Study on the Stability Evolution Mechanism of a Red Mud Dam During Construction and Safety Under Earthquake During Operation
Abstract
:1. Introduction
2. Engineering Background
3. Numerical Model of the Red Mud Landfill
3.1. Numerical Model and Boundary Conditions
3.2. Material Strength Parameter
3.3. Seismic Wave Parameter
4. Stability Evolution Mechanism of Red Mud Landfill During the Filling Period
4.1. Shear Force Analysis of the Landfill Site During the Red Mud Landfill Process
4.2. Analysis of the Plastic Zone in the Landfill Site During the Red Mud Landfill Process
4.3. Evolution Law of the Safety Factor During the Filling Process of Red Mud Landfill
5. Stability Analysis of the Dam Body Under Dynamic Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patil, S.V.; Thorat, B.N. Mechanical dewatering of red mud. Sep. Purif. Technol. 2022, 294, 121157. [Google Scholar] [CrossRef]
- Wang, S.; Dube, B.; Vaughan, J.; Gao, S.; Peng, H. Silica gel free region and rare earth metal extraction correlations in reprocessing bauxite residue. Miner. Eng. 2023, 199, 108115. [Google Scholar] [CrossRef]
- Yang, C.; Han, Z.; Luo, G.; Xiao, H.; He, Y. In situ remediation and stability assessment of solid waste: Alkaline amendments to stabilize acid-generating high-concentration antimony (sb) tailings in southwest China. Int. J. Environ. Res. 2023, 17, 5. [Google Scholar] [CrossRef]
- Bessa, S.; Duarte, M.; Lage, G.; Mendonça, I.; Galery, R.; Lago, R.; Texeira, A.P.; Lameiras, F.; Aguilar, M.T. Characterization and analysis of iron ore tailings sediments and their possible applications in earthen construction. Buildings 2024, 14, 362. [Google Scholar] [CrossRef]
- Qureshi, H.J.; Ahmad, J.; Majdi, A.; Saleem, M.U.; Al Fuhaid, A.F. A study on sustainable concrete with partial substitution of cement with red mud: A review. Materials 2022, 15, 7761. [Google Scholar] [CrossRef]
- Ji, R.; Liu, T.-J.; Kang, L.-L.; Wang, Y.-T.; Li, J.-G.; Wang, F.-P.; Yu, Q.; Wang, X.-M.; Liu, H.; Guo, H.-W.; et al. A review of metallurgical slag for efficient wastewater treatment: Pretreatment, performance and mechanism. J. Clean. Prod. 2023, 380, 135076. [Google Scholar] [CrossRef]
- Wang, H.; Shi, M.; Tian, X.; Yu, C.; Du, X. Experimental study on phosphogypsum-amended red mud as road base material. Sustainability 2023, 15, 1719. [Google Scholar] [CrossRef]
- Liu, X.M.; Long, Y.; Wu, Q.Y.; Yu, Z.; Shen, X. Preparation and performance of AACM with red mud and GGBFS: Effectiveness of alkali activator. Mater. Struct. 2023, 56, 88. [Google Scholar] [CrossRef]
- Chen, R.; Shi, L.; Huang, H.; Yuan, J. Extraction of iron and alumina from red mud with a non-harmful magnetization sintering process. Minerals 2023, 13, 452. [Google Scholar] [CrossRef]
- Xu, H.; Li, D.; Qian, A.; Jiang, L.; Cai, J.; Huang, L.; Yuan, J.; Li, Z.; Li, Y.; Zuo, H.; et al. Red mud as the catalyst for energy and environmental catalysis: A review. Energy Fuels 2024, 38, 13737–13759. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Chen, X.; Wang, T.; Jiang, Y.; Ruan, H. Experimental study on the stability of noncohesive landslide dams based on seepage effect. Eng. Geol. 2024, 341, 107708. [Google Scholar] [CrossRef]
- Gioti, C.; Vasilopoulos, K.C.; Baikousi, M.; Ntaflos, A.; Viskadourakis, Z.; Paipetis, A.S.; Salmas, C.E.; Kenanakis, G.; Karakassides, M.A. Preparation and properties of a composite carbon foam, as energy storage and emi shield additive, for advanced cement or gypsum boards. J. Compos. Sci. 2024, 8, 251. [Google Scholar] [CrossRef]
- Pang, R.; Yao, H.; Xu, B. Dynamic reliability and seismic fragility analysis for high concrete-faced rockfill dam slopes subjected to stochastic earthquake and parameter excitation via PDEM. Soil Dyn. Earthq. Eng. 2024, 186, 108915. [Google Scholar] [CrossRef]
- Li, Q.; Wu, B.; Yao, S.; Zhang, M.; Zhang, H. Analytical solution for the saturation line in dry-stack tailings dams under cumulative rainfall infiltration for many years. Bull. Eng. Geol. Environ. 2024, 83, 397. [Google Scholar] [CrossRef]
- Vergaray, L.; Macedo, J. Mechanical response of mine tailings under constant shear drained loading. J. Geotech. Geoenviron. Eng. 2024, 150, 04024082. [Google Scholar] [CrossRef]
- Chaudhary, N.; Venkatesh, K. Slope stability analysis of earthen dam under seismic loading. Natl. Acad. Sci. Lett. 2024, 9, 1–5. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z.; Tang, H.; Wang, L.; Huo, X.; Cui, Z.; Li, S.; Zhang, B.; Lin, Z. Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading. J. Rock Mech. Geotech. Eng. 2024, 16, 3063–3079. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, Y.; Pang, R.; Xu, B.; Zhang, Y. A novel finite element limit equilibrium method and its application in instability analysis for 3-D high core rockfill dams. Structures 2024, 68, 107066. [Google Scholar] [CrossRef]
- Satyanaga, A.; Wijaya, M.; Zhai, Q.; Moon, S.-W.; Pu, J.; Kim, J.R. Stability and consolidation of sediment tailings incorporating unsaturated soil mechanics. Fluids 2022, 12, 423. [Google Scholar] [CrossRef]
- Pang, R.; Song, L.F. Stochastic dynamic response analysis of the 3D slopes of rockfill dams based on the coupling randomness of strength parameters and seismic ground motion. Mathematics 2021, 9, 3256. [Google Scholar] [CrossRef]
- Le, P.H.; Nishimura, S.; Nishiyama, T.; Nguyen, T.C. Modified newmark approach for evaluation of earthquake-induced displacement of earth dam-applying for re-division of sliding mass. Int. J. Geomate 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, C.; Yu, P.; Zhao, L.; Zhao, J.X.; Fu, H. Investigation of permanent displacements of near-fault seismic slopes by a general sliding block model. Landslides 2021, 19, 187–197. [Google Scholar] [CrossRef]
- Izumi, A.; Sawada, Y.; Hori, T.; Maki, R. Centrifuge modelling of small earth dams subjected to the combined effects of rainfall and earthquakes. Soil Dyn. Earthq. Eng. 2021, 151, 106963. [Google Scholar] [CrossRef]
- Gui, R.; He, G. The effects of internal erosion on the physical and mechanical properties of tailings under heavy rainfall infiltration. Appl. Sci. 2021, 11, 9496. [Google Scholar] [CrossRef]
- Hu, W.; Xin, C.; Li, Y.; Zheng, Y.; van Asch, T.; McSaveney, M. Instrumented flume tests on the failure and fluidization of tailings dams induced by rainfall infiltration. Eng. Geol. 2021, 294, 106401. [Google Scholar] [CrossRef]
- Zheng, J.; Bonin, M.D.; Mohammad, K.; Nousiainen, J.; Masengo, E.; Shaigetz, M.L. Comparative stability analysis of tailings dams using limit equilibrium and finite element methods. Proc. Inst. Civ. Eng. Geotech. Eng. 2024, 10, 1–37. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; You, J.; Huang, J.; Gan, R.; Guo, J.; Zhang, X. Critical secondary resource for porous ceramics: A review on recycling of inorganic solid wastes. J. Eur. Ceram. Soc. 2024, 44, 116781. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, D.; Wu, X.; Chen, X.; Liu, X. Stacking BSRG-PLS: A physical and data-driven real-time stability safety analysis of arch dams during operation. Structures 2024, 70, 107615. [Google Scholar] [CrossRef]
- Ji, J.; Lin, Z.; Li, S.; Song, J.; Du, S. Coupled Newmark seismic displacement analysis of cohesive soil slopes considering nonlinear soil dynamics and post-slip geometry changes. Comput. Geotech. 2024, 174, 106628. [Google Scholar] [CrossRef]
Bulk Modulus (Mpa) | Shear Modulus (Mpa) | c (kPa) | φ (°) | γ (kN/m3) | |
---|---|---|---|---|---|
Bedrock | 2 × 104 | 1 × 104 | 400 | 51 | 26.5 |
Clay | 30 | 9.5 | 35 | 17 | 18.5 |
Initial Dam | 75 | 34.6 | 25 | 18.5 | 18 |
Sub-Dam | 75 | 34.6 | 25 | 18.5 | 18 |
Soft Plastic Red Mud | 20 | 8 | 5.6 | 16.4 | 20 |
Plastic Red Mud | 20 | 8 | 10 | 18.5 | 18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, S.; Ma, S.; An, P. Study on the Stability Evolution Mechanism of a Red Mud Dam During Construction and Safety Under Earthquake During Operation. Buildings 2024, 14, 3677. https://doi.org/10.3390/buildings14113677
Long S, Ma S, An P. Study on the Stability Evolution Mechanism of a Red Mud Dam During Construction and Safety Under Earthquake During Operation. Buildings. 2024; 14(11):3677. https://doi.org/10.3390/buildings14113677
Chicago/Turabian StyleLong, Sitong, Shaokun Ma, and Pengtao An. 2024. "Study on the Stability Evolution Mechanism of a Red Mud Dam During Construction and Safety Under Earthquake During Operation" Buildings 14, no. 11: 3677. https://doi.org/10.3390/buildings14113677
APA StyleLong, S., Ma, S., & An, P. (2024). Study on the Stability Evolution Mechanism of a Red Mud Dam During Construction and Safety Under Earthquake During Operation. Buildings, 14(11), 3677. https://doi.org/10.3390/buildings14113677