Workability and Mechanical Properties of PVA Fiber-Limestone Fine Cementitious Composite
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mix Proportions
3. Testing Method
3.1. Workability
3.1.1. Flow Spread
3.1.2. Adhesiveness
3.1.3. Rheological Parameter
3.2. Strength
3.3. Ultrasonic Pulse Velocity
3.4. Microstructure Characterization
3.4.1. SEM Images
3.4.2. XRD Analysis
3.4.3. Mercury Intrusion Porosimetry
4. Results
4.1. Workability
4.1.1. Flow Spread
4.1.2. Adhesiveness
4.1.3. Rheological Parameters
4.2. Strength
4.2.1. Compressive Strength
4.2.2. Flexural Strength
4.2.3. Splitting Tensile Strength
4.3. Ultrasonic Pulse Velocity Testing
4.4. Microstructure Analysis
4.4.1. SEM Images
4.4.2. XRD Analysis
4.4.3. Pore Conditions
5. Conclusions
- (1)
- Addition of PVA fiber and/or LF as cement paste replacement decreased the flowability. The addition of LF increased the adhesiveness, but the addition of PVA fiber decreased the adhesiveness.
- (2)
- Addition of PVA fiber first increased and then decreased the strength. The optimum PVA fiber content was 0.2% for compressive strength and 0.4% for flexural strength and splitting tensile strength.
- (3)
- Addition of PVA fiber increased the porosity, as demonstrated by the UPV test. The optimum PVA fiber and the optimum LF content for the lowest porosity were 0.2% and 10%, respectively.
- (4)
- Microscopic observations and pore condition results demonstrated that the LF particles filled into the pores of the hardened cementitious composites. This pore-filling effect explained the increase in strength.
- (5)
- A PVA fiber and hardened cement paste of 0.2% can produce a better connection effect; however, 0.4~0.6% PVA fiber may lead to larger pores at the junction of fiber and paste.
- (6)
- The fibers in mixes with 0.2% PVA fiber showed fracture failure mode, while the fibers in mix with 0.4–0.6% PVA fiber showed pulling out failure mode.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, V.C.; Zhang, Y.M. Research Progress and Application of High Ductility Fiber Reinforced Cementitious Composites. J. Silic. 2007, 35, 531–536. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, M.L. Fiber synergy in multi-scale fiber-reinforced cementitious composites. J. Reinf. Plast. Compos. 2014, 33, 862–874. [Google Scholar] [CrossRef]
- Han, H.; Gao, G.; Li, D.H.Y. Effect of PVA Fiber on the Mechanical Properties of Seawater Coral Sand Engineered Cementitious Composites. Materials 2024, 17, 1446. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Horii, F.; Odani, H.; Narukawa, H.; Akiyama, A.; Kajitani, K. High resolution solid state C NMR study of poly(vinyl alcohol) fibers with high tenacity spun from a dimethyl sulfoxide solution or an aqueous solution. Kobunshi Rombun Shu 1992, 49, 361–371. [Google Scholar] [CrossRef]
- Ling, Z. The Application of PVA Fiber in Concrete. Sichuan Text. Technol. 2003, 3, 27–29. [Google Scholar] [CrossRef]
- Wang, Y.B.; Luo, H. Study on the role of PVA fiber in cementitious materials. Chongqing Build. 2005, 7, 62–64. [Google Scholar] [CrossRef]
- Beaudoin, J.J. handbook of fiber-reinforced concrete principles, properties, developments and applications. Rev. Sci. Instrum. 1990, 36, 1053. [Google Scholar] [CrossRef]
- Mosavinejad, S.H.G.; Langaroudi, M.A.M.; Barandoust, J.; Ghanizadeh, A. Electrical and microstructural analysis of UHPC containing short PVA fibers. Constr. Build. Mater. 2020, 235, 117448. [Google Scholar] [CrossRef]
- Huang, R.; Tao, Z.; Wu, L.; Shen, J.; Xu, W. Investigation of Workability and Mechanical Properties of PVA Fiber-Reinforced Phosphogypsum-Based Composite Materials. Materials 2023, 16, 4244. [Google Scholar] [CrossRef]
- Yew, M.K.; Bin, M. Effects of low volume fraction of polyvinyl alcohol fibers on the mechanical properties of oil palm shell lightweight concrete. Adv. Mater. Sci. Eng. 2015, 2015, 425236. [Google Scholar] [CrossRef]
- Cao, M.L.; Xu, L.; Li, Z.W. Rheological and flow properties of cement mortar reinforced with polyvinyl alcohol fiber and steel fiber. J. Build. Mater. 2017, 20, 112–117. (In Chinese) [Google Scholar] [CrossRef]
- Gao, S.L.; Xu, S.L. Experimental study on tensile properties of PVA fiber reinforced cementitious composites. J. Dalian Univ. Technol. 2007, 47, 233–239. [Google Scholar] [CrossRef]
- Qian, G.F.; Gao, X.B.; Qian, C.X. Effect of PVA fiber on mechanical properties of concrete. Concr. Cem. Prod. 2010, 3, 52–54. [Google Scholar] [CrossRef]
- Ekaputri, J.J.; Limantono, H.; Triwulan, T.; Susanto, T.E.S.; Abdullah, M.M.A.B.; Triwulan, T. Effect of PVA Fiber in Increasing Mechanical Strength on Paste Containing Glass Powder. Key Eng. Mater. 2015, 673, 83–93. [Google Scholar] [CrossRef]
- Topič, J.; Prošek, Z.; Indrová, K.; Plachý, T.; Nežerka, V.; Kopecký, L.; Tesárek, P. Effect of PVA modification on the properties of cement composites. Acta Polytech. 2015, 55, 64–75. [Google Scholar] [CrossRef]
- Li, V.C.; Horikoshi, T.; Ogawa, A.; Torigoe, S.; Saito, T. Micromechanics-Based Durability Study of Polyvinyl Alcohol-Engineered Cementitious Composite. Aci Mater. J. 2004, 101, 242–248. [Google Scholar] [CrossRef]
- Hakan, N.A.; Bekir, Y.P.; Erman, Y.T. Behavior of PVA Fiber-Reinforced Cementitious Composites under Static and Impact Flexural Effects. J. Mater. Civ. Eng. 2013, 25, 1438–1445. [Google Scholar] [CrossRef]
- Passuello, A.; Moriconi, G.; Shah, S.P. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 2009, 31, 699–704. [Google Scholar] [CrossRef]
- Özbay, E.; Erdemir, M.; Durmuş, H.İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Lin, C.; Kayali, O.; Morozov, E.V.; Sharp, D.J. Development of self-compacting strain-hardening cementitious composites by varying fly ash content. Constr. Build. Mater. 2017, 149, 103–110. [Google Scholar] [CrossRef]
- Duval, R.; Kadri, E.H. Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concretes. Cem. Concr. Res. 1998, 28, 533–547. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Du, S.; Zhang, Y. Time-dependent similarity and micro-mechanism of chloride diffusivity of fly ash concrete in different environments. Mag. Concr. Res. 2023, 75, 1080. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Wong, Y.L. Effects of Fly Ash and Silica Fume on Interfacial Porosity of Concrete. J. Mater. Civ. Eng. 1999, 11, 197–205. [Google Scholar] [CrossRef]
- Hansen, W.; Almudaiheem, J.A. Effect of Specimen Size and Shape on Drying Shrinkage of Concrete. Aci Mater. J. 1987, 84, 130–135. [Google Scholar] [CrossRef]
- Lomboy, G.R.; Bektas, F.; Wang, K. Extended Use of Limestone Fines in Various Concretes. J. Civ. Eng. Archit. 2015, 10, 995–1005. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.G.; Jia, H.F.; Ou, Z.H. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Chen, J.J.; Kwan, A.K.H. Adding limestone fines to reduce heat generation of curing concrete. Mag. Concr. Res. 2012, 64, 1101–1111. [Google Scholar] [CrossRef]
- Menadi, B.; Kenai, S.; Khatib, J.; Aït-Mokhtar, A. Strength and durability of concrete incorporating crushed limestone sand. Constr. Build. Mater. 2009, 23, 625–633. [Google Scholar] [CrossRef]
- Nan, X.L.; Ji, J.R.; Wei, D.B.; Wang, Y.; Chen, H. Effect of limestone powder on rheological properties of ultra-high strength cement-based composites. J. Chongqing Jiaotong Univ. Nat. Sci. Ed. 2022, 41, 100–106. [Google Scholar] [CrossRef]
- Mckinley, M.; Kwan, A.K.H.; Chen, J.J. Adding limestone fines as cement paste replacement to reduce shrinkage of concrete. Mag. Concr. Res. 2013, 65, 942–950. [Google Scholar] [CrossRef]
- Chen, J.J.; Ng, P.L.; Li, L.G.; Kwan, A.K.H. Use of Limestone Fines to Reduce Permeability of Concrete for Durability Improvement. Am. J. Civ. Eng. 2016, 4, 185–190. [Google Scholar] [CrossRef]
- Li, L.G.; Kwan, A.K.H. Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cem. Concr. Compos. 2015, 60, 17–24. [Google Scholar] [CrossRef]
- Chen, J.J.; Kwan, A.K.H.; Jiang, Y. Adding limestone fines as cement paste replacement to reduce water permeability and sportively of concrete. Constr. Build. Mater. 2014, 56, 87–93. [Google Scholar] [CrossRef]
- Burroughs, J.F.; Shannon, J.; Rushing, T.S.; Yi, K.; Gutierrez, Q.B.; Harrelson, D.W. Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures. Constr. Build. Mater. 2017, 141, 335–342. [Google Scholar] [CrossRef]
- GB175-2023; Common Portland Cement. Standardization Administration of the P.R.C.: Beijing, China, 2023.
- GB/T 14462-93; Vinylon Cut Fiber. The State Bureau of Quality and Technical Supervision: Beijing, China, 1933.
- GB 50119-2013; Code for Concrete Admixture Application. China Academy of Building Research: Beijing, China, 2013.
- Li, L.G.; Zhuo, Z.Y.; Zhu, J.; Kwan, A. Adding ceramic polishing waste as paste substitute to improve sulphate and shrinkage resistances of mortar. Powder Technol. 2020, 362, 149–156. [Google Scholar] [CrossRef]
- GB/T 2419-2005; Test Method for Flowability of Cement Mortar. Standardization Administration of the P.R.C.: Beijing, China, 2005.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous mixes for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- Li, Z.H. Study on Improving the Performance of Mortar and Concrete by Perlite Powder. Master’s Thesis, Foshan University, Foshan, China, 2021. (In Chinese) [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Chen, J.J.; Fung, W.W.S. Effects of superplasticizer on rheology and cohesiveness of CSF cement paste. Adv. Cem. Res. 2012, 24, 125–137. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Testmethod of Cement Mortar Strength (ISO Method). Standardization Administration of the P.R.C.: Beijing, China, 2021.
- T/CECS 02-2020; Technical Specification for Inspecting Compressive Strength of Concrete by Ultrasonic-Rebound Combined Method. Beijing China Planning Publishing House: Beijing, China, 2020.
- Jain, N.; Singh, V.K.; Chauhan, S. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 2018, 26, 213–222. [Google Scholar] [CrossRef]
- Wu, L.G. Application status and progress of PVA fiber. Mod. Text. Technol. 2001, 9, 52–54. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.F.; Wang, J. Effect of PVA fiber on durability of cementitious composite containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 116–127. [Google Scholar] [CrossRef]
- Gao, Y.G. Effect of limestone powder content on compressive strength of cement concrete pavement. Transp. World 2015, 11, 93–95. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos. 2009, 31, 715–720. [Google Scholar] [CrossRef]
- Lee, J.B.; Derome, D.; Carmeliet, J. Drop impact on natural porous stones. J. Colloid Interface Sci. 2016, 469, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kabir, H.; Garg, N. Rapid prediction of cementitious initial sorptivity via surface wettability. Npj Mater Degrad 2023, 52, 1–12. [Google Scholar] [CrossRef]
- Hadjistamov, D. Thixotropy of Systems with Shear Thinning and Plastic Flow Behavior. Mater. Sci. Eng. Chin. Engl. B Ed. 2019, 9, 10. [Google Scholar] [CrossRef]
- Bentz, D.P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cem. Concr. Compos. 2006, 28, 124–129. [Google Scholar] [CrossRef]
- Shi, C.J.; Wang, D.H.; Jia, H.F.; Liu, J.H. Role of limestone powder and its effect on durability of cement-based materials. J. Chin. Ceram. Soc. 2017, 45, 1582–1593. (In Chinese) [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Constr. Build. Mater. 2014, 70, 54–64. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, T.; Wang, W. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns. Am. Inst. Phys. Conf. Ser. 2018, 1955, 20–21. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Xu, L.Y.; Huang, B.T.; Li, V.C.; Dai, J.-G. High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cem. Concr. Compos. 2022, 125, 104296. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Thongsanitgarn, P.; Wongkeo, W.; Chaipanich, A.; Poon, C.S. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr. Build. Mater. 2014, 66, 410–417. [Google Scholar] [CrossRef]
- Lothenbach, B.; Matschei, T.; Moeschner, G.; Glasser, F.P. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008, 38, 1–18. [Google Scholar] [CrossRef]
- Weerdt, K.D.; Haha, M.B.; Saout, G.L.; Kjellsen, K.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Moon, J.; Oh, J.E.; Magdalena, B.; Glasser, F.P.; Clark, S.M.; Monteiro, P.J. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO· Al2O3·CaCO3·11H2O. Cem. Concr. Res. 2012, 42, 105–110. [Google Scholar] [CrossRef]
- Liu, S.R.; Yang, J.J.; Wang, Z.Z.; Rong, H.; Zhang, L. Research progress on environmental influencing factors of concrete self-healing ability. Bull. Chin. Ceram. Soc. 2015, 34, 2851–2856. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Li, B.; Wu, F.; Yu, Y.; Zhang, Y.; Xu, H. Research on modification of mechanical properties of recycled aggregate concrete by replacing sand with graphite tailings. Rev. Adv. Mater. Sci. 2022, 6, 1–20. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Li, Y.; Gong, C.; Lu, L.; Fu, X.; Tao, W. Water absorption and water/fertilizer retention performance of vermiculite modified sulphoaluminate cementitious materials. Constr. Build. Mater. 2017, 137, 224–233. [Google Scholar] [CrossRef]
- Yin, S.; Sun, H.Y.; Gong, A.M.; Zhao, D.Z. Effect of PVA Fibers on the Flow and Mechanical Properties of Cement-based Composites. Fly Ash Compr. Util. 2018, 4, 19–22. (In Chinese) [Google Scholar] [CrossRef]
Composition | CaO | SiO2 | MgO | Al2O3 | Fe2O3 | K2O | Na2O | Else |
---|---|---|---|---|---|---|---|---|
(%) | 11.52 | 50.85 | 1.56 | 17.21 | 13.14 | 1.32 | 0.52 | 3.88 |
Time of Setting (min) | Compressive Strength (MPa) | Tensile Strength (MPa) | |||
---|---|---|---|---|---|
Initial setting | Final setting | 3d | 28d | 3d | 28d |
45 | 600 | ≥23.0 | ≥42.5 | ≥3.5 | ≥6.5 |
Composition | CaCO3 | SiO2 | Fe | Al2O3 | MgO | Else |
---|---|---|---|---|---|---|
(%) | 98.5 | 0.02 | 0.0003 | 0.01 | 0.11 | 1.26 |
Fiber Length (mm) | Fiber Diameter (μm) | Specific Gravity | Tensile Strength (MPa) | Elastic Modulus (GPa) | Dry Fracture Elongation (%) |
---|---|---|---|---|---|
6 or 9 | 31 | 1.30 | 1800 | 37.0 | 17 ± 3.0 |
Mix No. | Water (kg/m3) | Cement (kg/m3) | Fine Aggregate (kg/m3) | LF (kg/m3) | PVA Fiber (kg/m3) | Water Reducing Agent (%) |
---|---|---|---|---|---|---|
0.0-0 | 245.5 | 639.6 | 1309.0 | 0.0 | 0.0 | 0.60 |
0.2-0 | 245.5 | 639.6 | 1304.2 | 0.0 | 2.6 | 1.12 |
0.4-0 | 245.5 | 639.6 | 1229.5 | 0.0 | 5.2 | 1.90 |
0.6-0 | 245.5 | 639.6 | 1294.7 | 0.0 | 7.8 | 3.00 |
0.0-10 | 220.9 | 575.7 | 1309.0 | 126.0 | 0.0 | 0.72 |
0.2-10 | 220.9 | 575.7 | 1304.2 | 126.0 | 2.6 | 1.20 |
0.4-10 | 220.9 | 575.7 | 1229.5 | 126.0 | 5.2 | 2.00 |
0.6-10 | 220.9 | 575.7 | 1294.7 | 126.0 | 7.8 | 3.00 |
0.0-20 | 196.4 | 511.7 | 1309.0 | 252.0 | 2.6 | 1.40 |
0.2-20 | 196.4 | 511.7 | 1304.2 | 252.0 | 2.6 | 2.00 |
0.4-20 | 196.4 | 511.7 | 1229.5 | 252.0 | 5.2 | 3.00 |
0.6-20 | 196.4 | 511.7 | 1294.7 | 252.0 | 7.8 | 3.00 |
Test Mode | Pre-Stirring Time /s | Pre-Stirring Rotation Rate /r/s | Testing Time /s | Number of Testing Points | Initial Rotation Rate /r/s | Final Rotation Rate /r/s |
---|---|---|---|---|---|---|
Varying shear rate mode | 20 | 0.5 | 125 | 25 | 0.5 | 0.05 |
Constant shear rate mode | - | - | 30 | 240 | 0.025 | 0.025 |
Mix No. | Varying Shear Rate Mode | Constant Shear Rate Mode | ||||
---|---|---|---|---|---|---|
Yield Stress (τ0) /Pa | Apparent Viscosity (K) /Pa sn | Correlation Coefficient (R2) | Flow Index (n) | τmax /Pa | τstable /Pa | |
0.0-0 | 75.91 | 59.84 | 0.996 | 0.95 | 90.35 | 81.76 |
0.2-0 | 157.29 | 58.51 | 0.997 | 0.93 | 140.44 | 126.71 |
0.4-0 | 200.31 | 69.20 | 0.997 | 0.92 | 235.76 | 199.64 |
0.6-0 | 248.03 | 104.35 | 0.995 | 0.77 | 299.33 | 267.67 |
0.0-10 | 71.88 | 75.89 | 0.999 | 1.10 | 108.46 | 93.49 |
0.2-10 | 145.11 | 87.30 | 0.998 | 0.96 | 166.07 | 142.71 |
0.4-10 | 187.20 | 146.13 | 0.998 | 0.76 | 260.45 | 214.84 |
0.6-10 | 211.52 | 280.99 | 0.998 | 0.40 | 428.81 | 351.03 |
0.0-20 | 121.26 | 227.51 | 0.996 | 0.92 | 187.22 | 131.04 |
0.2-20 | 157.80 | 264.83 | 0.986 | 0.76 | 211.25 | 161.55 |
0.4-20 | 208.66 | 304.50 | 0.979 | 0.70 | 295.40 | 251.02 |
0.6-20 | 256.13 | 332.42 | 0.943 | 0.20 | 519.70 | 412.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Chen, J.; Chen, T.; Guan, G.X. Workability and Mechanical Properties of PVA Fiber-Limestone Fine Cementitious Composite. Buildings 2024, 14, 3679. https://doi.org/10.3390/buildings14113679
Xie W, Chen J, Chen T, Guan GX. Workability and Mechanical Properties of PVA Fiber-Limestone Fine Cementitious Composite. Buildings. 2024; 14(11):3679. https://doi.org/10.3390/buildings14113679
Chicago/Turabian StyleXie, Weiliang, Jiajian Chen, Tianxiang Chen, and Garfield Xianzhang Guan. 2024. "Workability and Mechanical Properties of PVA Fiber-Limestone Fine Cementitious Composite" Buildings 14, no. 11: 3679. https://doi.org/10.3390/buildings14113679
APA StyleXie, W., Chen, J., Chen, T., & Guan, G. X. (2024). Workability and Mechanical Properties of PVA Fiber-Limestone Fine Cementitious Composite. Buildings, 14(11), 3679. https://doi.org/10.3390/buildings14113679