A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction
Abstract
:1. Introduction
2. Research Framework
3. Methodologies
3.1. Brief Description of HST Statistical Model of Earth-Rock Dam Deformation
3.2. The Proposed Methods
3.2.1. LSTM Sequence-to-Sequence Model (LSTM-seq2seq)
3.2.2. Optimization of Learnable Parameters with Chaos-Based AOA
3.2.3. Quantifying Dynamic Contributions of Influencing Factors by Embedding Attention Mechanism
Algorithm 1: LSTM-seq2seq-AA |
Input: original dataset with influencing factor sequence data and dam deformation data, the initial solution maximum number of iterations M Output: Prediction model for dam deformation 1: Classify time feature dataset and influencing factor dataset 2: temp = inf, Leader_Score = inf, Leader_pos = # initialization 3: For 4: Obtain predicted dam deformation LSTM-seq2seq-A () 5: Calculate fitness function value 6: if ( < Leader_Score) 7: Update the optimal fitness function value Leader_Score = and update the optimal solution Leader_pos = 8: end if 9: end for 10: while 11: if (abs(temp − Leader_Score) < ) 12: update Leader_Score and Leader_pos with chaotic optimization (14) to (23) 13: end if 14: temp = Leader_Score 15: Update the Leader_Score and Leader_pos with AOA (10) to (13) 16: 17: end while 18: return Leader_pos |
4. Case Study
4.1. Data Collection and Preprocessing
4.2. Hyperparameters of the Prediction Model
5. Result
5.1. Validation of Meta-Heuristic Training of the Model
5.2. Prediction Performance
5.3. Comparison
5.4. Contributions of Influencing Factors
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, H.; Wen, Z.; Wang, F.; Wei, B.; Hu, J. Multifractal Scaling Behavior Analysis for Existing Dams. Expert Syst. Appl. 2013, 40, 4922–4933. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Hu, D. Dam Monitoring Data Analysis Methods: A Literature Review. Struct. Control Health Monit. 2020, 27, e2501. [Google Scholar] [CrossRef]
- Huang, B.; Kang, F.; Li, J.; Wang, F. Displacement Prediction Model for High Arch Dams Using Long Short-Term Memory Based Encoder-Decoder with Dual-Stage Attention Considering Measured Dam Temperature. Eng. Struct. 2023, 280, 115686. [Google Scholar] [CrossRef]
- Wen, Z.; Zhou, R.; Su, H. MR and Stacked GRUs Neural Network Combined Model and Its Application for Deformation Prediction of Concrete Dam. Expert Syst. Appl. 2022, 201, 117272. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, H.; Li, X. An Optimized Zonal Deformation Prediction Model for Super-High Arch Dams. Structures 2023, 50, 758–774. [Google Scholar] [CrossRef]
- Ren, Q.; Li, M.; Li, H.; Shen, Y. A Novel Deep Learning Prediction Model for Concrete Dam Displacements Using Interpretable Mixed Attention Mechanism. Adv. Eng. Inform. 2021, 50, 101407. [Google Scholar] [CrossRef]
- Prakash, G.; Dugalam, R.; Barbosh, M.; Sadhu, A. Recent Advancement of Concrete Dam Health Monitoring Technology: A Systematic Literature Review. Structures 2022, 44, 766–784. [Google Scholar] [CrossRef]
- Gamse, S.; Zhou, W.-H.; Tan, F.; Yuen, K.-V.; Oberguggenberger, M. Hydrostatic-Season-Time Model Updating Using Bayesian Model Class Selection. Reliab. Eng. Syst. Saf. 2018, 169, 40–50. [Google Scholar] [CrossRef]
- Gamse, S.; Henriques, M.J.; Oberguggenberger, M.; Mata, J.T. Analysis of Periodicities in Long-term Displacement Time Series in Concrete Dams. Struct. Control Health Monit. 2020, 27, e2477. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Liu, G.; Fu, C.; Wang, J. Hydrostatic Seasonal State Model for Monitoring Data Analysis of Concrete Dams. Struct. Infrastruct. Eng. 2015, 11, 1616–1631. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Loh, C.-H. Monitoring of Long-Term Static Deformation Data of Fei-Tsui Arch Dam Using Artificial Neural Network-Based Approaches: Long-Term Static Deformation Data of Fei-Tsui Arch Dam. Struct. Control Health Monit. 2013, 20, 282–303. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Shen, C. Study on MPGA-BP of Gravity Dam Deformation Prediction. Math. Probl. Eng. 2017, 2017, 2586107. [Google Scholar] [CrossRef]
- Ranković, V.; Grujović, N.; Divac, D.; Milivojević, N. Development of Support Vector Regression Identification Model for Prediction of Dam Structural Behaviour. Struct. Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- Su, H.; Chen, Z.; Wen, Z. Performance Improvement Method of Support Vector Machine-Based Model Monitoring Dam Safety: Performance Improvement Method of Monitoring Model of Dam Safety. Struct. Control Health Monit. 2016, 23, 252–266. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet Support Vector Machine-Based Prediction Model of Dam Deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.; Dai, J. Prediction of Long-Term Temperature Effect in Structural Health Monitoring of Concrete Dams Using Support Vector Machines with Jaya Optimizer and Salp Swarm Algorithms. Adv. Eng. Softw. 2019, 131, 60–76. [Google Scholar] [CrossRef]
- Kang, F.; Liu, X.; Li, J. Temperature Effect Modeling in Structural Health Monitoring of Concrete Dams Using Kernel Extreme Learning Machines. Struct. Health Monit. 2020, 19, 987–1002. [Google Scholar] [CrossRef]
- Liu, X.; Kang, F.; Ma, C.; Li, H. Concrete Arch Dam Behavior Prediction Using Kernel-Extreme Learning Machines Considering Thermal Effect. J. Civ. Struct. Health Monit. 2021, 11, 283–299. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Tong, D.; Cai, Z.; Zhu, Y.; Liu, C. Dynamic Early-Warning Model of Dam Deformation Based on Deep Learning and Fusion of Spatiotemporal Features. Knowl.-Based Syst. 2021, 233, 107537. [Google Scholar] [CrossRef]
- Panjapornpon, C.; Bardeeniz, S.; Hussain, M.A. Deep Learning Approach for Energy Efficiency Prediction with Signal Monitoring Reliability for a Vinyl Chloride Monomer Process. Reliab. Eng. Syst. Saf. 2023, 231, 109008. [Google Scholar] [CrossRef]
- Lu, S.; Yang, J.; Yang, B.; Li, X.; Yin, Z.; Yin, L.; Zheng, W. Surgical Instrument Posture Estimation and Tracking Based on LSTM. ICT Express 2024, 10, 465–471. [Google Scholar] [CrossRef]
- Krones, F.; Marikkar, U.; Parsons, G.; Szmul, A.; Mahdi, A. Review of Multimodal Machine Learning Approaches in Healthcare. Inf. Fusion 2025, 114, 102690. [Google Scholar] [CrossRef]
- Fahad Mon, B.; Wasfi, A.; Hayajneh, M.; Slim, A.; Abu Ali, N. Reinforcement Learning in Education: A Literature Review. Informatics 2023, 10, 74. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Z.; Xiao, A. Deep Learning in Economics: A Systematic and Critical Review. Artif. Intell. Rev. 2023, 56, 9497–9539. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.P.; Deo, R.C.; Prasad, R.; Salcedo-Sanz, S.; Raj, N.; Soar, J. Near Real-Time Wind Speed Forecast Model with Bidirectional LSTM Networks. Renew. Energy 2023, 204, 39–58. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Xiong, S.; Li, W.; Garg, A.; Gao, L. An Improved CNN-LSTM Model-Based State-of-Health Estimation Approach for Lithium-Ion Batteries. Energy 2023, 276, 127585. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, N.; Chen, C.; Guo, Y. Adaptive Self-Attention LSTM for RUL Prediction of Lithium-Ion Batteries. Inf. Sci. 2023, 635, 398–413. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, Y.; Ji, S.; Mae, M.; Imaizumi, T. Improved Multistep Ahead Photovoltaic Power Prediction Model Based on LSTM and Self-Attention with Weather Forecast Data. Appl. Energy 2024, 359, 122709. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Kazemi, M.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H. An Ensemble Deep Learning Model for Cyber Threat Hunting in Industrial Internet of Things. Digit. Commun. Netw. 2023, 9, 101–110. [Google Scholar] [CrossRef]
- Mohammad-Alikhani, A.; Nahid-Mobarakeh, B.; Hsieh, M.-F. One-Dimensional LSTM-Regulated Deep Residual Network for Data-Driven Fault Detection in Electric Machines. IEEE Trans. Ind. Electron. 2024, 71, 3083–3092. [Google Scholar] [CrossRef]
- Kheddar, H.; Himeur, Y.; Awad, A.I. Deep Transfer Learning for Intrusion Detection in Industrial Control Networks: A Comprehensive Review. J. Netw. Comput. Appl. 2023, 220, 103760. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Hu, S.; Gu, C.; Guo, J.; Qin, X. A Feature Decomposition-Based Deep Transfer Learning Framework for Concrete Dam Deformation Prediction with Observational Insufficiency. Adv. Eng. Inform. 2023, 58, 102175. [Google Scholar] [CrossRef]
- Zhou, Y. Multi-Expert Attention Network for Long-Term Dam Displacement Prediction. Adv. Eng. Inform. 2023, 57, 102060. [Google Scholar] [CrossRef]
- Shu, X.; Bao, T.; Li, Y.; Gong, J.; Zhang, K. VAE-TALSTM: A Temporal Attention and Variational Autoencoder-Based Long Short-Term Memory Framework for Dam Displacement Prediction. Eng. Comput. 2022, 38, 3497–3512. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, Z.; Zhou, D.; Xia, T.; Pan, E. Adaptive Staged Remaining Useful Life Prediction of Roller in a Hot Strip Mill Based on Multi-Scale LSTM with Multi-Head Attention. Reliab. Eng. Syst. Saf. 2024, 248, 110161. [Google Scholar] [CrossRef]
- Shi, J.; Zhong, J.; Zhang, Y.; Xiao, B.; Xiao, L.; Zheng, Y. A Dual Attention LSTM Lightweight Model Based on Exponential Smoothing for Remaining Useful Life Prediction. Reliab. Eng. Syst. Saf. 2024, 243, 109821. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gong, J.; Shu, X.; Zhang, K. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network. IEEE Access 2020, 8, 94440–94452. [Google Scholar] [CrossRef]
- Liu, W.; Pan, J.; Ren, Y.; Wu, Z.; Wang, J. Coupling Prediction Model for Long-term Displacements of Arch Dams Based on Long Short-term Memory Network. Struct. Control Health Monit. 2020, 27, e2548. [Google Scholar] [CrossRef]
- Yang, D.; Gu, C.; Zhu, Y.; Dai, B.; Zhang, K.; Zhang, Z.; Li, B. A Concrete Dam Deformation Prediction Method Based on LSTM With Attention Mechanism. IEEE Access 2020, 8, 185177–185186. [Google Scholar] [CrossRef]
- Li, X.; Krivtsov, V.; Arora, K. Attention-Based Deep Survival Model for Time Series Data. Reliab. Eng. Syst. Saf. 2022, 217, 108033. [Google Scholar] [CrossRef]
- Gundu, V.; Simon, S.P. PSO–LSTM for Short Term Forecast of Heterogeneous Time Series Electricity Price Signals. J. Ambient Intell. Humaniz. Comput. 2021, 12, 2375–2385. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, C.; Qiao, J. The Optimal Design and Application of LSTM Neural Network Based on the Hybrid Coding PSO Algorithm. J. Supercomput. 2022, 78, 7227–7259. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Li, C.; Mei, X. Application of SVR Models Built with AOA and Chaos Mapping for Predicting Tunnel Crown Displacement Induced by Blasting Excavation. Appl. Soft Comput. 2023, 147, 110808. [Google Scholar] [CrossRef]
- Xu, T.; Gao, Z.; Zhuang, Y. Fault Prediction of Control Clusters Based on an Improved Arithmetic Optimization Algorithm and BP Neural Network. Mathematics 2023, 11, 2891. [Google Scholar] [CrossRef]
- Wei, B.; Luo, S.; Yuan, D. Optimized Combined Forecasting Model for Hybrid Signals in the Displacement Monitoring Data of Concrete Dams. Structures 2023, 48, 1989–2002. [Google Scholar] [CrossRef]
- Wu, Z.; Ruan, H. Inverse analysis of safety monitoring data from concrete dams. J. Hohai Univ. (Nat. Sci.) 1989, 2, 10–18. (In Chinese) [Google Scholar]
- Wu, Z.; Chen, J. Methods and models for the analysis of dam safety monitoring. Adv. Sci. Technol. Water Resour. 1989, 9, 48–52+54–64. (In Chinese) [Google Scholar]
- Feng, J.; Zhang, J.; Zhu, X.; Lian, W. A Novel Chaos Optimization Algorithm. Multimed. Tools Appl. 2017, 76, 17405–17436. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, J.; Lai, W.; Liu, L. A Novel Chaotic Image Encryption Algorithm Based on Improved Baker Map and Logistic Map. Multimed. Tools Appl. 2019, 78, 22023–22043. [Google Scholar] [CrossRef]
- Kiani, F.; Nematzadeh, S.; Anka, F.A.; Findikli, M.A. Chaotic Sand Cat Swarm Optimization. Mathematics 2023, 11, 2340. [Google Scholar] [CrossRef]
Model | Hyperparameters |
---|---|
LSTM | |
LSTM-A | |
LSTM-seq2seq | |
LSTM-seq2seq-A | |
SVM | |
MLP |
c-GA | c-PSO | c-BAT | c-WOA | c-AOA | |
---|---|---|---|---|---|
MAPE (%) | 0.244 | 0.242 | 0.242 | 0.243 | 0.242 |
RMSE (mm) | 0.676 | 0.677 | 0.675 | 0.677 | 0.675 |
MAE (mm) | 0.491 | 0.490 | 0.490 | 0.489 | 0.489 |
GA | PSO | BAT | WOA | AOA | |
---|---|---|---|---|---|
Time consumption (hours) | 0.28 | 0.31 | 0.24 | 0.26 | 0.21 |
c-GA | c-PSO | c-BAT | c-WOA | c-AOA | |
---|---|---|---|---|---|
Time consumption (hours) | 7.54 | 7.99 | 6.87 | 6.84 | 6.13 |
L4-02 | L5-02 | L6-02 | L6-06 | L6-13 | L7-03 | L7-13 | AVG | |
---|---|---|---|---|---|---|---|---|
MAPE (%) | 0.086 | 0.042 | 0.242 | 0.137 | 0.156 | 0.096 | 0.116 | 0.125 |
RMSE (mm) | 0.483 | 0.694 | 0.675 | 1.019 | 0.695 | 0.983 | 0.626 | 0.739 |
MAE (mm) | 0.257 | 0.376 | 0.489 | 0.937 | 0.301 | 0.702 | 0.391 | 0.493 |
LSTM-seq2seq-AA | LSTM-seq2seq-A | LSTM-A | LSTM-seq2seq | LSTM | MLP | SVM | |
---|---|---|---|---|---|---|---|
MAPE (%) | 0.156 | 0.307 | 0.403 | 0.475 | 0.536 | 0.697 | 0.637 |
RMSE (mm) | 0.695 | 1.038 | 1.287 | 1.632 | 1.755 | 1.902 | 1.868 |
MAE (mm) | 0.301 | 0.679 | 0.846 | 1.037 | 1.189 | 1.986 | 1.756 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, J.; Tong, D.; Wang, X. A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction. Buildings 2024, 14, 3675. https://doi.org/10.3390/buildings14113675
Wang L, Wang J, Tong D, Wang X. A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction. Buildings. 2024; 14(11):3675. https://doi.org/10.3390/buildings14113675
Chicago/Turabian StyleWang, Lei, Jiajun Wang, Dawei Tong, and Xiaoling Wang. 2024. "A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction" Buildings 14, no. 11: 3675. https://doi.org/10.3390/buildings14113675
APA StyleWang, L., Wang, J., Tong, D., & Wang, X. (2024). A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction. Buildings, 14(11), 3675. https://doi.org/10.3390/buildings14113675