. 2024, 157, 105188. [Google Scholar] [CrossRef]
- Cairoli, M.; Tagliabue, L.C. Digital Twin for Acoustics and Stage Craft Facility Management in a Multipurpose Hall. Acoustics 2023, 5, 909–927. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Yu, F.; Xu, J.; Gao, S. Digital Twin Hospital Buildings: An Exemplary Case Study through Continuous Lifecycle Integration. Adv. Civ. Eng. 2020, 2020, 8846667. [Google Scholar] [CrossRef]
- Cheng, W.; Lian, W.; Tian, J. Building the Hospital Intelligent Twins for All-Scenario Intelligence Health Care. Digit. Health 2022, 8, 20552076221107894. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Du, C.; Yao, Y.; Gui, Y. Dynamic Influencing Mechanism of Traditional Settlements Experiencing Urbanization: A Case Study of Chengzi Village. J. Clean. Prod. 2021, 320, 128462. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Pierce, S.; Pallonetto, F.; De Donatis, L.; De Rosa, M. District Energy Modelling for Decarbonisation Strategies Development—The Case of a University Campus. Energy Rep. 2024, 11, 1256–1267. [Google Scholar] [CrossRef]
- Chandio, I.A.; Matori, A.N.B.; WanYusof, K.B.; Talpur, M.A.H.; Balogun, A.-L.; Lawal, D.U. GIS-Based Analytic Hierarchy Process as a Multicriteria Decision Analysis Instrument: A Review. Arab. J. Geosci. 2013, 6, 3059–3066. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, K. Smart City Landscape Design for Achieving Net-Zero Emissions: Digital Twin Modeling. Sustain. Energy Technol. Assess. 2024, 63, 103659. [Google Scholar] [CrossRef]
- Kikuchi, N.; Fukuda, T.; Yabuki, N. Future Landscape Visualization Using a City Digital Twin: Integration of Augmented Reality and Drones with Implementation of 3D Model-Based Occlusion Handling. J. Comput. Des. Eng. 2022, 9, 837–856. [Google Scholar] [CrossRef]
- Pedrinis, F.; Samuel, J.; Appert, M.; Jacquinod, F.; Gesquière, G. Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data. ISPRS Int. J. Geo-Inf. 2022, 11, 479. [Google Scholar] [CrossRef]
- Pardo Abad, C.J.; Fernández Álvarez, J. Landscape as Digital Content and a Smart Tourism Resource in the Mining Area of Cartagena-La Unión (Spain). Land 2020, 9, 112. [Google Scholar] [CrossRef]
- Luo, J.; Liu, P.; Cao, L. Coupling a Physical Replica with a Digital Twin: A Comparison of Participatory Decision-Making Methods in an Urban Park Environment. ISPRS Int. J. Geo-Inf. 2022, 11, 452. [Google Scholar] [CrossRef]
- Tan, F.; Cheng, Y. A Digital Twin Framework for Innovating Rural Ecological Landscape Control. Environ. Sci. Eur. 2024, 36, 59. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Wang, D.; Wang, D. Towards the Digital Twin of Urban Forest: 3D Modeling and Parameterization of Large-Scale Urban Trees from Close-Range Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103695. [Google Scholar] [CrossRef]
- Lu, S.; Fang, C.; Xiao, X. Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China. ISPRS Int. J. Geo-Inf. 2023, 12, 49. [Google Scholar] [CrossRef]
- Ma, Z.; Pu, D.; Liang, H. Financing Net-Zero Energy Integration in Smart Cities with Green Bonds and Public-Private Partnerships. Sustain. Energy Technol. Assess. 2024, 64, 103708. [Google Scholar] [CrossRef]
- Boccardo, P.; La Riccia, L.; Yadav, Y. Urban Echoes: Exploring the Dynamic Realities of Cities through Digital Twins. Land 2024, 13, 635. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; Almujibah, H.; Khan, M.B.; Alotaibi, S.; Elhassan, A.A.M. Factors Influencing Adoption of Digital Twin Advanced Technologies for Smart City Development: Evidence from Malaysia. Buildings 2023, 13, 775. [Google Scholar] [CrossRef]
- Kalantari, S.; Pourjabar, S.; Xu, T.B.; Kan, J. Developing and User-Testing a “Digital Twins” Prototyping Tool for Architectural Design. Autom. Constr. 2022, 135, 104140. [Google Scholar] [CrossRef]
- Kempenaar, A. Learning to Design with Stakeholders: Participatory, Collaborative, and Transdisciplinary Design in Postgraduate Landscape Architecture Education in Europe. Land 2021, 10, 243. [Google Scholar] [CrossRef]
- Liljaniemi, A.; Paavilainen, H. Using Digital Twin Technology in Engineering Education–Course Concept to Explore Benefits and Barriers. Open Eng. 2020, 10, 377–385. [Google Scholar] [CrossRef]
- Corrado, C.R.; DeLong, S.M.; Holt, E.G.; Hua, E.Y.; Tolk, A. Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities. Sustainability 2022, 14, 12988. [Google Scholar] [CrossRef]
- Khahro, S.H.; Talpur, M.A.H.; Bhellar, M.G.; Das, G.; Shaikh, H.; Sultan, B. GIS-Based Sustainable Accessibility Mapping of Urban Parks: Evidence from the Second Largest Settlement of Sindh, Pakistan. Sustainability 2023, 15, 6228. [Google Scholar] [CrossRef]
- Del Campo, G.; Saavedra, E.; Piovano, L.; Luque, F.; Santamaria, A. Virtual Reality and Internet of Things Based Digital Twin for Smart City Cross-Domain Interoperability. Appl. Sci. 2024, 14, 2747. [Google Scholar] [CrossRef]
- Gholami, M.; Torreggiani, D.; Tassinari, P.; Barbaresi, A. Developing a 3D City Digital Twin: Enhancing Walkability through a Green Pedestrian Network (GPN) in the City of Imola, Italy. Land 2022, 11, 1917. [Google Scholar] [CrossRef]
- Shao, F.; Wang, Y. Intelligent Overall Planning Model of Underground Space Based on Digital Twin. Comput. Electr. Eng. 2022, 104, 108393. [Google Scholar] [CrossRef]
- Najafi, P.; Mohammadi, M.; van Wesemael, P.; Le Blanc, P.M. A User-Centred Virtual City Information Model for Inclusive Community Design: State-of-Art. Cities 2023, 134, 104203. [Google Scholar] [CrossRef]
- Lohman, W.; Cornelissen, H.; Jeroen, B.; Ralph, K.; Yashar, A.; Erwin, W. Building Digital Twins of Cities Using the Inter Model Broker Framework. Future Gener. Comput. Syst. 2023, 148, 501–513. [Google Scholar] [CrossRef]
- Mortaheb, R.; Jankowski, P. Smart City Re-Imagined: City Planning and GeoAI in the Age of Big Data. J. Urban Manag. 2023, 12, 4–15. [Google Scholar] [CrossRef]
- Sharifi, A.; Tarlani Beris, A.; Sharifzadeh Javidi, A.; Nouri, M.; Gholizadeh Lonbar, A.; Ahmadi, M. Application of Artificial Intelligence in Digital Twin Models for Stormwater Infrastructure Systems in Smart Cities. Adv. Eng. Inform. 2024, 61, 102485. [Google Scholar] [CrossRef]
- Chang, C.M.; Salinas, G.T.; Gamero, T.S.; Schroeder, S.; Vélez Canchanya, M.A.; Mahnaz, S.L. An Infrastructure Management Humanistic Approach for Smart Cities Development, Evolution, and Sustainability. Infrastructures 2023, 8, 127. [Google Scholar] [CrossRef]
- Li, B.; Yang, X.; Wu, X. Role of Net-Zero Renewable-Based Transportation Systems in Smart Cities toward Enhancing Cultural Diversity: Realistic Model in Digital Twin. Sustain. Energy Technol. Assess. 2024, 65, 103715. [Google Scholar] [CrossRef]
- Geremicca, F.; Bilec, M.M. Searching for New Urban Metabolism Techniques: A Review towards Future Development for a City-Scale Urban Metabolism Digital Twin. Sustain. Cities Soc. 2024, 107, 105445. [Google Scholar] [CrossRef]
- Simonsson, J.; Atta, K.T.; Schweiger, G.; Birk, W. Experiences from City-Scale Simulation of Thermal Grids. Resources 2021, 10, 10. [Google Scholar] [CrossRef]
- Shaposhnyk, O.; Lai, K.; Wolbring, G.; Shmerko, V.; Yanushkevich, S. Next Generation Computing and Communication Hub for First Responders in Smart Cities. Sensors 2024, 24, 2366. [Google Scholar] [CrossRef] [PubMed]
- Dani, A.A.H.; Supangkat, S.H.; Lubis, F.F.; Nugraha, I.G.B.B.; Kinanda, R.; Rizkia, I. Development of a Smart City Platform Based on Digital Twin Technology for Monitoring and Supporting Decision-Making. Sustainability 2023, 15, 14002. [Google Scholar] [CrossRef]
- An, S.M. A Study on Urban-Scale Building, Tree Canopy Footprint Identification and Sky View Factor Analysis with Airborne LiDAR Remote Sensing Data. Remote Sens. 2023, 15, 3910. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Park, S.; Park, S.H.; Park, L.W.; Park, S.; Lee, S.; Lee, T.; Lee, S.H.; Jang, H.; Kim, S.M.; Chang, H. Design and Implementation of a Smart IoT Based Building and Town Disaster Management System in Smart City Infrastructure. Appl. Sci. 2018, 8, 2239. [Google Scholar] [CrossRef]
- Shariatpour, F.; Behzadfar, M.; Zareei, F. Urban 3D Modeling as a Precursor of City Information Modeling and Digital Twin for Smart City Era: A Case Study of the Narmak Neighborhood of Tehran City, Iran. J. Urban Plan. Dev. 2024, 150, 04024005. [Google Scholar] [CrossRef]
- Zhou, W.; Persello, C.; Li, M.; Stein, A. Building use and mixed-use classification with a transformer-based network fusing satellite images and geospatial textual information. Remote Sens. Environ. 2023, 297, 113767. [Google Scholar] [CrossRef]
- Cureton, P.; Hartley, E. City Information Models (CIMs) as Precursors for Urban Digital Twins (UDTs): A Case Study of Lancaster. Front. Built Environ. 2023, 9, 1048510. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of Digital Twin across Industries: A Review. Appl. Sci. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Shi, J.; Pan, Z.; Jiang, L.; Zhai, X. An Ontology-Based Methodology to Establish City Information Model of Digital Twin City by Merging BIM, GIS and IoT. Adv. Eng. Inform. 2023, 57, 102114. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, L. Augmenting Cybersecurity in Smart Urban Energy Systems through IoT and Blockchain Technology within the Digital Twin Framework. Sustain. Cities Soc. 2024, 106, 105336. [Google Scholar] [CrossRef]
- Jin, C.; Lee, Y.; Lee, S.; Hyun, C. Lightweighting Process of Digital Twin Information Models for Smart City Services. KSCE J. Civ. Eng. 2024, 28, 1304–1320. [Google Scholar] [CrossRef]
- Balla, M.; Haffner, O.; Kučera, E.; Cigánek, J. Educational Case Studies: Creating a Digital Twin of the Production Line in TIA Portal, Unity, and Game4Automation Framework. Sensors 2023, 23, 4977. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
Reference | Author | Publication Year | Research Object | Research Content |
---|---|---|---|---|
[20] | Hosamo H H et al. | 2022 | buildings | fault detection in buildings |
[21] | Tuhaise V V et al. | 2023 | buildings | block chain technologies for building lifecycle management |
[22] | Adu-Amankwa, N.A.N | 2023 | buildings | building lifecycle management |
[23] | Nguyen T D, Adhikari S | 2023 | buildings | building construction |
[24] | Coupry C et al. | 2021 | buildings | maintenance procedures in smart buildings |
[25] | Hämäläinen M | 2021 | urban environment | urban development |
[26] | Faliagka E et al. | 2024 | urban environment | smart mobility and smart cities |
[27] | Shahat E et al. | 2021 | urban environment | city DT potential |
[28] | Caldarelli G et al. | 2023 | urban environment | city DT |
[29] | Batty M | 2024 | urban environment | DT in city planning |
Object | Keywords |
---|---|
building | (“digital twin” OR “digital twin technologies”) AND (“building” OR “buildings” OR “architecture” OR “house” OR “school” OR “office” OR “church” OR “site” OR “monument”) |
landscape | (“digital twin” OR “digital twin technologies”) AND (“landscape” OR “park” OR “plaza”) |
urban environment | (“digital twin” OR “digital twin technologies”) AND (“urban” OR “urban planning” OR “urban design” OR “city planning” OR “city design” OR “city” OR “town”) |
Journal | Host Country | Count | Percentage |
---|---|---|---|
Sustainability | Switzerland | 47 | 5.58% |
Applied Sciences-Basel | Switzerland | 44 | 5.23% |
Buildings | Switzerland | 42 | 4.99% |
Automation in Construction | Netherlands | 35 | 4.16% |
IEEE Access | United States | 25 | 2.97% |
Sensors | Switzerland | 22 | 2.61% |
Energies | Switzerland | 19 | 2.26% |
Energy and Buildings | Switzerland | 18 | 2.14% |
Journal of Building Engineering | Netherlands | 16 | 1.90% |
Building and Environment | England | 15 | 1.78% |
No | Author | Publication Year | Journal | Name | Research Object | Cited Times |
---|---|---|---|---|---|---|
1 | Khajavi Siavash H | 2019 | IEEE ACCESS | Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings | Building | 205 |
2 | Lu Qiuchen | 2020 | Journal of Management in Engineering | Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus | Building, Urban environment | 192 |
3 | Lu Qiuchen | 2020 | Automation in Construction | Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance | Building | 171 |
4 | Lee Dongmin | 2020 | Automation in Construction | Integrated digital twin and blockchain framework to support accountable information sharing in construction projects | Building | 164 |
5 | Dembski Fabian | 2020 | Sustainability | Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany | Urban environment | 158 |
6 | White Gary | 2021 | Cities | A digital twin smart city for citizen feedback | Urban environment | 151 |
7 | Schrotter Gerhard | 2020 | PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science | The Digital Twin of the City of Zurich for Urban Planning | Urban environment | 146 |
8 | Li Xiaoming | 2022 | Future Generation Computer System | Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning | Urban environment | 134 |
9 | Francisco Abigail | 2020 | Journal of Management in Engineering | Smart City Digital Twin-Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking | Urban environment | 131 |
10 | Allam Zaheer | The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures | Urban environment | 117 |
No. | Authors | Institution | Country/Region | Count | Percentage |
---|---|---|---|---|---|
1 | Lv, Zhihan | Uppsala University | Sweden | 12 | 1.77% |
2 | Sepasgozar, Samad | University of New South Wales Sydney | Australia | 8 | 0.95% |
3 | Liu, Zhansheng | Harbin Institute of Technology | China | 6 | 0.71% |
4 | Song, Xueguan | Dalian University of Technology | China | 6 | 0.71% |
5 | Lv, Haibin | ShanghaiTech University | China | 5 | 0.59% |
7 | Parlikad, Ajith Kumar | University of Cambridge | England | 5 | 0.59% |
8 | Lu, Weisheng | University of Hong Kong | China | 5 | 0.59% |
9 | Yoon, Sungmin | Sungkyunkwan University | South Korea | 5 | 0.59% |
10 | Cheng, Jack C.P. | Hong Kong University of Science & Technology | China | 5 | 0.59% |
Wang, Haining | China Jiliang University | China | 5 | 0.59% |
First Level Attribute | Secondary Attribute | Definition |
---|---|---|
weights | Links | the number of connections between one keyword and another different keyword |
Total link strength | the total connection strength between one keyword and another different keyword | |
Occurrences | the number of occurrences of keywords in the article | |
scores | Avg. pub. year | the chronological order in which keywords appear in relevant literature. The closer the average publication year, the newer the keywords, and the newer the research topic |
Avg. citations | the total number of citations obtained from all papers with a certain keyword, divided by the number of papers with that keyword appearing | |
Avg. norm. citations | the average number of standardized citations for all literature in the set. Standardized citations are calculated by dividing the total number of citations for a paper by the number of citations for papers of the same type. The higher the average number of standardized citations, the greater the impact on the literature |
Id | Label | Cluster | Links | Total_link_strength | Occurrences | Avg_pub_year | Avg_citations | Avg_norm_citations |
---|---|---|---|---|---|---|---|---|
26 | digital twin | 4 | 61 | 399 | 271 | 2022.2583 | 18.6679 | 1.1838 |
70 | system | 6 | 49 | 143 | 80 | 2022.2 | 13.05 | 0.9735 |
54 | model | 6 | 43 | 126 | 71 | 2022.1408 | 14.5634 | 0.9594 |
64 | smart city | 2 | 40 | 82 | 44 | 2022.2727 | 34.9318 | 1.3971 |
8 | building | 7 | 38 | 99 | 60 | 2022 | 25.3167 | 1.0656 |
6 | bim | 5 | 37 | 90 | 45 | 2022.1778 | 19.3111 | 1.1003 |
12 | case study | 7 | 37 | 86 | 44 | 2022.4318 | 18.7727 | 0.836 |
38 | framework | 5 | 37 | 99 | 56 | 2022.3929 | 16.9464 | 1.0546 |
44 | integration | 5 | 36 | 77 | 33 | 2022.2727 | 18.0303 | 1.1232 |
51 | management | 1 | 36 | 80 | 45 | 2022.2444 | 22.0667 | 1.2609 |
2 | application | 3 | 34 | 64 | 30 | 2022.3667 | 17.2333 | 1.0932 |
22 | design | 4 | 34 | 72 | 49 | 2022.0408 | 13.8776 | 0.7673 |
23 | development | 5 | 32 | 65 | 34 | 2022.1176 | 11.4706 | 0.736 |
43 | industry | 1 | 32 | 55 | 28 | 2022.0357 | 21.5357 | 2.1124 |
55 | monitoring | 3 | 31 | 68 | 37 | 2022.7838 | 10.4865 | 0.8511 |
3 | architecture | 1 | 30 | 44 | 30 | 2022 | 11.5667 | 0.821 |
17 | construction | 3 | 30 | 58 | 30 | 2022.3667 | 18.9333 | 1.5396 |
36 | environment | 1 | 28 | 42 | 26 | 2022.3462 | 15.8462 | 1.0814 |
19 | data | 6 | 27 | 51 | 31 | 2022.4194 | 13.0645 | 0.9695 |
1 | analysis | 1 | 26 | 46 | 24 | 2022.4167 | 11.9583 | 1.3414 |
59 | planning | 4 | 26 | 46 | 21 | 2022.4286 | 16.7143 | 1.2322 |
13 | challenge | 1 | 24 | 36 | 17 | 2022.2353 | 21.3529 | 1.6066 |
24 | digital | 3 | 24 | 45 | 31 | 2022.5806 | 18.6129 | 1.6182 |
15 | city | 4 | 22 | 42 | 25 | 2022.44 | 14.68 | 0.9465 |
5 | assessment | 2 | 20 | 36 | 29 | 2022.1034 | 16.5862 | 0.9943 |
20 | decision | 6 | 20 | 26 | 12 | 2022.25 | 13.5833 | 0.6318 |
56 | operation | 3 | 20 | 34 | 16 | 2022.4375 | 21.9375 | 1.3367 |
47 | iot | 2 | 18 | 25 | 10 | 2021.6 | 27.5 | 1.3481 |
53 | method | 6 | 18 | 42 | 32 | 2022.5625 | 11.125 | 0.7255 |
58 | perspective | 1 | 18 | 24 | 15 | 2022.6667 | 12.6667 | 1.0888 |
30 | digital twin framework | 1 | 17 | 21 | 16 | 2022.875 | 13.1875 | 1.4435 |
35 | digital twins | 1 | 17 | 22 | 16 | 2022 | 21.5625 | 1.2314 |
37 | evaluation | 7 | 17 | 33 | 20 | 2022.1 | 18.3 | 1.2728 |
57 | opportunity | 1 | 17 | 23 | 9 | 2022.3333 | 30.2222 | 3.0145 |
9 | building information modeling | 1 | 16 | 20 | 8 | 2022.875 | 5 | 0.5309 |
42 | implementation | 5 | 16 | 27 | 14 | 2022.2143 | 18.5714 | 1.0521 |
45 | internet | 2 | 16 | 28 | 11 | 2022.2727 | 19.9091 | 1.5725 |
61 | research | 7 | 16 | 21 | 12 | 2022.3333 | 10.5 | 0.5838 |
18 | control | 3 | 15 | 29 | 19 | 2022.7368 | 8.2105 | 1.1224 |
21 | deep learning | 2 | 15 | 17 | 10 | 2022.8 | 28.5 | 3.2487 |
33 | digital twin technologies | 6 | 15 | 23 | 14 | 2022.0714 | 9.7143 | 0.561 |
4 | artificial intelligence | 5 | 14 | 19 | 9 | 2022.2222 | 25.7778 | 1.0725 |
7 | blockchain | 1 | 14 | 15 | 8 | 2022.25 | 22.5 | 1.852 |
16 | concept | 4 | 14 | 24 | 11 | 2022.0909 | 31 | 1.923 |
39 | future | 1 | 14 | 20 | 9 | 2021.8889 | 31.8889 | 1.8148 |
63 | smart building | 3 | 14 | 20 | 11 | 2023.2727 | 10.7273 | 2.2121 |
68 | study | 1 | 14 | 19 | 11 | 2022.6364 | 5.1818 | 0.9026 |
52 | metaverse | 1 | 13 | 15 | 9 | 2022.8889 | 20.4444 | 2.2505 |
67 | state | 1 | 13 | 18 | 8 | 2022.375 | 9.75 | 1.1092 |
69 | survey | 1 | 13 | 15 | 9 | 2022.1111 | 18.1111 | 0.9834 |
74 | virtual reality | 2 | 13 | 15 | 7 | 2022.1429 | 19.4286 | 1.017 |
32 | digital twin model | 2 | 12 | 14 | 11 | 2022.7273 | 8.4545 | 0.9043 |
34 | digital twinning | 6 | 11 | 14 | 9 | 2022.5556 | 14.5556 | 1.2665 |
40 | future direction | 1 | 11 | 12 | 5 | 2022 | 28 | 1.6835 |
49 | machine learning | 3 | 11 | 16 | 8 | 2022.625 | 14.25 | 1.5024 |
75 | vision | 1 | 11 | 15 | 7 | 2021.7143 | 39.1429 | 1.3097 |
71 | thing | 2 | 10 | 19 | 6 | 2022.3333 | 27.3333 | 2.3591 |
10 | building information modelling | 5 | 9 | 10 | 6 | 2021.3333 | 29.5 | 0.9611 |
11 | case | 4 | 9 | 13 | 9 | 2022.2222 | 20 | 0.5747 |
41 | hvac system | 3 | 9 | 10 | 6 | 2023.3333 | 5.6667 | 1.2469 |
50 | maintenance | 3 | 9 | 14 | 7 | 2021.8571 | 41.2857 | 1.4397 |
62 | role | 4 | 9 | 12 | 5 | 2022.6 | 13 | 1.1429 |
27 | digital twin application | 5 | 8 | 10 | 6 | 2021.8333 | 51 | 1.3628 |
29 | digital twin city | 2 | 8 | 9 | 6 | 2022 | 28.3333 | 0.8817 |
48 | machine | 3 | 8 | 11 | 7 | 2022.5714 | 7.8571 | 0.7356 |
Research Content | Research Object | Technologies | Study |
---|---|---|---|
Energy forecasting and management | Residential building | EnergyPlus, Sensors | [46,47,48] |
Existing building | DanRETRO, big data, BIM | [61,62,63] | |
Public building | BIM | [64] | |
Building settlement | BIM, OSM | [65,66] | |
Thermal environment and residential comfort evaluation | Existing building | BIM, CFD, DB | [67,68] |
Heritage building | BIM, HBIM | [53,54,55,56] | |
Intelligent operation and maintenance of buildings and decision making | Existing building | BIM, deep learning | [69,70] |
Energy building | BIM, big data | [59,60] | |
Healthcare building | BIM, MR | [51] | |
Intelligent monitoring of building structure and damage | Residential building | BIM, sensor, IoT | [49,50] |
Transportation building | BIM, sensor | [58] | |
Building performance simulation | Residential building | BIM | [71] |
Heritage building | UAV, point cloud data | [57] | |
Residential building | BIM, MR | [72] | |
Digital twin system and application architecture | Healthcare building | BIM, SQL, IoT | [52] |
Research Object | Research Content | Technologies | Publication Year | Study |
---|---|---|---|---|
Garden landscape | Digital method of urban landscape design | Big data, machine learning | 2022 | [57] |
Scenic spot | Feasibility of environmental art design in scenic spots | ODVS, PCSLG | 2022 | [72] |
Urban landscape | Energy saving landscape system design | HMA algorithm | 2024 | [52] |
Urban landscape | Net-zero emissions | ANN | 2024 | [82] |
Urban landscape | Smart tourism | BIM | 2020 | [83] |
Scenic spot landscape | Environmental art design of scenic spots | sensor | 2022 | [86] |
Urban landscape | 3D Landscape visualization | AR | 2022 | [84] |
Urban park | Participatory decision-making methods | UAV | 2022 | [87] |
Urban landscape | GIS | 2022 | [85] | |
Rural landscape | Intelligent control approach and framework | UAV, GIS, HTML5, Oracle DB | 2024 | [88] |
Urban forest | Large-scale tree modeling and lightweight model representation | MLS, UAV | 2024 | [89] |
Natural Lake | Rapid modeling of virtual scene | 3D visualization, UAV, UE | 2023 | [90] |
Research Object | Research Content | Technologies | Study |
---|---|---|---|
Smart city | Digital application of urban environmental infrastructure system | BIM | [91,105] |
Intelligent management of urban energy system | BIM, AI | [106,107] | |
Urban transportation intelligent system | [108] | ||
Urban thermal environment management | MATLAB | [109] | |
Urban security management and digital management system | IoT, CMA-ES | [110] | |
Urban intelligent operation and management | BIM, GIS, virtual engine, LiDAR | [111,112,113] | |
Urban disaster prevention, control, and emergency response | AR, VR, DB, IoT, sensor | [114] | |
Urban planning | Research on digital methods of urban planning | BIM, Big data, sensor | [103,115,116] |
Digital twin framework for urban environment and urban information model | CIM, BIM, GIS, IoT, LiDAR | [117,118,119] | |
Urban planning and development | SEM, CMV, BIM, DCIM, sensor, GIS, LiDAR | [99,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Lv, Y.; Wang, Q.; Sun, B.; Han, D. A Systematic Review of the Digital Twin Technology in Buildings, Landscape and Urban Environment from 2018 to 2024. Buildings 2024, 14, 3475. https://doi.org/10.3390/buildings14113475
Liu W, Lv Y, Wang Q, Sun B, Han D. A Systematic Review of the Digital Twin Technology in Buildings, Landscape and Urban Environment from 2018 to 2024. Buildings. 2024; 14(11):3475. https://doi.org/10.3390/buildings14113475
Chicago/Turabian StyleLiu, Wenhui, Yihan Lv, Qian Wang, Bo Sun, and Dongchen Han. 2024. "A Systematic Review of the Digital Twin Technology in Buildings, Landscape and Urban Environment from 2018 to 2024" Buildings 14, no. 11: 3475. https://doi.org/10.3390/buildings14113475
APA StyleLiu, W., Lv, Y., Wang, Q., Sun, B., & Han, D. (2024). A Systematic Review of the Digital Twin Technology in Buildings, Landscape and Urban Environment from 2018 to 2024. Buildings, 14(11), 3475. https://doi.org/10.3390/buildings14113475