Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Monte Carlo Simulation Technique
- Mathematical model for energy consumption and CO2 emissions
- and are the energy consumption values from the sectors supplying the raw materials. refers to the energy consumption from the sectors where waste/by-products are obtained: glass, ceramic, steelmaking, and salt slag recovery, while relates to the extraction and processing of the natural materials used, limestone and gypsum.
- and represent the quantities of waste/by-products and natural materials in the raw meal, based on the mixture compositions in Table 1.
- is the allocation factor that determines how much of the total energy consumption and CO2 emissions from production are attributed to waste/by-products. Sensitivity analyses were used for glass waste, ceramic waste and LFS while a reference-based allocation was applied for Serox.
- is the energy consumption of the kiln, estimated based on theoretical heat demand for CSA cement production and adjusted for kiln heat losses. A relationship between theoretical and actual energy consumption, derived from data on cement plants and similar studies, was used to determine , as explained in detail in the subsequent section.
- (loss on ignition) accounts for mass loss during raw meal processing, particularly from the decomposition of limestone. The functional unit of this analysis is one metric t of clinker. Therefore, adjustments are made to the terms concerning mix-ingredient based on the value of the raw meal.
- 2.
- Input data and probability distributions
- 3.
- Dependent variables and simulation process
- 4.
- Output results and environmental assessment
3. Monte Carlo Simulation Results of CSA Cements and PC
3.1. Energy Consumption of CSA Cements
3.1.1. Energy Data Collection and Analysis
3.1.2. Sensitivity Analyses for Energy Allocation of Waste/By-Products
3.1.3. Assumptions for Kiln Heat Requirements
3.1.4. Monte Carlo Simulation Results for EC
3.2. CO2 Emissions of CSA Cements
3.2.1. CO2 Emissions Data Collection and Analysis
3.2.2. Sensitivity Analyses for CO2 Emissions Allocation of Waste/By-Products
3.2.3. Assumptions for Fuel-Related Emissions
3.2.4. Monte Carlo Simulation Results for CE
3.3. Environmental Assessment of Portland Cement (PC)
4. Discussion of Results
5. Conclusions
- Despite conservative assumptions, CSA cements demonstrated significantly lower environmental impacts compared to PC, with average energy consumption 13% to 16% lower and average CO2 emissions reduced by 35% to 48%, demonstrating their significant contribution to climate change mitigation.
- The most significant energy consumption is observed during the burning process, and a significant proportion of CO2 emissions are due to calcination and fuel use, similar to PC production.
- Among the CSA mixes, Mix B exhibited the lowest energy demand due to its comparatively lower Serox and LFS content, while Mix C achieved the greatest reduction in CO2 emissions, primarily due to its lower limestone content.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colangelo, F.; Forcina, A.; Farina, I.; Petrillo, A. Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings 2018, 8, 70. [Google Scholar] [CrossRef]
- Flatt, R.J.; Roussel, N.; Christopher, C.R. Concrete: An Eco Material That Needs to Be Improved. J. Eur. Ceram. Soc. 2012, 32, 2787–2798. [Google Scholar] [CrossRef]
- Feiz, R.; Ammenberg, J.; Baas, L.; Eklund, M.; Helgstrand, A.; Marshall, R. Improving the CO2 Performance of Cement, Part I: Utilizing Life-Cycle Assessment and Key Performance Indicators to Assess Development within the Cement Industry. J. Clean. Prod. 2015, 98, 272–281. [Google Scholar] [CrossRef]
- Mehta, P.K. Greening of the Concrete Industry for Sustainable Development. Concr. Int. 2002, 24, 23–28. [Google Scholar]
- Ruan, S.; Unluer, C. Comparative Life Cycle Assessment of Reactive MgO and Portland Cement Production. J. Clean. Prod. 2016, 137, 258–273. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Chen, B.; Song, D.; Qi, J.; Liu, X. Analysis of CO2 Emission for the Cement Manufacturing with Alternative Raw Materials: A LCA-Based Framework. Energy Procedia 2014, 61, 2541–2545. [Google Scholar] [CrossRef]
- WBCSD. Global Cement Database on CO2 and Energy Information—Getting the Numbers Right (GNR); WBCSD: Geneva, Switzerland, 2019. [Google Scholar]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A Review on Emission Analysis in Cement Industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodríguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental Impacts, Life Cycle Assessment and Potential Improvement Measures for Cement Production: A Literature Review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process with Alternative Technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- IEA; WBCSD. Technology Roadmap: Low-Carbon Transition in the Cement Industry; WBCSD: Geneva, Switzerland, 2018. [Google Scholar]
- UN Environment. Eco-Efficient Cements: Potential, Economically Viable Solutions for a Low-CO2 Cement Based Industry; UN Environment: Nairobi, Kenya, 2017. [Google Scholar]
- Tanguler-Bayramtan, M.; Yaman, I.O. Cement and Innovative Sustainable Binders. In Sustainable Concrete Materials and Structures; Woodhead Publishing: Sawston, UK, 2024; pp. 9–40. ISBN 9780443156724. [Google Scholar]
- Aranda, M.A.G.; De la Torre, A.G. Sulfoaluminate Cement; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780857094247. [Google Scholar]
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in Alternative Cementitious Binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Tanguler-Bayramtan, M.; Yaman, I.O. Calcium Sulfoaluminate Cement: State of the Art Review. Cem. Concr. World 2018, 132, 72–78. [Google Scholar]
- Canbek, O.; Shakouri, S.; Erdoğan, S.T. Laboratory Production of Calcium Sulfoaluminate Cements with High Industrial Waste Content. Cem. Concr. Compos. 2020, 106, 103475. [Google Scholar] [CrossRef]
- Senff, L.; Castela, A.; Hajjaji, W.; Hotza, D.; Labrincha, J.A. Formulations of Sulfobelite Cement through Design of Experiments. Constr. Build. Mater. 2011, 25, 3410–3416. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Ren, C.; Yao, X.; Yao, Y.; Zhang, Q.; Li, Z. Calcination of Calcium Sulphoaluminate Cement Using Flue Gas Desulfurization Gypsum as Whole Calcium Oxide Source. Constr. Build. Mater. 2019, 228, 116676. [Google Scholar] [CrossRef]
- Yang, F.; Pang, F.; Xie, J.; Wang, W.; Wang, W.; Wang, Z. Leaching and Solidification Behavior of Cu2+, Cr3+ and Cd2+ in the Hydration Products of Calcium Sulfoaluminate Cement. J. Build. Eng. 2022, 46, 103696. [Google Scholar] [CrossRef]
- Pace, M.L.; Telesca, A.; Marroccoli, M.; Valenti, G.L. Use of Industrial Byproducts as Alumina Sources for the Synthesis of Calcium Sulfoaluminate Cements. Environ. Sci. Technol. 2011, 45, 6124–6128. [Google Scholar] [CrossRef]
- Da Costa, E.B.; Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Gobbo, L.A.; Kirchheim, A.P. Production and Hydration of Calcium Sulfoaluminate-Belite Cements Derived from Aluminium Anodising Sludge. Constr. Build. Mater. 2016, 122, 373–383. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Zajac, M.; Ben Haha, M. CSA Raw Mix Design: Effect on Clinker Formation and Reactivity. Mater. Struct. Constr. 2015, 48, 3895–3911. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Franković Mihelj, N.; Šipušić, J. Calcium Sulfoaluminate Eco-Cement from Industrial Waste. Chem. Biochem. Eng. Q. 2013, 27, 83–93. [Google Scholar]
- Iacobescu, R.I.; Pontikes, Y.; Koumpouri, D.; Angelopoulos, G.N. Synthesis, Characterization and Properties of Calcium Ferroaluminate Belite Cements Produced with Electric Arc Furnace Steel Slag as Raw Material. Cem. Concr. Compos. 2013, 44, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Pei, Y.; Qian, J.; Gao, X.; Liang, J.; Duan, G.; Zhao, P.; Lu, L.; Cheng, X. Bauxite Free Iron Rich Calcium Sulfoaluminate Cement: Preparation, Hydration and Properties. Constr. Build. Mater. 2020, 249, 118774. [Google Scholar] [CrossRef]
- Dolenec, S.; Šter, K.; Borštnar, M.; Nagode, K.; Ipavec, A.; Žibret, L. Effect of the Cooling Regime on the Mineralogy and Reactivity of Belite-Sulfoaluminate Clinkers. Minerals 2020, 10, 910. [Google Scholar] [CrossRef]
- Telesca, A.; Winnefeld, F.; Marroccoli, M. Synthesis and Characterisation of Calcium Sulfoaluminate Cements Produced by Different Chemical Gypsums. Adv. Cem. Res. 2019, 31, 113–123. [Google Scholar] [CrossRef]
- Živica, V. Properties of Blended Sulfoaluminate Belite Cement. Constr. Build. Mater. 2000, 14, 433–437. [Google Scholar] [CrossRef]
- Marroccoli, M.; Montagnaro, F.; Pace, M.L.; Telesca, A.; Valenti, G.L. Synthesis of Calcium Sulfoaluminate Cements from Blends of Coal Combustion Ashes with Flue Gas Desulfurization Gypsum. In Proceedings of the Processes and Technologies for a Sustainable Energy, Ischia, Italy, 27–30 June 2010. [Google Scholar]
- Chen, I.A.; Juenger, M.C.G. Incorporation of Coal Combustion Residuals into Calcium Sulfoaluminate-Belite Cement Clinkers. Cem. Concr. Compos. 2012, 34, 893–902. [Google Scholar] [CrossRef]
- Ma, B.; Li, X.; Mao, Y.; Shen, X. Synthesis and Characterization of High Belite Sulfoaluminate Cement through Rich Alumina Fly Ash and Desulfurization Gypsum. Ceram.-Silikaty 2013, 57, 7–13. [Google Scholar]
- Borštnar, M.; Daneu, N.; Dolenec, S. Phase Development and Hydration Kinetics of Belite-Calcium Sulfoaluminate Cements at Different Curing Temperatures. Ceram. Int. 2020, 46, 29421–29428. [Google Scholar] [CrossRef]
- Telesca, A.; Matschei, T.; Marroccoli, M. Study of Eco-Friendly Belite-Calcium Sulfoaluminate Cements Obtained from Special Wastes. Appl. Sci. 2020, 10, 8650. [Google Scholar] [CrossRef]
- Telesca, A.; Ibris, N.; Marroccoli, M. Use of Potabilized Water Sludge in the Production of Low-Energy Blended Calcium Sulfoaluminate Cements. Appl. Sci. 2021, 11, 1679. [Google Scholar] [CrossRef]
- Dong, K.; Xie, F.; Wang, W.; Chang, Y.; Chen, C.; Gu, X. Calcination of Calcium Sulphoaluminate Cement Using Pyrite-Rich Cyanide Tailings. Crystals 2020, 10, 971. [Google Scholar] [CrossRef]
- Katsioti, M.; Tsakiridis, P.E.; Agatzini-Leonardou, S.; Oustadakis, P. Examination of the Jarosite-Alunite Precipitate Addition in the Raw Meal for the Production of Portland and Sulfoaluminate-Based Cement Clinkers. Int. J. Miner. Process. 2005, 76, 217–224. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Ecology: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Morales, M. Industrial Symbiosis, a Model of Strong Sustainability: An Analysis of Two Case Studies, Tampico and Dunkirk. Ph.D. Thesis, Université Clermont Auvergne, Clermont-Ferrand, France, 2019. [Google Scholar]
- Mirata, M.; Emtairah, T. Industrial Symbiosis Networks and the Contribution to Environmental Innovation: The Case of the Landskrona Industrial Symbiosis Programme. J. Clean. Prod. 2005, 13, 993–1002. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.G.; Pimentel, C.; Matias, J.C.O. The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation. Sustainability 2019, 11, 7095. [Google Scholar] [CrossRef]
- Li, H.; Dong, L.; Ren, J. Industrial Symbiosis as a Countermeasure for Resource Dependent City: A Case Study of Guiyang, China. J. Clean. Prod. 2015, 107, 252–266. [Google Scholar] [CrossRef]
- Dong, L.; Liang, H.; Zhang, L.; Liu, Z.; Gao, Z. Highlighting Regional Eco-Industrial Development: Life Cycle Benefits of an Urban Industrial Symbiosis and Implications in China. Ecol. Model. 2017, 361, 164–176. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Murakami, F.K.; Butturi, M.A.; Marinelli, S.; Kadel, N., Jr.; Rimini, B. Barriers, Drivers, and Relationships in Industrial Symbiosis of a Network of Brazilian Manufacturing Companies. Sustain. Prod. Consum. 2021, 26, 443–454. [Google Scholar] [CrossRef]
- De Souza, J.F.T.; Pacca, S.A. A Low Carbon Future for Brazilian Steel and Cement: A Joint Assessment under the Circular Economy Perspective. Resour. Conserv. Recycl. Adv. 2023, 17, 200141. [Google Scholar] [CrossRef]
- Khan, Z.A.; Chowdhury, S.R.; Mitra, B.; Mozumder, M.S.; Elhaj, A.I.; Salami, B.A.; Rahman, M.M.; Rahman, S.M. Analysis of Industrial Symbiosis Case Studies and Its Potential in Saudi Arabia. J. Clean. Prod. 2023, 385, 135536. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Zhang, G.; Wang, D.; Liu, C. Can Industrial Symbiosis Policies Be Effective ? Evidence from the Nationwide Industrial Symbiosis System in China. J. Environ. Manag. 2023, 331, 117346. [Google Scholar] [CrossRef]
- Sourmelis, S.; Pontikes, Y.; Myers, R.J.; Tennant, M. Business Models for Symbiosis between the Alumina and Cement Industries. Resour. Conserv. Recycl. 2024, 205, 107560. [Google Scholar] [CrossRef]
- García-Gusano, D.; Herrera, I.; Garraín, D.; Lechón, Y.; Cabal, H. Life Cycle Assessment of the Spanish Cement Industry: Implementation of Environmental-Friendly Solutions. Clean Technol. Environ. Policy 2015, 17, 59–73. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P. Comparative LCA on Using Waste Materials in the Cement Industry: A Hong Kong Case Study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Josa, A.; Aguado, A.; Cardim, A.; Byars, E. Comparative Analysis of the Life Cycle Impact Assessment of Available Cement Inventories in the EU. Cem. Concr. Res. 2007, 37, 781–788. [Google Scholar] [CrossRef]
- Marinković, S.B.; Ignjatović, I.; Radonjanin, V. Life-Cycle Assessment (LCA) of Concrete with Recycled Aggregates (RAs); Woodhead Publishing: Sawston, UK, 2013; ISBN 9780857096906. [Google Scholar]
- Moretti, L.; Caro, S. Critical Analysis of the Life Cycle Assessment of the Italian Cement Industry. J. Clean. Prod. 2017, 152, 198–210. [Google Scholar] [CrossRef]
- Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A. Life-Cycle Inventory Analysis of Concrete Production: A Critical Review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Alvi, I.H.; Li, Q.; Hou, Y.; Onyekwena, C.C.; Zhang, M.; Ghaffar, A. A Critical Review of Cement Composites Containing Recycled Aggregates with Graphene Oxide Nanomaterials. J. Build. Eng. 2023, 69, 105989. [Google Scholar] [CrossRef]
- Alhashimi, H.A.; Aktas, C.B. Life Cycle Environmental and Economic Performance of Biochar Compared with Activated Carbon: A Meta-Analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. [Google Scholar] [CrossRef]
- Befesa 2019 Sustainabilty Report; Befesa: Ratingen, Germany, 2019.
- Tanguler-Bayramtan, M.; Turk, S.; Yaman, I.O. Hydration Characteristics of Calcium Sulfoaluminate Cements Synthesized Using an Industrial Symbiosis Framework. Constr. Build. Mater. 2024, 447, 138090. [Google Scholar] [CrossRef]
- Tanguler-Bayramtan, M. Synthesis of Green Calcium Sulfoaluminate Cements Using an Industrial Symbiosis Approach; Middle East Technical University: Ankara, Turkey, 2022. [Google Scholar]
- Shan, Y.; Zhou, Y.; Meng, J.; Mi, Z.; Liu, J.; Guan, D. Peak Cement-Related CO2 Emissions and the Changes in Drivers in China. J. Ind. Ecol. 2019, 23, 959–971. [Google Scholar] [CrossRef]
- Da Silver Pereira, E.J.; Pinho, J.T.; Galhardo, M.A.B.; Macêdo, W.N. Methodology of Risk Analysis by Monte Carlo Method Applied to Power Generation with Renewable Energy. Renew. Energy 2014, 69, 347–355. [Google Scholar] [CrossRef]
- Schmitz, A.; Kamiński, J.; Maria Scalet, B.; Soria, A. Energy Consumption and CO2 Emissions of the European Glass Industry. Energy Policy 2011, 39, 142–155. [Google Scholar] [CrossRef]
- OECD/IEA. Tracking Industrial Energy Efficiency and CO2 Emissions; OECD/IEA: Paris, France, 2007. [Google Scholar]
- WSP (Parsons Brinckerhoff); DNV·GL. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050—Glass; Government of the United Kingdom: London, UK, 2015. [Google Scholar]
- Hu, P.; Li, Y.; Zhang, X.; Guo, Z.; Zhang, P. CO2 Emission from Container Glass in China, and Emission Reduction Strategy Analysis. Carbon Manag. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- MIDDEN Decarbonisation Options for the Dutch Container and Tableware Glass Industry; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2019.
- Testa, M.; Malandrino, O.; Sessa, M.R.; Supino, S.; Sica, D. Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy. Sustainability 2017, 9, 1752. [Google Scholar] [CrossRef]
- Rue, D.M.; Servaites, J.; Wolf, W. Industrial Glass Bandwidth Analysis Final Report; Gas Technology Institute: Des Plaines, IL, USA, 2007. [Google Scholar]
- BEIS. Glass Sector-Industrial Decarbonisation and Energy Efficiency Roadmap Action Plan; BEIS: London, UK, 2017. [Google Scholar]
- Sinton, C.W. Glass and Energy. Encycl. Energy 2004, 3, 1–10. [Google Scholar]
- Ecofys. Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012—Sector Report for the Ceramics Industry; Ecofys: Utrecht, The Netherlands, 2009. [Google Scholar]
- European Comission. Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Miralles, A.; Zaera, V. Analysis of the Energy Consumption and Production of Ceramic Tile. In Proceedings of the Qualicer 10, Castellón, Spain, 10–13 February 2008. [Google Scholar]
- Osama, A.; Soliman, F. Industrial Energy Efficiency Benchmarking Report of the Ceramics Sector; United Nations Industrial Development Organization: Vienna, Austria, 2016. [Google Scholar]
- Kirschen, M.; Badr, K.; Pfeifer, H. Influence of Direct Reduced Iron on the Energy Balance of the Electric Arc Furnace in Steel Industry. Energy 2011, 36, 6146–6155. [Google Scholar] [CrossRef]
- Pardo, N.; Moya, J.A.; Vatopoulos, K. Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- He, H.; Guan, H.; Zhu, X.; Lee, H. Assessment on the Energy Flow and Carbon Emissions of Integrated Steelmaking Plants. Energy Reports 2017, 3, 29–36. [Google Scholar] [CrossRef]
- Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. Environmental Life-Cycle Comparisons of Steel Production and Recycling: Sustainability Issues, Problems and Prospects. Environ. Sci. Policy 2011, 14, 650–663. [Google Scholar] [CrossRef]
- Burchart-Korol, D. Life Cycle Assessment of Steel Production in Poland: A Case Study. J. Clean. Prod. 2013, 54, 235–243. [Google Scholar] [CrossRef]
- Hu, C.; Chen, L.; Zhang, C.; Qi, Y.; Yin, R. Emission Mitigation of CO2 in Steel Industry: Current Status and Future Scenarios. J. Iron Steel Res. Int. 2006, 13, 38–42. [Google Scholar] [CrossRef]
- Price, L.; Phylipsen, D.; Worrell, E. Energy Use and Carbon Dioxide Emissions in the Steel Sector in Key Developing Countries; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001. [Google Scholar]
- Hasanbeigi, A.; Price, L.; Aden, N.; Chunxia, Z.; Xiuping, L.; Fangqin, S. A Comparison of Iron and Steel Production Energy Intensity in China and the U.S; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2011. [Google Scholar]
- Befesa. Sustainability Reports: ESG Progress Update 2020; Befesa: Ratingen, Germany, 2020. [Google Scholar]
- Cusano, G.; Rodrigo Gonzalo, M.; Farrell, F.; Remus, R.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries; Joint Research Centre: Brussels, Belgium, 2017. [Google Scholar]
- FISSAC. Lifecycle Assessment of New Processes, Materials and Products; FISSAC: London, UK, 2017. [Google Scholar]
- Fořt, J.; Černý, R. Carbon Footprint Analysis of Calcined Gypsum Production in the Czech Republic. J. Clean. Prod. 2018, 177, 795–802. [Google Scholar] [CrossRef]
- Ecofys. Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012—Sector Report for the Gypsum Industry; Ecofys: Utrecht, The Netherlands, 2009. [Google Scholar]
- Kittipongvises, S. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand. Environ. Clim. Technol. 2017, 20, 67–83. [Google Scholar] [CrossRef]
- Hagemann, S.E.; Gastaldini, A.L.G.; Cocco, M.; Jahn, S.L.; Terra, L.M. Synergic Effects of the Substitution of Portland Cement for Water Treatment Plant Sludge Ash and Ground Limestone: Technical and Economic Evaluation. J. Clean. Prod. 2019, 214, 916–926. [Google Scholar] [CrossRef]
- Tokyay, M. Cement and Concrete Mineral Admixtures; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Bendouma, S.; Serradj, T.; Vapur, H. A Case Study of the Life Cycle Impact of Limestone Quarrying on the Environment. Int. J. Glob. Warm. 2020, 22I, 432–447. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Valente, A.; Martínez-Fernández, M.; Dufour, J. Eco-Efficiency Assessment of Calcium Sulfoaluminate Clinker Production. J. Ind. Ecol. 2020, 24, 695–706. [Google Scholar] [CrossRef]
- Hanein, T.; Galvez-Martos, J.L.; Bannerman, M.N. Carbon Footprint of Calcium Sulfoaluminate Clinker Production. J. Clean. Prod. 2018, 172, 2278–2287. [Google Scholar] [CrossRef]
- Ben Haha, M.; Winnefeld, F.; Pisch, A. Advances in Understanding Ye’elimite-Rich Cements. Cem. Concr. Res. 2019, 123, 105778. [Google Scholar] [CrossRef]
- T.C. Enerji ve Tabii Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre Dairesi Başkanlığı (EVÇED). 2019 Yılı Çimento Sektörü Kıyaslama Raporu; T.C. Enerji ve Tabii Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre Dairesi Başkanlığı (EVÇED): Ankara, Türkiye, 2020.
- Enviros Consulting Ltd. Glass Recycling—Life Cycle Carbon Dioxide Emissions; Enviros Consulting Ltd.: London, UK, 2003. [Google Scholar]
- Ecofys. Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012—Sector Report for the Glass Industry; Ecofys: Utrecht, The Netherlands, 2009. [Google Scholar]
- Mezquita, A.; Boix, J.; Monfort, E.; Mallol, G. Energy Saving in Ceramic Tile Kilns: Cooling Gas Heat Recovery. Appl. Therm. Eng. 2014, 65, 102–110. [Google Scholar] [CrossRef]
- González, I.; Galán, E.; Miras, A.; Vázquez, M.A. CO2 Emissions Derived from Raw Materials Used in Brick Factories. Applications to Andalusia (Southern Spain). Appl. Clay Sci. 2011, 52, 193–198. [Google Scholar] [CrossRef]
- Tikul, N. Assessing Environmental Impact of Small and Medium Ceramic Tile Manufacturing Enterprises in Thailand. J. Manuf. Syst. 2014, 33, 1–6. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Lu, X.; Chen, J. Scenario Analysis on CO2 Emissions Reduction Potential in China’s Iron and Steel Industry. Energy Policy 2007, 35, 2320–2335. [Google Scholar] [CrossRef]
- Kirschen, M.; Risonarta, V.; Pfeifer, H. Energy Efficiency and the Influence of Gas Burners to the Energy Related Carbon Dioxide Emissions of Electric Arc Furnaces in Steel Industry. Energy 2009, 34, 1065–1072. [Google Scholar] [CrossRef]
- Sandberg, H.; Lagneborg, R.; Lindblad, B.; Axelsson, H.; Bentell, L. CO2 Emissions of the Swedish Steel Industry. Scand. J. Metall. 2001, 30, 420–425. [Google Scholar] [CrossRef]
- European Commission. Final Report of the SET-Plan Workshop on Technology Innovations for Energy Efficiency and Greenhouse Gas (GHG) Emissions Reduction in the Iron and Steel Industries in the EU27 up to 2030; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Nidheesh, P.V.; Kumar, M.S. An Overview of Environmental Sustainability in Cement and Steel Production. J. Clean. Prod. 2019, 231, 856–871. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Arens, M.; Cardenas, J.C.R.; Price, L.; Triolo, R. Comparison of Carbon Dioxide Emissions Intensity of Steel Production in China, Germany, Mexico, and the United States. Resour. Conserv. Recycl. 2016, 113, 127–139. [Google Scholar] [CrossRef]
- Xu, D.; Cui, Y.; Li, H.; Yang, K.; Xu, W.; Chen, Y. On the Future of Chinese Cement Industry. Cem. Concr. Res. 2015, 78, 2–13. [Google Scholar] [CrossRef]
- Marceau, M.L.; Nisbet, M.A.; Vangeem, M.G. Life Cycle Inventory of Portland Cement Manufacture; Portland Cement Association: Skokie, IL, USA, 2006. [Google Scholar]
- Habert, G.; Billard, C.; Rossi, P.; Chen, C.; Roussel, N. Cement Production Technology Improvement Compared to Factor 4 Objectives. Cem. Concr. Res. 2010, 40, 820–826. [Google Scholar] [CrossRef]
- Li, C.; Nie, Z.; Cui, S.; Gong, X.; Wang, Z.; Meng, X. The Life Cycle Inventory Study of Cement Manufacture in China. J. Clean. Prod. 2014, 72, 204–211. [Google Scholar] [CrossRef]
- Sharma, A.; Basavaraj, A.S.; Chaunsali, P.; Gettu, R. Calcium Sulfoaluminate Cement Manufacturing in India—Prospects and Prognosis of Environmental Impacts. ACI Mater. J. 2023, 120, 17–28. [Google Scholar] [CrossRef]
- Cau Dit Coumes, C.; Courtois, S.; Peysson, S.; Ambroise, J.; Pera, J. Calcium Sulfoaluminate Cement Blended with OPC: A Potential Binder to Encapsulate Low-Level Radioactive Slurries of Complex Chemistry. Cem. Concr. Res. 2009, 39, 740–747. [Google Scholar] [CrossRef]
- Winnefeld, F.; Barlag, S. Calorimetric and Thermogravimetric Study on the Influence of Calcium Sulfate on the Hydration of Ye’elimite. J. Therm. Anal. Calorim. 2010, 101, 949–957. [Google Scholar] [CrossRef]
- Hargis, C.W.; Telesca, A.; Monteiro, P.J.M. Calcium Sulfoaluminate (Ye’elimite) Hydration in the Presence of Gypsum, Calcite, and Vaterite. Cem. Concr. Res. 2014, 65, 15–20. [Google Scholar] [CrossRef]
- Thomas, R.J.; Maguire, M.; Sorensen, A.D.; Quezada, I. Calcium Sulfoaluminate Cement: Benefits and Applications. Concr. Int. 2018, 40, 65–69. [Google Scholar]
- Sereewatthanawut, I.; Pansuk, W.; Pheinsusom, P.; Prasittisopin, L. Chloride-Induced Corrosion of a Galvanized Steel-Embedded Calcium Sulfoaluminate Stucco System. J. Build. Eng. 2021, 44, 103376. [Google Scholar] [CrossRef]
- Tao, Y.; Rahul, A.V.; Mohan, M.K.; De Schutter, G.; Tittelboom, K. Van Recent Progress and Technical Challenges in Using Calcium Sulfoaluminate (CSA) Cement. Cem. Concr. Compos. 2023, 137, 104908. [Google Scholar] [CrossRef]
Naturally Sourced Materials | Industrially Sourced Waste/By-Products | |||||||
---|---|---|---|---|---|---|---|---|
Limestone | Gypsum | Total | Serox | LFS | Ceramic | Glass | Total | |
Mix A | 28 | 27 | 55 | 23 | 14 | 7 | 1 | 45 |
Mix B | 29 | 29 | 58 | 16 | 19 | 4 | 3 | 42 |
Mix C | 12 | 36 | 48 | 16 | 33 | 1.5 | 1.5 | 52 |
Input | Unit | Min | Max | Probability Distribution and Related Parameters * |
---|---|---|---|---|
ECg,p | (MJ/t glass) | 4200 | 10,000 | Normal distribution µ: 6977.5; σ: 1401.3 |
ECc,p | (MJ/t ceramic) | 3310 | 7090 | Triangular distribution a: 2938.2; b: 7090; c: 7090 |
ECs,p | (MJ/t steel) | 4000 | 11,950 | Triangular distribution a: 2483.7; b: 11,950; c: 11,950 |
ECssr,p | (MJ/t salt slag rec.) | 1900 | 3845 | Triangular distribution a: 1900; b: 2890; c: 3845 |
ECgy,p | (MJ/t gypsum) | 200 | 500 | Triangular distribution a: 200; b: 350; c: 500 |
ECl,p-mining | (MJ/t limestone) | 10.3 | 109.8 | Exponential distribution λ: 42.1 |
ECl,p-grinding | (MJ/t limestone) | 24 | 360 | Exponential distribution λ: 123.7 |
ECth | (MJ/t CSA clinker) | 1099 | 1339 | Triangular distribution a: 1075.3; b: 1244; c: 1357.8 |
Mix | Allocation Amount | Change in Mean Energy Consumption When Allocation Amount of Waste/By-Product Is Changed from 10% (%) | ||
---|---|---|---|---|
Glass Waste | Ceramic Waste | LFS | ||
Mix A | 1% | −0.3 | −1.4 | −4.2 |
5% | −0.2 | −0.8 | −2.4 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.3 | 1.5 | 4.7 | |
Mix B | 1% | −0.7 | −0.8 | −5.9 |
5% | −0.4 | −0.4 | −3.3 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.8 | 0.9 | 6.5 | |
Mix C | 1% | −0.3 | −0.3 | −9.5 |
5% | −0.2 | −0.2 | −5.3 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.4 | 0.3 | 10.5 |
Input | Unit | Min | Max | Probability Distribution and Related Parameters * |
---|---|---|---|---|
CEg,p | (kg CO2/t glass) | 450 | 1192 | Triangular distribution a: 450, b: 450, c: 967.8 |
CEc,p | (kg CO2/t ceramic) | 263 | 806 | Exponential distribution λ: 114 |
CEs,p | (kg CO2/t steel) | 240 | 1080 | Triangular distribution a: 240, b: 240, c: 1013.3 |
CEssr | (kg CO2/t salt slag rec.) | 171 | 346.1 | Triangular distribution a: 171, b: 260.1 c: 346.1 |
CEgy,p | (kg CO2/t gypsum) | 50 | 140.2 | Triangular distribution a: 50, b: 120, c: 140.2 |
CEl,p-calcining | (kg CO2/t PC clinker) | 510 | 553 | Normal distribution µ: 527, σ: 18.9 |
CEl,p-grinding | (kg CO2/t limestone) | 4.7 | 50.9 | Exponential distribution λ: 18.2 |
CEf | (kg CO2/t PC clinker) | 271 | 542 | Loglogistic distribution β: 59.5, α: 3.4 |
Mix | Allocation Amount | Change in Mean CO2 Emissions When Allocation Amount of Waste/By-Product Is Changed from 10% (%) | ||
---|---|---|---|---|
Glass Waste | Ceramic Waste | LFS | ||
Mix A | 1% | −0.1 | −0.5 | −1.4 |
5% | −0.1 | −0.3 | −0.8 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.1 | 0.6 | 1.6 | |
Mix B | 1% | −0.4 | −0.3 | −1.9 |
5% | −0.2 | −0.2 | −1.1 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.4 | 0.3 | 2.2 | |
Mix C | 1% | −0.2 | −0.1 | −4.0 |
5% | −0.1 | −0.1 | −2.2 | |
10% | 0.0 | 0.0 | 0.0 | |
20% | 0.3 | 0.1 | 4.4 |
Unit | Min | Max | Probability Distribution and Related Parameters * | |
---|---|---|---|---|
Thermal energy consumption | (MJ/t clinker) | 2900 | 5568 | Loglogistic distribution β: 1151.2, α: 6.3 |
Power consumption | (kWh/t clinker) | 47 | 88 | Normal distribution µ: 66.0, σ: 9.6 |
CO2 emissions | (kg CO2/t clinker) | 612 | 1067 | Logistic distribution µ: 840.2, s: 36.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanguler-Bayramtan, M.; Aktas, C.B.; Yaman, I.O. Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework. Buildings 2024, 14, 3673. https://doi.org/10.3390/buildings14113673
Tanguler-Bayramtan M, Aktas CB, Yaman IO. Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework. Buildings. 2024; 14(11):3673. https://doi.org/10.3390/buildings14113673
Chicago/Turabian StyleTanguler-Bayramtan, Meltem, Can B. Aktas, and Ismail Ozgur Yaman. 2024. "Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework" Buildings 14, no. 11: 3673. https://doi.org/10.3390/buildings14113673
APA StyleTanguler-Bayramtan, M., Aktas, C. B., & Yaman, I. O. (2024). Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework. Buildings, 14(11), 3673. https://doi.org/10.3390/buildings14113673