Fluid Flow Modeling and Experimental Investigation on a Shear Thickening Fluid Damper
Abstract
:1. Introduction
2. The Preparation and Rheological Testing of STF Samples
2.1. Preparation of STF Samples
2.2. Rheological Testing of STF Samples
3. The Design and Simulation of STF Dampers
3.1. Designing of the STF Dampers
3.2. Simulation and Optimization of the STF Damper
4. The Dynamic Property of STF Dampers
4.1. Dynamic Testing of STF Damper
4.2. Nonlinear Fitting Model
5. Conclusions
- (1)
- The proposed STF material exhibits a pronounced shear thickening behavior, with a 412% increase in viscosity. This thickening initiates at a shear rate of 15.1 1/s and peaks at 30.1 1/s, beyond which the material transitions into a shear thinning state.
- (2)
- Simulation results indicate that as the excitation frequency, excitation amplitude, and piston radius increase, the average shear rate of the STF in the annular gap region also gradually increases. When the piston diameter is 36 mm, the average shear rate of the STF material in the annular gap region does not exceed 30.1 1/s, ensuring that the STF material does not extensively enter the shear thinning stage when the damper is subjected to sinusoidal excitation within the range of 1–5 Hz and 1–3 mm.
- (3)
- A STF damper was fabricated based on the optimized design. Experimental results showed that the stiffness of the STF damper varies with changes in excitation frequency. When the external frequency increases from 1 Hz to 5 Hz at an amplitude of 3 mm, the equivalent stiffness of the STF spacer increases from 3.2 N/mm to 9.1 N/mm, nearly tripling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Guo, J.; Yang, J.; Li, X. Recent Structural Developments and Applications of Magnetorheological Dampers (MRD): A Review. Magnetochemistry 2023, 9, 90. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Hu, R.; Ye, M. Simplified design of nonlinear damper parameters and seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers. Front. Struct. Civ. Eng. 2024, 18, 1103–1116. [Google Scholar] [CrossRef]
- Mohtasim, S.M.; Ahammed, R.; Rahman, M.M.; Rashid, M.M.; Roy, R.; Aziz, M.A. Recent developments of regenerative magnetorheological (RMR) damper: A review. Korea-Aust. Rheol. J. 2021, 33, 201–224. [Google Scholar] [CrossRef]
- Aziz, M.A.; Aminossadati, S.M. State-of-the-art developments of bypass Magnetorheological (MR) dampers: A review. Korea-Aust. Rheol. J. 2021, 33, 225–249. [Google Scholar] [CrossRef]
- Deng, H.; Lian, X.; Gong, X. A brief review of variable stiffness and damping magnetorheological fluid dampers. Front. Mater. 2022, 9, 1019426. [Google Scholar] [CrossRef]
- Chen, C.; Chan, Y.S.; Zou, L.; Liao, W.-H. Self-powered magnetorheological dampers for motorcycle suspensions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 232, 921–935. [Google Scholar] [CrossRef]
- Bastola, A.K.; Li, L.; Paudel, M. A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid. J. Mater. Sci. 2018, 53, 7004–7016. [Google Scholar] [CrossRef]
- Cao, S.; Hu, F.; Zhang, G. Superelastic Shape Memory Alloy Honeycomb Damper. Appl. Sci. 2023, 13, 13154. [Google Scholar] [CrossRef]
- Liu, H.; Fu, K.; Cui, X.; Zhu, H.; Yang, B. Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers 2023, 15, 2238. [Google Scholar] [CrossRef]
- Fu, K.; Wang, H.; Zhang, Y.X.; Ye, L.; Escobedo, J.P.; Hazell, P.J.; Friedrich, K.; Dai, S. Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures. Int. J. Impact Eng. 2020, 139, 103525. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Mottaghitalab, V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor. J. Mater. Eng. Perform. 2014, 23, 1182–1196. [Google Scholar] [CrossRef]
- Aşkan, A.; Çapkurt, M.; Acar, E.; Aydın, M. Influence of dispersion liquid and silica concentration on rheological properties of shear thickening fluids (STFs). Rheol. Acta 2023, 62, 447–460. [Google Scholar] [CrossRef]
- Sun, L.; Liang, T.; Zhang, C.; Chen, J. The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Phys. Fluids 2023, 35, 032002. [Google Scholar] [CrossRef]
- Madraki, Y.; Ovarlez, G.; Hormozi, S. Transition from Continuous to Discontinuous Shear Thickening: An Excluded-Volume Effect. Phys. Rev. Lett. 2018, 121, 108001. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Wang, H.; Chang, L.; Foley, M.; Friedrich, K.; Ye, L. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels. Compos. Sci. Technol. 2018, 165, 74–83. [Google Scholar] [CrossRef]
- James, N.M.; Han, E.; de la Cruz, R.A.L.; Jureller, J.; Jaeger, H.M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 2018, 17, 965–970. [Google Scholar] [CrossRef]
- Xu, Y.-l.; Gong, X.-l.; Peng, C.; Sun, Y.-q.; Jiang, W.-q.; Zhang, Z. Shear Thickening Fluids Based on Additives with Different Concentrations and Molecular Chain Lengths. Chin. J. Chem. Phys. 2010, 23, 342–346. [Google Scholar] [CrossRef]
- Moriana, A.; Pérez-López, D.; Gómez-Rico, A.; Salvador, M.d.l.D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics. Agric. Water Manag. 2007, 87, 171–179. [Google Scholar] [CrossRef]
- Antosik, A.; Głuszek, M.; Żurowski, R.; Szafran, M. Effect of SiO2 Particle Size and Length of Poly(Propylene Glycol) Chain on Rheological Properties of Shear Thickening Fluids. Arch. Metall. Mater. 2016, 61, 1511–1514. [Google Scholar] [CrossRef]
- Gürgen, S.; Sofuoğlu, M.A.; Kuşhan, M.C. Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 2019, 28, 035027. [Google Scholar] [CrossRef]
- Helber, R.; Doncker, F.; Bung, R. Vibration attenuation by passive stiffness switching mounts. J. Sound Vib. 1990, 138, 47–57. [Google Scholar] [CrossRef]
- Laun, H.M.; Bung, R.; Schmidt, F. Rheology of extremely shear thickening polymer dispersionsa) (passively viscosity switching fluids). J. Rheol. 1991, 35, 999–1034. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, J.; Xuan, S. Multi-Functional Systems Based on Shear Thickening Fluid. In Shear Thickening Fluid; Springer: Cham, Switzerland, 2023; pp. 53–75. [Google Scholar] [CrossRef]
- Sheikhi, M.R.; Gürgen, S.; Altuntas, O.; Sofuoğlu, M.A. Anti-impact and vibration-damping design of cork-based sandwich structures for low-speed aerial vehicles. Arch. Civ. Mech. Eng. 2023, 23, 71. [Google Scholar] [CrossRef]
- Yay, Ö.; Diltemiz, S.F.; Kuşhan, M.C.; Gürgen, S. Shear Thickening Fluid-Based Vibration Damping Applications. In Smart Systems with Shear Thickening Fluid; Springer: Cham, Switzerland, 2024; pp. 59–69. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Li, W.H.; Gong, X.L. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 2008, 17, 035027. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, L.; Jiang, W.; Xuan, S.; Gong, X. Shear thickening fluid–based energy-free damper: Design and dynamic characteristics. J. Intell. Mater. Syst. Struct. 2014, 27, 208–220. [Google Scholar] [CrossRef]
- Srivastava, A.; Majumdar, A.; Butola, B.S. Improving the Impact Resistance of Textile Structures by using Shear Thickening Fluids: A Review. Crit. Rev. Solid State Mater. Sci. 2012, 37, 115–129. [Google Scholar] [CrossRef]
- Galindo-Rosales, F.J.; Rubio-Hernández, F.J.; Sevilla, A. An apparent viscosity function for shear thickening fluids. J. Non-Newton. Fluid Mech. 2011, 166, 321–325. [Google Scholar] [CrossRef]
- Brown, E.; Jaeger, H.M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 2014, 77, 046602. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Guo, Q.; Sun, H. Characterization and performance analysis of a shear thickening fluid damper. Meas. Control 2019, 52, 72–80. [Google Scholar] [CrossRef]
Parameters | Value (mm) |
---|---|
Diameter of push rod | 15 |
Length of push rod | 295 |
Length of piston | 15 |
Diameter of piston | 30–40 |
Outer diameter of damper | 58 |
Wall thickness | 4 |
Length of cylinder chamber | 255 |
Diameter of cylinder chamber | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Fu, X.; Meng, P.; Cheng, L.; Wang, L.; Yuan, J. Fluid Flow Modeling and Experimental Investigation on a Shear Thickening Fluid Damper. Buildings 2024, 14, 3548. https://doi.org/10.3390/buildings14113548
Chen S, Fu X, Meng P, Cheng L, Wang L, Yuan J. Fluid Flow Modeling and Experimental Investigation on a Shear Thickening Fluid Damper. Buildings. 2024; 14(11):3548. https://doi.org/10.3390/buildings14113548
Chicago/Turabian StyleChen, Shiwei, Xiaojiao Fu, Peiling Meng, Lei Cheng, Lifang Wang, and Jing Yuan. 2024. "Fluid Flow Modeling and Experimental Investigation on a Shear Thickening Fluid Damper" Buildings 14, no. 11: 3548. https://doi.org/10.3390/buildings14113548
APA StyleChen, S., Fu, X., Meng, P., Cheng, L., Wang, L., & Yuan, J. (2024). Fluid Flow Modeling and Experimental Investigation on a Shear Thickening Fluid Damper. Buildings, 14(11), 3548. https://doi.org/10.3390/buildings14113548