Influence of Column–Base Connections on Seismic Behavior of Single-Story Steel Buildings
Abstract
:1. Introduction
2. Existing Strategic Single-Story Buildings
2.1. General Description
- The structural material: steel (S).
- The building’s location: through the abbreviation of the Italian provinces where the buildings are located (i.e., if located in Bologna, (BO)).
2.2. Information on As-Built Existing Buildings
2.3. Material Properties
2.4. Locations and Seismic Hazards
2.5. Simulated Design of the Column–Base Connections
3. Numerical Modeling Assumptions
3.1. Moment–Rotation Responses of the Column–Base Joints
3.2. Assumptions of Global Finite Element Models
4. Seismic Assessment of the Investigated Existing Buildings
4.1. Seismic Assessment Through Non-Linear Static Analysis
4.2. Results of Pushover Analyses in the Longitudinal Direction
4.3. Results of Pushover Analyses in the Transverse Direction
5. Seismic Strengthening Interventions
6. Conclusions
- The single-story steel buildings, although they were originally designed to consider gravity and wind loads only, demonstrate a satisfactory seismic performance in terms of lateral resistance and stiffness in the longitudinal direction.
- The absence of capacity design criteria in older regulations results in base nodes designed solely for resistance checks, categorized as semi-rigid and partial-strength according to the CBFEM analyses.
- The non-linear links introduced accurately replicate the local joint behavior in terms of the moment–rotation response, enabling the consideration of real joint performance in global 3D FEMs.
- In the transverse direction, the global structural behavior is heavily impacted by the base connections’ performance. In most of the cases investigated, the joints show brittle behavior, mainly governed by the low resistance of the anchors. This local deficiency consistently precedes both the global structural ductility and the lateral deformability.
- The local strengthening at the column–base connections proposed offers an economical and effective retrofitting solution to improve both the local and global seismic performance. For brittle component failure, the seismic performance index increased from values between 0.4 and 0.9 to between 1.0 and 1.1. This corresponds to improvements ranging from 22% to 175%, ensuring compliance with the code prescriptions. In terms of lateral deformability check at DL limit state, the index increased from values between 0.8 and 1.1 to between 1.0 and 1.4, with improvements ranging from 11% to 27%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ADRS | Acceleration–Displacement Response Spectrum |
ag | Maximum horizontal acceleration on rigid ground, which has a 10% probability of being exceeded in 50 years |
C | Seismic coefficient |
CBFEM | Component-based finite element model |
CBFs | Concentrically braced frames |
CF | Confidence factor |
CU | Utilization coefficient of a building |
dEd-DL | Displacement demand in the DL limit state |
dEd-SD | Displacement demand in the SD limit state |
DL | Damage Limitation limit state |
dRd-DL | Roof displacement corresponding to the first yielding of the steel members |
dRd-DL-0.5% | Roof displacement corresponding a story drift equal to 0.005 |
dRd-SD | Roof displacement corresponding to local failure of the steel members |
dRd-SD-1.5% | Roof displacement corresponding a story drift equal to 0.015 |
dRd-SD-2.0% | Roof displacement corresponding a story drift equal to 0.02 |
FE | Equivalent static seismic force according to the OS approach |
FEM | Finite element method |
Fw | Equivalent static wind force |
fy | Material yield strength assumed for a steel member’s capacity (MPa) |
fy,m | Average value for the steel’s yield strength (MPa) |
G | Dead load (kN) |
g2k,c | Characteristic permanent load of lightweight claddings per unit area (kN/m2) |
g2k,r | Characteristic permanent load of the roofing system per unit area (kN/m2) |
GL | Gravity load |
I | Importance factor of a building |
IDR | Inter-story drift ratio |
I-P | Structural configuration considering pinned column–base joints |
I-R | Structural configuration considering full-strength rigid column–base joints |
kel,I-R | Elastic stiffness derived from non-linear static analyses assuming the ideal fully rigid column–base joint behavior |
kel,R | Elastic stiffness from analyses where the moment–rotation behavior of a joint is explicitly modeled |
KL | Knowledge Level |
LFRS | Lateral-force-resisting system |
LS | Limit state |
Mc,Rd | Plastic bending capacity of a column |
Mj | Bending moment acting at the column base |
Mj,Rd | Bending capacity of the column–base joint |
Nj | Axial force acting at the column base |
OS | Obsolete seismic (design) |
PGAC | Peak ground acceleration of the capacity spectrum |
PGAD | Peak ground acceleration of the elastic demand spectrum |
PTFs | Pinned truss frames |
PVR | Exceedance probability at VR |
R | Structural configuration considering the actual moment–rotation response of the column–base joint |
Rd | Dynamic coefficient of a building |
RPFs | Rigid portal frames |
R-st | |
RTFs | Rigid truss frames |
S-BO | The steel single-story building located in Bologna (BO) |
S-BS | The steel single-story building located in Brescia (BS) |
S-CH | The steel single-story building located in Chieti (CH) |
SD | Significant Damage limit state |
Sj | Actual monotonic–moment rotation response of the column–base joint |
Sj,pin | Upper bound of the moment–rotation response for a pinned column–base joint |
Sj,rig | Lower bound of the moment–rotation response for the ideal fully rigid column–base joint |
S-PA | The steel single-story building located in Palermo (PA) |
S-RC | The steel single-story building located in Reggio Calabria (RC) |
S-VT | The steel single-story building located in Viterbo (VT) |
TR | Mean return period of the seismic action employed |
Vj | Shear acting at the column base |
VN | Nominal design life of a building |
VR | Reference period |
WTot | Seismic weight of a building |
θRd,SD | Rotational capacity of the flexural elements |
References
- National Institute of Statistics (ISTAT). 16° Censimento Generale della Popolazione e delle Abitazioni; National Institute of Statistics (ISTAT): Rome, Italy, 2021. (In Italian) [Google Scholar]
- Dall’Asta, A.; Landolfo, R.; Salvatore, W. Edifici Monopiano in Acciaio ad Uso Industriale; Dario Flaccovio Editore: Palermo, Italy, 2022. (In Italian) [Google Scholar]
- Landolfo, R.; Fomisano, A.; Di Lorenzo, G.; Di Filippo, A. Classification of european building stock in technological and typological classes. J. Build. Eng. 2022, 45, 103482. [Google Scholar] [CrossRef]
- Tsavdaridis, K.-D. Strengthening Techniques: Code-Deficient Steel Buildings. In Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- RD 18/04/1939 n. 2229; Norme per la Esecuzione delle Opere in Congromerate Cementizio Semplice ed Armato. Gazzetta Ufficiale della Repubblica Italiana n. 92: Rome, Italy, 1940. (In Italian)
- D.M. 30/05/1974; Norme Tecniche per la Esecuzione delle Opere in Cemento Armato Normale e Precompresso e per le Strutture Metalliche. Gazzetta Ufficiale della Repubblica Italiana n. 198: Rome, Italy, 1974. (In Italian)
- D.M. 26/03/1980; Norme Tecniche per la Esecuzione delle Opere in Cemento Armato Normale e Precompresso e per le Strutture Metalliche. Gazzetta Ufficiale della Repubblica Italiana n. 176: Rome, Italy, 1980. (In Italian)
- D.M. 25/07/1985; Norme Tecniche per la Esecuzione delle Opere in Cemento Armato Normale e Precompresso e per le Strutture Metalliche. Gazzetta Ufficiale della Repubblica Italiana n. 113: Rome, Italy, 1986. (In Italian)
- RD 25/03/1935 n. 640; Nuovo Testo Delle Norme Tecniche di Edilizia con Speciali Prescrizioni per le Località Colpite dai Terremoti. Gazzetta Ufficiale della Repubblica Italiana n. 640: Rome, Italy, 1935. (In Italian)
- DM. 03/03/1975; Approvazione delle Norme Tecniche per le Costruzioni in Zone Sismiche. Gazzetta Ufficiale della Repubblica Italiana n. 93: Rome, Italy, 1975. (In Italian)
- CNR (Consiglio Nazionale delle Ricerche). CNR-UNI 10011: Steel Structure—Instruction for Design, Construction, Testing and Maintenance; Consiglio Nazionale delle Ricerche: Rome, Italy, 1967. (In Italian) [Google Scholar]
- CNR (Consiglio Nazionale delle Ricerche). CNR-UNI 10012: Ipotesi di Carico Sulle Costruzioni; Consiglio Nazionale delle Ricerche: Rome, Italy, 1967. (In Italian) [Google Scholar]
- D.M. 17/01/2018; Aggiornamento delle Norme Tecniche per le Costruzioni. Gazzetta Ufficiale della repubblica Italiana n. 42: Rome, Italy, 2018. (In Italian)
- C.S.LL.PP., Circolare n.7 21/01/2019; Istruzioni per L’applicazione dell’«Aggiornamento delle “Norme tecniche per le Costruzioni”». Gazzetta Ufficiale della Repubblica Italiana n. 5: Rome, Italy, 2019. (In Italian)
- CEN (European Committee for Normalization). EN1998:3 Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; European Committee for Normalization: Brussels, Belgium, 2005. [Google Scholar]
- Di Lorenzo, G.; Formisano, A.; Terracciano, G.; Landolfo, R. Iron alloys and structural steels from XIX century until today: Evolution of mechanical properties and proposal of a rapid identification method. Constr. Build. Mater. 2021, 302, 124132. [Google Scholar] [CrossRef]
- CEN (European Committee for Normalization). UNI EN 10025-1: Hot Rolled Products of Structural Steels—Part 1: General Technical Delivery Conditions; European Committee for Normalization: Brussels, Belgium, 2005. [Google Scholar]
- da Silva, L.S.; Rebelo, C.; Nethercot, D.; Marques, L.; Simoes, R.; Vila Real, P.M.M. Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 2: Variability of Steel properties. J. Constr. Steel Res. 2009, 65, 832–849. [Google Scholar] [CrossRef]
- CEN (European Committee for Normalization). EN1998-1: Eurocode 8: Earthquake Resistance Design of Structures; European Committee for Normalization: Brussels, Belgium, 2005. [Google Scholar]
- ASCE (American Society of Civil Engineers). Technical Council on Lifeline Earthquake Engineering. Northridge Earthquake—Lifeline Performance and Post-Earthquake Response, Monograph No. 8 1995; American Society of Civil Engineers: New York, NY, USA, 1995. [Google Scholar]
- Northridge Reconnaissance Team. Earthquake Spectra, Northridge Earthquake of January 17, 1994. Reconnaiss. Rep. Suppl. C-2 1996, 11, 25–47. [Google Scholar]
- CEN (European Committee for Normalization). EN1993:1-8 Eurocode 3: Design of Steel Structures—Part 1–8: Design of Joints; European Committee for Normalization: Brussels, Belgium, 2005. [Google Scholar]
- Danieli, D.; De Miranda, F. Strutture in Acciaio per L’edilizia Civile e Industriale, Collana Tecnico Scientifica per la Progettazione Delle Strutture in Acciaio; Italsider S.p.A.: Genova, Italy, 1971. (In Italian) [Google Scholar]
- Della Corte, G.; Cantisani, G. Modelling of colum base plate connections with palet stiffners and non-proportional loading. Proc. Civ. Eng. 2023, 6, 1305–1311. [Google Scholar]
- IDEA StatiCa. Connection Design 2023. Available online: https://www.ideastatica.com/ (accessed on 3 October 2024).
- Computers and Structures Inc. (CSI). SAP2000 Integrated Software for Structural Analysis and Design; Computers and Structures Inc.: Berkeley, CA, USA, 2024. [Google Scholar]
- ASCE (American Society of Civil Engineers). ASCE/SEI 41-17: Seismic Evaluation and Retrofit of Existing Buildings; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar]
- Wen, Y.K. Method for Random Vibration of Hysteretic Systems. ASCE J. Engng. Mech. 1976, 102, 249–263. [Google Scholar] [CrossRef]
- CEN/TC 250/SC 8, prEN1998-1-2 SC8 15-03-2022: Eurocode 8: Earthquake Resistance Design of Structures (2022 Draft); European Committee for Normalization: Brussels, Belgium, 2022.
- Tartaglia, R.; Milone, A.; Prota, A.; Landolfo, R. Seismic retrofitting of existing industrial steel buildings: A case-study. Materials 2022, 15, 3276. [Google Scholar] [CrossRef] [PubMed]
- Fajfar, P. A nonlinear analysis method for performance-based seismic design. Earthq. Spectra 2000, 16, 573–592. [Google Scholar] [CrossRef]
- Vidic, T.; Fajfar, P.; Fischinger, M. Consistent inelastic design spectra: Strength and displacement. Earthq. Eng. Struct. Dyn. 1994, 23, 507–521. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Tartaglia, R.; Prota, A.; Landolfo, R. Design procedure for orthogonal steel exoskeleton structures for seismic strengthening. Eng. Struct. 2023, 275, 115252. [Google Scholar] [CrossRef]
- Zareian, F.; Kanvide, A. Effect of column-base flexibility on the seismic response and safety of steel moment-resisting frames. Earthq. Spectra 2013, 29, 1537–1559. [Google Scholar] [CrossRef]
- Lin, K.S.; Kurata, M.; Kawasaki, Y.; Kitatani, Y. Investigation of low-disturbance seismic retrofit method for steel column bases using curved members. Jpn. Archit. Rev. 2023, 7, e12429. [Google Scholar] [CrossRef]
- Aichouche, M.; Abidelah, A.; Bouchaïr, A.; Kerdal, D.; Seghir, A.; Vatansever, C. Effects of stiffeners on anchor rod flexural strength in column base-plate connections. J. Constr. Steel Res. 2024, 222, 108983. [Google Scholar] [CrossRef]
- Mehdi, B.; Boumechra, N.; Missoum, A.; Bouchair, A. Connection of a Steel Column Base Plate: Mechanical Behavior and Stiffening Effects. Civ. Eng. J. 2022, 8, 1764–1786. [Google Scholar] [CrossRef]
ID Label | Dir. X Width Lx (m) | Dir. Y Width Ly (m) | Plan Extension A (m2) | Headroom H (m) | Dir. X LFRS | Dir. Y LFRS | N° Transverse Frame |
---|---|---|---|---|---|---|---|
S-BS | 37 | 32 | 1184 | 6.7 | RTF | CBF | 8 |
S-VT | 30 | 32 | 960 | 10 | RPF | CBF | 6 |
S-BO | 35 | 30 | 1050 | 7 | RTF | CBF | 7 |
S-CH | 15 | 30 | 450 | 7 | PTF | CBF | 7 |
S-PA | 22 | 30 | 660 | 7.4 | PTF | CBF | 8 |
S-RC | 35 | 30 | 1050 | 7.8 | RTF | CBF | 7 |
ID Label | Design Year | Design Approach | Reference Design Code | Reference Seismic Code |
---|---|---|---|---|
S-BS | 1980 | GL | [6] | - |
S-VT | 1990 | GL | [8] | - |
S-BO | 1993 | GL | [8] | - |
S-CH | 1995 | GL | [8] | - |
S-PA | 1975 | OS | [5] | [9] |
S-RC | 1985 | OS | [7] | [10] |
Case Study ID | Fw | FE,i | Mj | Vj | Nj |
---|---|---|---|---|---|
- | [kN] | [kN] | [kNm] | [kN] | [kN] |
S-BO | 24 | - | 44 | 12 | 146 |
S-CH | 24 | / | 102 | 12 | 67 |
S-BS | 38 | / | 70 | 19 | 183 |
S-VT | 150 | / | 559 | 91 | 368 |
S-RC | 55 | 47 | 120 | 28 | 164 |
S-PA | 29 | 15 | 106 | 15 | 96 |
ID | Yield | k | exp | Ratio |
---|---|---|---|---|
- | (kNm) | (kNm/rad) | - | - |
S-BS | 47 | 71,000 | 5.0 | 0.24 |
S-VT | 510 | 340,000 | 11.0 | 0.155 |
S-BO | 30 | 57,000 | 2.8 | 0.18 |
S-CH | 68 | 60,000 | 9.0 | 0.21 |
S-PA | 78 | 85,750 | 8.0 | 0.18 |
S-RC | 50 | 66,000 | 2.0 | 0.335 |
Case Study | SD LS | ||||
---|---|---|---|---|---|
ID | PGAD-SD | PGAC-SD | Ratio | PGAC-SD-1.5% | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - |
S-BO | 2.9 | 4.1 | 1.4 | 5.7 | 2.0 |
S-CH | 2.9 | 6.3 | 2.2 | 6.0 | 2.1 |
S-BS | 2.6 | 5.4 | 2.1 | 4.0 | 1.6 |
S-VT | 2.6 | 4.6 | 1.8 | / | / |
S-RC | 4.1 | 12.4 | 3.0 | / | / |
S-PA | 3.0 | 8.6 | 2.8 | 9.0 | 3.0 |
Case Study | DL LS | ||||
---|---|---|---|---|---|
ID | PGAD-DL | PGAC-DL | Ratio | PGAC-DL-0.5% | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - |
S-BO | 1.3 | 1.3 | 1.0 | 2.1 | 1.6 |
S-CH | 1.3 | 1.4 | 1.1 | 2.2 | 1.7 |
S-BS | 1.2 | 1.9 | 1.5 | 6.7 | 5.5 |
S-VT | 1.2 | 1.9 | 1.6 | 3.1 | 2.6 |
S-RC | 1.9 | 5.7 | 3.0 | 8.4 | 4.4 |
S-PA | 1.3 | 3.1 | 2.3 | 3.4 | 2.6 |
Case Study | SD LS | ||||||
---|---|---|---|---|---|---|---|
ID | PGAD-SD | PGAC-SD | Ratio | PGAC-SD-2.0% | Ratio | PGAC-SD-Brit | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - | [m/s2] | - |
S-BO-IR | 2.9 | 5.5 | 1.9 | 4.6 | 1.6 | / | / |
S-BO-IP | 2.9 | 5.0 | 1.7 | 2.4 | 0.8 | / | / |
S-BO-R | 2.9 | 6.3 | 2.2 | 3.9 | 1.3 | 1.2 | 0.4 |
S-CH-IR | 2.9 | 7.9 | 2.7 | 3.3 | 1.1 | / | / |
S-CH-R | 2.9 | 9.6 | 3.4 | 2.7 | 0.9 | 3.7 | 1.3 |
S-BS-IR | 2.6 | 6.5 | 2.5 | 5.4 | 2.1 | / | / |
S-BS-IP | 2.6 | 6.4 | 2.5 | 2.5 | 1.0 | / | / |
S-BS-R | 2.6 | 8.2 | 3.2 | 4.2 | 1.6 | 1.6 | 0.6 |
S-VT-IR | 2.6 | 13.0 | 5.1 | 7.6 | 3.0 | / | / |
S-VT-IP | 2.6 | 8.9 | 3.5 | 3.7 | 1.4 | / | / |
S-VT-R | 2.6 | 8.6 | 3.4 | 7.0 | 2.7 | 6.5 | 2.5 |
S-RC-IR | 4.1 | 5.0 | 1.2 | 4.9 | 1.2 | / | / |
S-RC-IP | 4.1 | 5.0 | 1.2 | 3.0 | 0.7 | / | / |
S-RC-R | 4.1 | 5.8 | 1.4 | 4.3 | 1.0 | 3.9 | 0.9 |
S-PA-IR | 3.0 | 6.4 | 2.3 | 6.1 | 2.1 | / | / |
S-PA-R | 3.0 | 8.3 | 2.7 | 4.4 | 1.4 | 1.8 | 0.6 |
Case Study | DL LS | ||||
---|---|---|---|---|---|
ID | PGAD-DL | PGAC-DL | Ratio | PGAC-DL-0.5% | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - |
S-BO-IR | 1.3 | 3.5 | 2.7 | 1.3 | 1.0 |
S-BO-IP | 1.3 | 3.7 | 2.8 | 0.7 | 0.5 |
S-BO-R | 1.3 | 3.9 | 3.0 | 1.1 | 0.8 |
S-CH-IR | 1.3 | 5.7 | 4.4 | 0.9 | 0.7 |
S-CH-R | 1.3 | 6.7 | 5.2 | 0.8 | 0.6 |
S-BS-IR | 1.2 | 4.0 | 3.3 | 1.4 | 1.2 |
S-BS-IP | 1.2 | 3.9 | 3.2 | 0.7 | 0.6 |
S-BS-R | 1.2 | 5.1 | 4.2 | 1.1 | 0.9 |
S-VT-IR | 1.2 | 4.4 | 3.6 | 1.9 | 1.6 |
S-VT-IP | 1.2 | 4.5 | 3.8 | 1.2 | 1.0 |
S-VT-R | 1.2 | 5.0 | 4.1 | 1.8 | 1.5 |
S-RC-IR | 1.9 | 4.0 | 2.1 | 2.1 | 1.1 |
S-RC-IP | 1.9 | 4.1 | 2.2 | 1.2 | 0.6 |
S-RC-R | 1.9 | 4.6 | 2.4 | 1.7 | 0.9 |
S-PA-IR | 1.3 | 5.3 | 4.0 | 2.2 | 1.6 |
S-PA-R | 1.3 | 7.2 | 5.5 | 1.5 | 1.1 |
Case Study | SD LS | ||||||
---|---|---|---|---|---|---|---|
ID | PGAD-SD | PGAC-SD | Ratio | PGAC-SD-2.0% | Ratio | PGAC-SD-Brit | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - | [m/s2] | - |
S-BO-R-st | 2.9 | 6.6 | 2.3 | 4.3 | 1.5 | 3.1 | 1.1 |
S-BS-R-st | 2.6 | 7.8 | 3.0 | 4.5 | 1.7 | 2.7 | 1.0 |
S-RC-R-st | 4.1 | 6.1 | 1.5 | 4.4 | 1.1 | 4.5 | 1.1 |
S-PA-R-st | 3.0 | 8.4 | 2.8 | 5.5 | 1.8 | 3.2 | 1.1 |
Case Study | DL LS | ||||
---|---|---|---|---|---|
ID | PGAD-DL | PGAC-DL | Ratio | PGAC-DL-0.5% | Ratio |
- | [m/s2] | [m/s2] | - | [m/s2] | - |
S-BO-R-st | 1.3 | 3.6 | 2.8 | 1.3 | 1.0 |
S-BS-R-st | 1.2 | 5.1 | 4.2 | 1.2 | 1.0 |
S-RC-R-st | 1.9 | 4.5 | 2.4 | 2.0 | 1.1 |
S-PA-R-st | 1.3 | 7.0 | 5.4 | 1.8 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prota, A.; Tartaglia, R.; Landolfo, R. Influence of Column–Base Connections on Seismic Behavior of Single-Story Steel Buildings. Buildings 2024, 14, 3606. https://doi.org/10.3390/buildings14113606
Prota A, Tartaglia R, Landolfo R. Influence of Column–Base Connections on Seismic Behavior of Single-Story Steel Buildings. Buildings. 2024; 14(11):3606. https://doi.org/10.3390/buildings14113606
Chicago/Turabian StyleProta, Alessandro, Roberto Tartaglia, and Raffaele Landolfo. 2024. "Influence of Column–Base Connections on Seismic Behavior of Single-Story Steel Buildings" Buildings 14, no. 11: 3606. https://doi.org/10.3390/buildings14113606
APA StyleProta, A., Tartaglia, R., & Landolfo, R. (2024). Influence of Column–Base Connections on Seismic Behavior of Single-Story Steel Buildings. Buildings, 14(11), 3606. https://doi.org/10.3390/buildings14113606