Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Measuring Equipment and Explosives Used
2.2. Calibration of Accelerometers
2.3. Measurement Methodology
3. Results
Dynamic Scaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Hao, H.; Lu, Y.; Zhou, Y. Characteristics of stress waves recorded in small-scale field blast tests on a layered rock–soil site. Geotechnique 2003, 53, 587–599. [Google Scholar] [CrossRef]
- Busch, C.L.; Tarefder, R.A. Evaluation of appropriate material models in LS-DYNA for MM-ALE finite element simulations of small-scale explosive airblast tests on clay soils. Indian Geotech. J. 2017, 47, 173–186. [Google Scholar] [CrossRef]
- Luccioni, B.M.; Ambrosini, D. Numerical assessment of blast effects scaling procedures. Mec. Comput. 2010, 29, 1161–1179. [Google Scholar]
- Global Terrorism Database. Available online: https://www.start.umd.edu/gtd/downloads/Codebook.pdf (accessed on 9 July 2023).
- Our World in Data. Available online: https://ourworldindata.org/terrorism (accessed on 9 July 2023).
- Sokol, M.; Tvrdá, K. Dynamika Stavebných Konštrukcií; Nakladateľstvo STU: Bratislava, Slovakia, 2011. [Google Scholar]
- Fay, S. The Characterisation of Blast Loading for Shallow Buried Explosives. Doctoral Dissertation, University of Sheffield, Sheffield, UK, 2020. [Google Scholar]
- ScienceNewsExplores. Available online: https://www.sciencenewsforstudents.org/article/explainer-seismic-waves-come-different-flavors (accessed on 9 July 2023).
- Brüel & Kjær. Available online: https://www.bksv.com/-/media/literature/Product-Data/bp2083.ashx (accessed on 9 July 2023).
- Brüel & Kjær. Available online: https://www.bksv.com/-/media/literature/Product-Data/bp2215.ashx (accessed on 9 July 2023).
- Český Úřad pro Zkoušení Zbraní a Střeliva. Available online: https://www.cuzzs.cz/cs/ (accessed on 9 July 2023).
- Scribbr. Available online: https://www.scribbr.com/statistics/pearson-correlation-coefficient/ (accessed on 9 July 2023).
- Zhao, H.B.; Long, Y.; Li, X.H.; Lu, L. Experimental and numerical investigation of the effect of blast-induced vibration from adjacent tunnel on existing tunnel. KSCE J. Civ. Eng. 2016, 20, 431–439. [Google Scholar] [CrossRef]
- Bornitz, G. Über die Ausbreitung der von Großkolbenmaschinen Erzeugten Bodenschwingungen in Die Tiefe; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zhao, X. Fundamental Experimental Studies In Scaling, Blast Mitigation and Material Processing. Doctoral Dissertation, University of South Carolina, Columbia, SC, USA, 2013. [Google Scholar]
- Papán, D.; Brozová, E.; Papánová, Z. Experimental Simulation of Deformation Effect Propagation Due to Explosion on the Surface of a Small-Scale Model. Buildings 2023, 13, 1566. [Google Scholar] [CrossRef]
- Stem Mayhem. Available online: https://www.stemmayhem.com/how-does-kinetic-sand-work/ (accessed on 9 July 2023).
- Sapozhnikov, V.B.; Foufoula-Georgiou, E. Experimental evidence of dynamic scaling and indications of self-organized criticality in braided rivers. Water Resour. Res. 1997, 33, 1983–1991. [Google Scholar] [CrossRef]
- Nujaim, M.; Belem, T.; Giraud, A. Experimental Tests on a Small-Scale Model of a Mine Stope to Study the Behavior of Waste Rock Barricades during Backfilling. Minerals 2020, 10, 941. [Google Scholar] [CrossRef]
- Caçoilo, A.; Mourão, R.; Belkassem, B.; Teixeira-Dias, F.; Vantomme, J.; Lecompte, D. Blast wave assessment in a compound survival container: Small-scale testing. Proceedings 2018, 2, 540. [Google Scholar] [CrossRef]
- Papán, D.; Valašková, V.; Drusa, M. Numerical and experimental case study of blasting works effect. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 44, p. 052052. [Google Scholar]
- Ainalis, D.; Kaufmann, O.; Tshibangu, J.P.; Verlinden, O.; Kouroussis, G. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: A review. Rock Mech. Rock Eng. 2017, 50, 171–193. [Google Scholar] [CrossRef]
- Trajkovski, J.; Kunc, R.; Perenda, J.; Prebil, I. Minimum mesh design criteria for blast wave development and structural response-MMALE method. Lat. Am. J. Solids Struct. 2014, 11, 1999–2017. [Google Scholar] [CrossRef]
- Trajkovski, J.; Perenda, J.; Kunc, R. Blast response of Light Armoured Vehicles (LAVs) with flat and V-hull floor. Thin-Walled Struct. 2018, 131, 238–244. [Google Scholar] [CrossRef]
- Trajkovski, J.; Kunc, R.; Prebil, I. Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: Comparative study. Shock Waves 2017, 27, 583–591. [Google Scholar] [CrossRef]
- Sabetta, F.; Pugliese, A. Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records. Bull. Seismol. Soc. Am. 1987, 77, 1491–1513. [Google Scholar]
Small-Scale Experiment | Full-Scale Experiment | |||
---|---|---|---|---|
Accelerometer | Distance [cm] | Time [s] | Distance [cm] | Time [s] |
1 | 12.4 | 0.027832022 | 350.000 | 0.00854548 |
2 | 17.8 | 0.031590762 | 1153.704 | 0.03014956 |
3 | 23.2 | 0.035975218 | 1957.408 | 0.05537665 |
4 | 28.6 | 0.039875242 | 2761.112 | 0.07877247 |
Small-Scale Experiment | Full-Scale Experiment | |||
---|---|---|---|---|
Accelerometer | Distance [cm] | Time [s] | Distance [cm] | Time [s] |
1 | 12.4 | 0.029872185 | 350.000 | 0.00928645 |
2 | 17.8 | 0.034587543 | 1153.704 | 0.02772267 |
3 | 23.2 | 0.038212599 | 1957.408 | 0.04284052 |
4 | 28.6 | 0.040852125 | 2761.112 | 0.07202703 |
Small-Scale Experiment | Full-Scale Experiment | |||
---|---|---|---|---|
Accelerometer | Distance [cm] | Time [s] | Distance [cm] | Time [s] |
1 | 12.4 | 0.031494153 | 350.000 | 0.01135010 |
2 | 17.8 | 0.032958973 | 1153.704 | 0.03751275 |
3 | 23.2 | 0.033935535 | 1957.408 | 0.05989980 |
4 | 28.6 | 0.034912097 | 2761.112 | 0.08429225 |
Dynamic Exponent | P-Wave | S-Wave | Rayleigh Wave |
---|---|---|---|
z1 | −0.353695358 | −0.349995024 | −0.305542249 |
z2 | −0.011193578 | −0.053036383 | 0.031023915 |
z3 | 0.097250485 | 0.025775274 | 0.128113134 |
z4 | 0.148973875 | 0.124088593 | 0.192879648 |
Accelerometer | Distance [cm] | Time P-Wave [s] | Time S-Wave [s] | Time Rayleigh Wave [s] |
---|---|---|---|---|
1 | 350.000 | 0.11654743 | 0.10551573 | 0.04738161 |
2 | 1153.704 | 0.19502167 | 0.16540981 | 0.05479706 |
3 | 1957.408 | 0.24500368 | 0.20187970 | 0.05844454 |
4 | 2761.112 | 0.28422011 | 0.22982779 | 0.06094753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papán, D.; Brozová, E.; Papánová, Z. Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model. Buildings 2024, 14, 3603. https://doi.org/10.3390/buildings14113603
Papán D, Brozová E, Papánová Z. Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model. Buildings. 2024; 14(11):3603. https://doi.org/10.3390/buildings14113603
Chicago/Turabian StylePapán, Daniel, Emma Brozová, and Zuzana Papánová. 2024. "Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model" Buildings 14, no. 11: 3603. https://doi.org/10.3390/buildings14113603
APA StylePapán, D., Brozová, E., & Papánová, Z. (2024). Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model. Buildings, 14(11), 3603. https://doi.org/10.3390/buildings14113603