Examining Recognition of Occupants’ Cooking Activity Based on Sound Data Using Deep Learning Models
Abstract
:1. Introduction
2. Methods
2.1. Sound Data Collection
2.2. Preprocessing and Acoustic Feature Extraction
3. Classification Model Structure and Training
3.1. Convolutional Neural Network (CNN)
3.2. Long Short-Term Memory (LSTM)
3.3. Bidirectional Long Short-Term Memory (Bi-LSTM)
3.4. Gated Recurrent Unit (GRU)
4. Experimental Results and Performance Comparison
4.1. Performance Derivation Method for Each Model
4.2. Model Performance Comparison Based on the Number of Sound Data Samples
4.3. Strategies for Improving IAQ and Research Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
Bi-LSTM | Bidirectional long short-term memory |
CNN | Convolutional neural network |
DL | Deep learning |
FFT | Fast Fourier transform |
FLAC | Free lossless audio codec |
FN | False negative |
FP | False positive |
GRU | Gated recurrent unit |
IAQ | Indoor air quality |
LSTM | Long short-term memory |
ML | Machine learning |
PM | Particulate matter |
ReLU | Rectified linear unit |
RNN | Recurrent neural network |
SBS | Sick building syndrome |
TN | True negative |
TP | True positive |
VOC | Volatile organic compound |
References
- Azuma, K.; Uchiyama, I.; Katoh, T.; Ogata, H.; Arashidani, K.; Kunugita, N. Prevalence and characteristics of chemical intolerance: A Japanese population-based study. Arch. Environ. Occup. Health 2015, 70, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Hojo, S.; Mizukoshi, A.; Azuma, K.; Okumura, J.; Ishikawa, S.; Miyata, M.; Mizuki, M.; Ogura, H.; Sakabe, K. Survey on changes in subjective symptoms, onset/trigger factors, allergic diseases, and chemical exposures in the past decade of Japanese patients with multiple chemical sensitivity. Int. J. Hyg. Environ. Health 2018, 221, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Belachew, H.; Assefa, Y.; Guyasa, G.; Azanaw, J.; Adane, T.; Dagne, H.; Gizaw, Z. Sick building syndrome and associated risk factors among the population of Gondar town, northwest Ethiopia. Environ. Health Prev. Med. 2018, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Indoor Air Facts No. 4 Sick Building Syndrome. 2020. Available online: https://www.epa.gov/sites/default/files/2014-08/documents/sick_building_factsheet.pdf (accessed on 3 August 2020).
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef]
- Burge, P.S. Sick building syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef]
- Hodgson, M.J. Sick Building Syndrome. In Encyclopedia of Occupational Health and Safety; International Labor Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Saidin, H.; Razak, A.A.; Mohamad, M.F.; UI-Saufie, A.Z.; Zaki, S.A.; Othman, N. Hazard evaluation of indoor air quality in bank offices. Buildings 2023, 13, 798. [Google Scholar] [CrossRef]
- Szczepanik-Scislo, N.; Scislo, L. Dynamic real-time measurements and a comparison of gas and wood furnaces in a dual-fuel heating system in order to evaluate the occupants’ safety and indoor air quality. Buildings 2023, 13, 2125. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Publ. Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, G.; Lang, J.; Wen, W.; Wang, X.; Yao, S. Characterization of volatile organic compounds from different cooking emissions. Atmos. Environ. 2016, 145, 299–307. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.W.; Han, S.B.; Oh, K.C.; Jeon, J.M.; Cho, K.S. Emission characteristics of particulate matter, odors, and volatile organic compounds from the grilling of pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef]
- Chao, C.Y.; Cheng, E.C. Source apportionment of indoor PM2.5 and PM10 in homes. Indoor Built Environ. 2002, 11, 27–37. [Google Scholar] [CrossRef]
- Liu, Q.; Son, Y.J.; Li, L.; Wood, N.; Senerat, A.M.; Pantelic, J. Healthy home interventions: Distribution of PM2.5 emitted during cooking in residential settings. Build. Environ. 2002, 207, 108448. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ. Res. 2006, 102, 197–204. [Google Scholar] [CrossRef]
- See, S.W.; Karthikeyan, S.; Balasubramanian, R. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. J. Environ. Monit. 2006, 8, 369–376. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Li, Y.C.; Shu, M.; Ho, S.S.H.; Wang, C.; Cao, J.J.; Wang, G.H.; Wang, X.X.; Wang, K.; Zhao, X.Q. Characteristics of PM2.5 emitted from different cooking activities in China. Atmos. Res. 2015, 166, 83–91. [Google Scholar] [CrossRef]
- Xiang, J.; Hao, J.; Austin, E.; Shirai, J.; Seto, E. Residential cooking-related PM2.5: Spatial-temporal variations under various intervention scenarios. Build. Environ. 2021, 201, 108002. [Google Scholar] [CrossRef]
- Koistinen, K.J.; Edwards, R.D.; Mathys, P.; Ruuskanen, J.; Künzli, N.; Jantunen, M.J. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand. J. Work Environ. Health 2004, 30 (Suppl. 2), 36–46. [Google Scholar]
- Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Effects of air pollution on heart rate variability: The VA normative aging study. Environ. Health Perspect. 2005, 113, 304–309. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Brauer, M.; Bhatnagar, A.; Bhatt, D.L.; Brook, J.R.; Huang, W.; Münzel, T.; Newby, D.; Siegel, J.; Brook, R.D.; et al. Personal-level protective actions against particulate matter air pollution exposure: A scientific statement from the American Heart Association. Circulation 2020, 142, e411–e431. [Google Scholar] [CrossRef]
- Du, B.; Gao, J.; Chen, J.; Stevanovic, S.; Ristovski, Z.; Wang, L.; Wang, L. Particle exposure level and potential health risks of domestic Chinese cooking. Build. Environ. 2017, 123, 564–574. [Google Scholar] [CrossRef]
- Agrawal, S. Effect of indoor air pollution from biomass and solid fuel combustion on prevalence of self-reported asthma among adult men and women in India: Findings from a nationwide large-scale cross-sectional survey. J. Asthma 2012, 49, 355–365. [Google Scholar] [CrossRef]
- Stabile, L.; Fuoco, F.C.; Marini, S.; Buonanno, G. Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmos. Environ. 2015, 103, 238–246. [Google Scholar] [CrossRef]
- Wong, G.W.K.; Brunekreef, B.; Ellwood, P.; Anderson, H.R.; Asher, M.I.; Crane, J.; Lai, C.K.W. Cooking fuels and prevalence of asthma: A global analysis of phase three of the international study of asthma and allergies in childhood (ISAAC). Lancet Respir. Med. 2013, 1, 386–394. [Google Scholar] [CrossRef]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. Rev. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Rashid, S.K.A.; Pan, W.C.; Chen, Y.C.; Yu, L.E.; Seow, W.J. Association between microenvironment air quality and cardiovascular health outcomes. Sci. Total Environ. 2020, 716, 137027. [Google Scholar] [CrossRef]
- Naseri, M.; Jouzizadeh, M.; Tabesh, M.; Malekipirbazari, M.; Gabdrashova, R.; Nurzhan, S.; Farrokhi, H.; Khanbabaie, R.; Mehri-Dehnavi, H.; Bekezhankyzy, Z.; et al. The impact of frying aerosol on human brain activity. Neurotoxicology 2019, 74, 149–161. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Zhang, X. The impact of exposure to air pollution on cognitive performance. Proc. Natl. Acad. Sci. USA 2018, 115, 9193–9197. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Feldheim, V. Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy Build. 2016, 112, 28–39. [Google Scholar] [CrossRef]
- Jiang, C.; Masood, M.K.; Soh, Y.C.; Li, H. Indoor occupancy estimation from carbon dioxide concentration. Energy Build. 2016, 131, 132–141. [Google Scholar] [CrossRef]
- Serra, R.; Di Croce, P.; Peres, R.; Knittel, D. Human step detection from a piezoelectric polymer floor sensor using normalization algorithms. In Proceedings of the Sensors, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 1169–1172. [Google Scholar] [CrossRef]
- Serra, R.; Knittel, D.; Di Croce, P.; Peres, R. Activity recognition with smart polymer floor sensor: Application to human footstep recognition. IEEE Sens. J. 2016, 16, 5757–5775. [Google Scholar] [CrossRef]
- Wang, L.; Tan, T.; Ning, H.; Hu, W. Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1505–1518. [Google Scholar] [CrossRef]
- Gautam, K.S.; Thangavel, S.K. Video analytics-based intelligent surveillance system for smart buildings. Soft Comput. 2019, 23, 2813–2837. [Google Scholar] [CrossRef]
- Sugandi, B.; Kim, H.; Tan, J.K.; Ishikawa, S. Real time tracking and identification of moving persons by using a camera in outdoor environment. Int. J. Innov. Comput. Inf. Control 2009, 5, 1179–1188. Available online: https://kyutech.repo.nii.ac.jp/record/5063/files/ijicic1179_1188.pdf (accessed on 2 November 2023).
- Zheng, W.-S.; Gong, S.; Xiang, T. Person re-identification by probabilistic relative distance comparison. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 649–656. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth low energy approach to identify occupancy patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [Google Scholar] [CrossRef]
- Weekly, K.; Bekiaris-Liberis, N.; Jin, M.; Bayen, A.M. Modeling and estimation of the humans’ effect on the CO2 dynamics inside a conference room. IEEE Trans. Contr. Syst. Technol. 2015, 23, 1770–1781. [Google Scholar] [CrossRef]
- Saranya, A.; Subhashini, R. A systematic review of explainable artificial intelligence models and applications: Recent developments and future trends. Decis. Anal. J. 2023, 7, 100230. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Peleshko, D.; Rak, T.; Batyuk, D. Learning-based image super-resolution using weight coefficients of synaptic connections. In Proceedings of the 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT), Lviv, Ukraine, 14–17 September 2015; pp. 25–29. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Barakhnin, V.; Duisenbayeva, A.; Kozhemyakina, O.Y.; Yergaliyev, Y.; Muhamedyev, R. The automatic processing of the texts in natural language. Some bibliometric indicators of the current state of this research area. J. Phys. Conf. Ser. 2018, 1117, 012001. [Google Scholar] [CrossRef]
- Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science 2015, 349, 261–266. [Google Scholar] [CrossRef]
- Exarchos, K.P.; Aggelopoulou, A.; Oikonomou, A.; Biniskou, T.; Beli, V.; Antoniadou, E.; Kostikas, K. Review of artificial intelligence techniques in chronic obstructive lung disease. IEEE J. Biomed. Health Inform. 2022, 26, 2331–2338. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2021, 14, 4–15. [Google Scholar] [CrossRef]
- Goutam, B.; Hashmi, M.F.; Geem, Z.W.; Bokde, N.D. A comprehensive review of deep learning strategies in retinal disease diagnosis using fundus images. IEEE Access 2022, 10, 57796–57823. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K.; et al. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Andras, I.; Mazzone, E.; Van Leeuwen, F.W.B.; De Naeyer, G.; Van Oosterom, M.N.; Beato, S.; Buckle, T.; O’Sullivan, S.; Van Leeuwen, P.J.; Beulens, A.; et al. Artificial intelligence and robotics: A combination that is changing the operating room. World J. Urol. 2020, 38, 2359–2366. [Google Scholar] [CrossRef]
- Hong, J.-K.; Lee, Y.K. LSTM-based anomal motor vibration detection. In Proceedings of the 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter), Ho Chi Minh City, Vietnam, 28–30 January 2021; pp. 98–99. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Xu, T.; Wu, J. Short-term power prediction of wind turbine applying machine learning and digital filter. Appl. Sci. 2023, 13, 1751. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
Category | Boiling (Steaming) | Frying (Grilling) | |
---|---|---|---|
Number of data (N) | 460 | 423 | |
Range | File size (MB) | 0.01–361.39 [Avg. 3.10] | 0.10–39.57 [Avg. 3.39] |
File length (s) | 2.71–221.73 [Avg. 35.89] | 1.25–377.88 [Avg. 27.98] | |
Sample rate (Hz) | 44,100–96,000 [Avg. 48152] | 44,100–96,000 [Avg. 48089] | |
Amplitude (-) | 0.000–0.267 [Avg. 0.018] | 0.001–0.173 [Avg. 0.032] |
Number of Data | Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|---|
883 | CNN | 90 | 90 | 90 | 90 |
LSTM | 80 | 86 | 80 | 79 | |
Bi-LSTM | 70 | 70 | 70 | 70 | |
GRU | 55 | 76 | 55 | 44 | |
400 | CNN | 80 | 86 | 80 | 80 |
LSTM | 75 | 77 | 75 | 74 | |
Bi-LSTM | 50 | 50 | 50 | 45 | |
GRU | 55 | 76 | 55 | 44 | |
200 | CNN | 80 | 81 | 80 | 80 |
LSTM | 70 | 70 | 70 | 70 | |
Bi-LSTM | 60 | 78 | 60 | 52 | |
GRU | 50 | 25 | 50 | 33 | |
100 | CNN | 80 | 86 | 80 | 79 |
LSTM | 65 | 66 | 65 | 64 | |
Bi-LSTM | 50 | 25 | 50 | 33 | |
GRU | 50 | 25 | 50 | 33 | |
50 | CNN | 75 | 83 | 75 | 73 |
LSTM | 60 | 78 | 60 | 52 | |
Bi-LSTM | 55 | 76 | 55 | 44 | |
GRU | 55 | 76 | 55 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Choi, C.-H.; Park, C.-Y.; Park, S. Examining Recognition of Occupants’ Cooking Activity Based on Sound Data Using Deep Learning Models. Buildings 2024, 14, 515. https://doi.org/10.3390/buildings14020515
Kim Y, Choi C-H, Park C-Y, Park S. Examining Recognition of Occupants’ Cooking Activity Based on Sound Data Using Deep Learning Models. Buildings. 2024; 14(2):515. https://doi.org/10.3390/buildings14020515
Chicago/Turabian StyleKim, Yuhwan, Chang-Ho Choi, Chang-Young Park, and Seonghyun Park. 2024. "Examining Recognition of Occupants’ Cooking Activity Based on Sound Data Using Deep Learning Models" Buildings 14, no. 2: 515. https://doi.org/10.3390/buildings14020515
APA StyleKim, Y., Choi, C. -H., Park, C. -Y., & Park, S. (2024). Examining Recognition of Occupants’ Cooking Activity Based on Sound Data Using Deep Learning Models. Buildings, 14(2), 515. https://doi.org/10.3390/buildings14020515