Wind-Induced Vibration Analysis of a Pentagonal Three–Four Strut Hybrid Open-Type Cable Dome
Abstract
:1. Introduction
2. Structural Model and Analysis Method
2.1. Structural Model
2.2. Analysis Method
2.2.1. Fundamental Theory of Wind Load Simulation
- 1.
- Basic Assumption
- (1)
- The average wind profile follows the exponential law model.
- (2)
- Under the quasi-steady-state assumption, the wind speed at each node is considered constant within each time step.
- (3)
- The wind direction remains constant in the wind field where the structure is located.
- 2.
- Power Spectral Density of Pulsating Wind
- 3.
- Transformation of Wind Velocity to Wind Pressure
2.2.2. Dynamic Analysis Method
- 1.
- Dynamic Equation
- 2.
- Solving the Dynamic Equation
- 3.
- Damping Matrix
3. Simulating Wind Fields and Modal Analysis
3.1. Simulating Wind Fields
3.2. Modal Analysis
4. Wind-Induced Vibration Analysis
4.1. Displacement Time History Analysis
4.2. Internal Force Time History Analysis
4.3. Structural Wind Vibration Coefficient
4.3.1. Structural Wind Vibration Coefficient Calculation
4.3.2. Displacement Wind Vibration Coefficient
4.3.3. Force Wind Vibration Coefficients
5. Parametric and Sensitivity Analyses
5.1. Parametric Analysis
5.2. Wind-Induced Vibration Sensitivity Analysis
6. Conclusions
- The Davenport power spectrum simulation was performed using the Matlab programming language. The resulting simulated spectrum aligns statistically with the target spectrum, satisfying the prerequisites for the calculation of wind vibration coefficients.
- During the wind-induced vibration analysis, the predominant displacement in the structure was observed along the -axis, with the maximum value being recorded at node (C4, 0), measuring 12 mm. The pulsating wind load induces structural deformation, but the structure is capable of self-equilibrating in its new position with a minimal internal force response.
- When creating a wind-resistant design, it is crucial to prioritize the selection of appropriate rise–span and thickness–span ratios. Additionally, increasing structural damping can help alleviate the adverse effects of pulsating wind on the structure.
- This paper recommends using a rise–span ratio of and a thickness–span ratio of for this structure. The root mean square (RMS) values of the displacement and force wind vibration coefficients in the structure are minimized.
- The RSM values for the displacement and force wind vibration coefficients are minimal. In a wind-resistant design, the average wind vibration coefficient can be employed to approximate the pulsating wind load with the average wind load.
- The most wind-sensitive component is hoop cable . The cross-sectional area of can be increased to prevent it from breaking under pulsating wind loads.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Lv, H.; Zhu, Z.Y.; Chen, Z.Q.; Chu, Y. Study on the Dynamic Response of the Component Failure of Drum-Shaped Honeycomb-Type III Cable Dome with Quad-Strut Layout. Buildings 2023, 13, 1894. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lu, J.Y.; Lu, M.; Li, N. Active Control Experiments on a Levy Cable Dome. Eng. Struct. 2023, 278, 115450. [Google Scholar] [CrossRef]
- Dong, S.L.; Wang, Y.D.; Liu, H.C. Structural Form Innovation and Initial Prestress Analysis on Drum-shaped Honeycomb-type Cable Domes with Multi-strut Layout. Spat. Struct. 2022, 28, 3–15. [Google Scholar]
- Zhang, A.L.; Wu, C.Q.; Zhang, Y.X. Analysis on the Structure and Initial Prestress of T-Type Three Strut Cable Dome. J. Beijing Univ. Civ. Eng. Archit. 2021, 37, 1–7. [Google Scholar]
- Yuan, X.F.; Zhang, P. Research of Parametric Configuration of Hybrid Cable Dome Structure. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2023, 1–8. [Google Scholar]
- Lv, H.; Song, C.L.; Dong, S.L.; Liu, D.W.; Tao, Y.Y. Analysis of Prestressing Mode and Multi-Parameter Sensitivity of Circular Pentagonal Three-Four-Strut Alternated Cable Dome with Inner Hole. Eng. Mech. 2023, 1–15. [Google Scholar]
- Yuan, X.F.; Dong, S.L. New Forms and Initial Prestress Calculations for Cable Domes. Eng. Mech. 2005, 22, 22–26. [Google Scholar]
- Lv, H.; Liu, D.W.; Dong, S.L.; Zhong, Y.F. Conformational and Static Performance Analysis of Pentagonal Three-four Strut Hybrid Open-type Cable Dome. Adv. Steel Constr. 2023, 19, 403–410. [Google Scholar]
- Li, T.T.; Qu, H.Y.; Zhao, Y.; Honerkamp, R.; Yan, G.R.; Chowdhury, A.; Zisis, L. Wind Effects on Dome Structures and Evaluation of CFD Simulations through Wind Tunnel Testing. Sustainability 2023, 15, 4635. [Google Scholar] [CrossRef]
- Wei, D.M.; Xu, M.; Li, D. Frequency Domain Analysis of Wind Vibration Response of Large-Span Cable Dome Structure. J. South China Univ. Technol. (Nat. Sci. Ed.) 2012, 40, 112–117. [Google Scholar]
- Wei, D.M.; Xu, M.; Li, D. Time-history Analysis of Wind-induced Vibration Response for a Cable Dome Structure. J. Vib. Shock 2013, 32, 68–73. [Google Scholar]
- Li, T.T.; Yan, G.R.; Yuan, F.P.; Chen, G.D. Dynamic Structural Responses of Long-span Dome Structures Induced by Tornadoes. J. Wind Eng. Ind. Aerodyn. 2019, 190, 293–308. [Google Scholar] [CrossRef]
- Wang, X.L.; Chang, W.B. Analysis of Wind-induced Vibrational Response of Beam-String Structure to Coupled Action of Wind with Structure. J. Lanzhou Univ. Technol. 2008, 34, 108–112. [Google Scholar]
- Sun, F.J.; Chen, C.; Yu, L. Study on Wind Pressure Characteristics of Dome Structures with Openings. J. Disaster Prev. Mitig. Eng. 2017, 37, 481–486. [Google Scholar]
- Zhang, H.; Shan, J. Stochastic Wind Field Simulation and Wind-Coupled Response Study of Membrane Structures. Eng. Mech. 2006, 23, 19–24. [Google Scholar] [CrossRef]
- Wood, J.N.; Breuer, M.; De Nayer, G. Experimental Studies on the Instantaneous Fluid-Structure Interaction of an Air-Inflated Flexible Membrane in Turbulent Flow. J. Fluids Struct. 2018, 80, 405–440. [Google Scholar] [CrossRef]
- Park, M.J.; Yoon, S.W.; Kim, Y.C.; Cheon, D.J. Wind Pressure Characteristics Based on the Rise–Span Ratio of Spherical Domes with Openings on the Roof. Buildings 2022, 12, 576. [Google Scholar] [CrossRef]
- Lai, G.X.; He, Y.L.; Zhao, Y.G.; Zhang, L.M. Influence of Friction Coefficient between Cable and Membrane on Wind-Induced Response of Air-Supported Membrane Structures with Oblique Cable Net. Buildings 2023, 13, 649. [Google Scholar] [CrossRef]
- Li, Q.X.; Lou, W.J.; Yang, S.C.; Sun, B.N. Wind Load Factor and Parametric Analysis of Long-Span Single-Layer Spherical Reticulated Shell. J. Build. Struct. 2006, 27, 65–72. [Google Scholar]
- Zhou, D.; Shu, X.L. Wind-Induced Vibration and Parametric Analysis of Single-Layer Reticulated Shell Structures. Spat. Struct. 2003, 9, 6–12. [Google Scholar]
- Feng, H.; Huang, M.F.; Li, Q.; Shi, C.H. Wind-induced Vibration Time History Analysis and Equivalent Static Wind Loads for Long-Span Lattice Shells. J. Vib. Shock 2016, 35, 164–173. [Google Scholar]
- Shen, S.Z.; Wu, Y. Research Progress on Fluid-Solid Interaction Effect of Wind-Induced Vibration Response of Membrane Structure. J. Archit. Civ. Eng. 2006, 23, 1–9. [Google Scholar]
- Wang, Q.H.; Liu, F.H.; Yu, Y. Study on Wind-Induced Response of a Large-Span Roof by Using Finite Particle Method. Structures 2021, 34, 3567–3582. [Google Scholar] [CrossRef]
- Li, J.; Han, D.J. Study on Wind Vibration Coefficient of Large-Span Cable-Membrane Roof Structure. J. Vib. Shock 2009, 28, 153–159. [Google Scholar]
- Yue, L. Optimal Design for Cable Domes under Wind-Induced Vibration. Spat. Struct. 2015, 21, 18–22. [Google Scholar]
- Kim, Y.C.; Yoon, S.W.; Cheon, D.J.; Song, J.Y. Characteristics of Wind Pressures on Retractable Dome Roofs and External Peak Pressure Coefficients for Cladding Design. J. Wind Eng. Ind. Aerodyn. 2019, 188, 294–307. [Google Scholar]
- Kiani, K.; Efazati, M. Nonlocal Vibrations and Instability of Three-Dimensionally Accelerated Moving Nanocables. Phys. Scr. 2020, 95, 105005. [Google Scholar] [CrossRef]
- Kiani, K.; Efazati, M. Three-dimensional Nonlocal-Surface Energy-Based Statics, Dynamics, and Divergence Instability of Movable Cable-like Nanostructures with Arbitrary Translational Motion. Arch. Appl. Mech. 2021, 91, 3095–3123. [Google Scholar] [CrossRef]
- Feng, H.; Ruan, H.H.; Yuan, Y. Analysis of Nonlinear Wind-Induced Response for Cable Dome Structure. Struct. Eng. 2003, Z1, 64–69. [Google Scholar]
- Ke, S.T.; Yu, W.; Xu, L.; Ge, Y.J.; Tamura, Y. Identification of Damping Ratio and Its Influences on Wind- and Earthquake-induced Effects for Large Cooling Towers. Struct. Des. Tall Spec. Build. 2018, 27, e1488. [Google Scholar] [CrossRef]
- Yu, J.; Duan, Z.; Zhang, X.; Peng, J. Wind-Induced Vibration Control of High-Rise Structures Using Compound Damping Cables. Shock Vib. 2021, 2021, 5537622. [Google Scholar] [CrossRef]
Property | Cable | Strut |
---|---|---|
Steel grade | 1860-grade steel | Q345B steel |
Tensile strength (MPa) | 1860 | 345 |
Poisson’s ratio | 0.3 | 0.3 |
Modulus of elasticity (MPa) | 1.95 × 105 | 2.06 × 105 |
Coefficient of linear expansion | 1.36 × 10−5 | 1.2 × 10−5 |
Density (kg/mm3) | 7.85 × 10−6 | 7.85 × 10−6 |
Component | Pre-Stress (kN) | Cross-Section (mm) |
---|---|---|
3711 | ||
4206 | ||
1196 | ||
1722 | ||
4108 | ||
3733 | ||
−156 | ||
−113 | ||
−1263 | ||
−449 | ||
1086 | ||
2823 | ||
2085 | ||
10000 |
Direction | Displacement (mm) | Node Number |
---|---|---|
UX− | −2.21 | A |
UX+ | 1.55 | B |
UY− | −1.89 | C |
UY+ | 1.84 | C |
UZ− | −7.30 | A |
UZ+ | 12.00 | D |
Component | Force | Element Number |
---|---|---|
Cable | 10,621 kN | F |
Strut | 1265 kN | G |
Constraint | RFx = 4855 kN | H |
Model | Freq/Hz | ||||
---|---|---|---|---|---|
Rise–Span Ratio | Thickness–Span Ratio | Damping Factor | 1st | 2nd | 3rd |
0.06 | 0.07 | 0.03 | 2.4427 | 2.4427 | 2.5628 |
0.07 | 2.2383 | 2.2383 | 2.4532 | ||
0.08 | 1.9885 | 1.9885 | 2.7543 | ||
0.07 | 0.06 | 0.03 | 1.8336 | 1.8336 | 2.4358 |
0.07 | 2.2222 | 2.2222 | 2.6392 | ||
0.08 | 2.5822 | 2.5822 | 2.8657 | ||
0.07 | 0.07 | 0.01 | 2.2383 | 2.2383 | 2.4532 |
0.02 | |||||
0.03 |
Parameter | Rise–Span Ratio (f/l = 0.07; damp = 0.03) | Thickness–Span Ratio (h/l = 0.07; damp = 0.03) | Damping Factor (f/l = 0.07; f/l = 0.07) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Component | 0.06 | 0.07 | 0.08 | 0.06 | 0.07 | 0.08 | 0.01 | 0.02 | 0.03 | |
1.51 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.47 | 1.35 | 1.30 | ||
1.51 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.47 | 1.35 | 1.30 | ||
1.56 | 1.33 | 1.33 | 1.33 | 1.33 | 1.32 | 1.50 | 1.38 | 1.33 | ||
1.59 | 1.35 | 1.35 | 1.34 | 1.35 | 1.34 | 1.50 | 1.39 | 1.35 | ||
1.63 | 1.41 | 1.38 | 1.40 | 1.41 | 1.40 | 1.60 | 1.47 | 1.41 | ||
2.44 | 1.73 | 1.84 | 1.79 | 1.73 | 1.65 | 1.91 | 1.79 | 1.73 | ||
2.58 | 1.75 | 1.99 | 2.01 | 1.75 | 1.69 | 2.00 | 1.79 | 1.75 | ||
2.09 | 1.59 | 1.82 | 1.76 | 1.59 | 1.52 | 1.88 | 1.65 | 1.59 | ||
2.68 | 2.04 | 2.20 | 2.39 | 2.04 | 1.85 | 2.16 | 2.07 | 2.04 | ||
2.08 | 1.58 | 1.81 | 1.74 | 1.58 | 1.51 | 1.86 | 1.65 | 1.58 |
Parameter | Rise–Span Ratio (f/l = 0.07; damp = 0.03) | Thickness–Span Ratio (h/l = 0.07; damp = 0.03) | Damping Factor (f/l = 0.07; f/l = 0.07) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Node | 0.06 | 0.07 | 0.08 | 0.06 | 0.07 | 0.08 | 0.01 | 0.02 | 0.03 | |
2.01 | 1.57 | 1.76 | 1.69 | 1.57 | 1.49 | 1.81 | 1.63 | 1.57 | ||
1.91 | 1.51 | 1.68 | 1.61 | 1.51 | 1.45 | 1.75 | 1.58 | 1.51 | ||
2.17 | 1.64 | 1.93 | 1.81 | 1.64 | 1.56 | 1.95 | 1.72 | 1.64 | ||
1.93 | 1.54 | 1.71 | 1.65 | 1.54 | 1.48 | 1.80 | 1.62 | 1.54 | ||
2.07 | 1.58 | 1.80 | 1.70 | 1.58 | 1.51 | 1.86 | 1.65 | 1.58 | ||
1.92 | 1.53 | 1.68 | 1.63 | 1.53 | 1.45 | 1.77 | 1.59 | 1.53 |
Structural Parameter | Maximum | Mean | Minimum | RMS | |
---|---|---|---|---|---|
Rise–span ratio (f/l = 0.07; damping = 0.03) | 0.06 | 2.68 | 1.79 | 1.45 | 0.350 |
0.07 | 2.04 | 1.47 | 1.28 | 0.177 | |
0.08 | 2.20 | 1.54 | 1.29 | 0.254 | |
Thickness–span ratio (h/l = 0.07; damping = 0.03) | 0.06 | 2.39 | 1.53 | 1.29 | 0.255 |
0.07 | 2.04 | 1.47 | 1.28 | 0.177 | |
0.08 | 1.79 | 1.44 | 1.29 | 0.149 | |
Damping factor (f/l = 0.07; f/l = 0.07) | 0.01 | 2.15 | 1.68 | 1.46 | 0.198 |
0.02 | 2.07 | 1.53 | 1.34 | 0.181 | |
0.03 | 2.04 | 1.47 | 1.28 | 0.177 |
Structural Parameter | Maximum | Mean | Minimum | RMS | |
---|---|---|---|---|---|
Rise–span ratio (f/l = 0.07; damping = 0.03) | 0.06 | 2.17 | 1.79 | 1.46 | 0.137 |
0.07 | 1.64 | 1.53 | 1.45 | 0.044 | |
0.08 | 1.93 | 1.68 | 1.57 | 0.073 | |
Thickness–span ratio (h/l = 0.07; damping = 0.03) | 0.06 | 1.81 | 1.63 | 1.52 | 0.061 |
0.07 | 1.64 | 1.53 | 1.45 | 0.044 | |
0.08 | 1.56 | 1.45 | 1.36 | 0.034 | |
Damping factor (f/l = 0.07; f/l = 0.07) | 0.01 | 1.95 | 1.76 | 1.66 | 0.067 |
0.02 | 1.72 | 1.60 | 1.52 | 0.049 | |
0.03 | 1.64 | 1.53 | 1.45 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Liu, D.; Shao, L.; Liu, Y.; Zhu, Z.; Dong, S.; Zhong, Y. Wind-Induced Vibration Analysis of a Pentagonal Three–Four Strut Hybrid Open-Type Cable Dome. Buildings 2024, 14, 461. https://doi.org/10.3390/buildings14020461
Lv H, Liu D, Shao L, Liu Y, Zhu Z, Dong S, Zhong Y. Wind-Induced Vibration Analysis of a Pentagonal Three–Four Strut Hybrid Open-Type Cable Dome. Buildings. 2024; 14(2):461. https://doi.org/10.3390/buildings14020461
Chicago/Turabian StyleLv, Hui, Dewang Liu, Lian Shao, Yaopeng Liu, Zhongyi Zhu, Shilin Dong, and Yanfen Zhong. 2024. "Wind-Induced Vibration Analysis of a Pentagonal Three–Four Strut Hybrid Open-Type Cable Dome" Buildings 14, no. 2: 461. https://doi.org/10.3390/buildings14020461
APA StyleLv, H., Liu, D., Shao, L., Liu, Y., Zhu, Z., Dong, S., & Zhong, Y. (2024). Wind-Induced Vibration Analysis of a Pentagonal Three–Four Strut Hybrid Open-Type Cable Dome. Buildings, 14(2), 461. https://doi.org/10.3390/buildings14020461