A Comparative Study on Discrepancies in Residential Building Energy Performance Certification in a Mediterranean Context
Abstract
:1. Introduction
2. Literature Review
2.1. EPC Global Significance and Challenges
2.2. Discrepancies between Real and Simulated Data
2.3. Research Gap and Objectives
3. Methodology
3.1. Cyrpus Building Stock
3.2. Data Collection
4. Results
Comparison with iSBEM
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy Consumption and Efficiency in Buildings: Current Status and Future Trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Vardopoulos, I. Multi-Criteria Analysis for Energy Independence from Renewable Energy Sources Case Study Zakynthos Island, Greece. Int. J. Environ. Sci. Dev. 2017, 8, 460–465. [Google Scholar] [CrossRef]
- Buonomano, A.; Barone, G.; Forzano, C. Advanced Energy Technologies, Methods, and Policies to Support the Sustainable Development of Energy, Water and Environment Systems. Energy Rep. 2022, 8, 4844–4853. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Del Papa, G.; Maka, R.; Palombo, A. How to Achieve Energy Efficiency and Sustainability of Large Ships: A New Tool to Optimize the Operation of on-Board Diesel Generators. Energy 2023, 282, 128288. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar Plants, Environmental Degradation and Local Socioeconomic Contexts: A Case Study in a Mediterranean Country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis. Energies 2019, 12, 3298. [Google Scholar] [CrossRef]
- Barone, G.; Vassiliades, C.; Elia, C.; Savvides, A.; Kalogirou, S. Design Optimization of a Solar System Integrated Double-Skin Façade for a Clustered Housing Unit. Renew. Energy 2023, 215, 119023. [Google Scholar] [CrossRef]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Adoption of Microgeneration Technologies in the Residential Sector: A Comparison between Two Time Periods. In Proceedings of the Online Symposium on Circular Economy and Sustainability, Alexandroupolis, Greece, 1–3 July 2020. [Google Scholar]
- Karmellos, M.; Kiprakis, A.; Mavrotas, G. A Multi-Objective Approach for Optimal Prioritization of Energy Efficiency Measures in Buildings: Model, Software and Case Studies. Appl. Energy 2015, 139, 131–150. [Google Scholar] [CrossRef]
- Perez-Lombard, L.; Ortiz, J.; Maestre, I.R. The Map of Energy Flow in HVAC Systems. Appl. Energy 2011, 88, 5020–5031. [Google Scholar] [CrossRef]
- Koukou, M.K.; Vrachopoulos, M.G.; Tachos, N.S.; Dogkas, G.; Lymperis, K.; Stathopoulos, V. Experimental and Computational Investigation of a Latent Heat Energy Storage System with a Staggered Heat Exchanger for Various Phase Change Materials. Therm. Sci. Eng. Prog. 2018, 7, 87–98. [Google Scholar] [CrossRef]
- Greco, A.; Mastrullo, R.; Palombo, A. R407C as an Alternative to R22 in Vapour Compression Plant: An Experimental Study. Int. J. Energy Res. 1997, 21, 1087–1098. [Google Scholar] [CrossRef]
- Dixit, M.K. Life Cycle Embodied Energy Analysis of Residential Buildings: A Review of Literature to Investigate Embodied Energy Parameters. Renew. Sustain. Energy Rev. 2017, 79, 390–413. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Vannas, I.; Xydis, G.; Vassiliades, C. Homeowners’ Perceptions of Renewable Energy and Market Value of Sustainable Buildings. Energies 2023, 16, 4178. [Google Scholar] [CrossRef]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Improving the Energy Efficiency of the Existing Building Stock: A Critical Review of Commercial and Institutional Buildings. Renew. Sustain. Energy Rev. 2016, 53, 1032–1045. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Florides, G.; Tassou, S. Energy Analysis of Buildings Employing Thermal Mass in Cyprus. Renew. Energy 2002, 27, 353–368. [Google Scholar] [CrossRef]
- Cortesi, A.; Vardopoulos, I.; Salvati, L. A Partial Least Squares Analysis of the Perceived Impact of Sustainable Real Estate Design upon Wellbeing. Urban Sci. 2022, 6, 69. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Aravossis, K.G. Literature Review of Hydrogen Energy Systems and Renewable Energy Sources. Energies 2023, 16, 7493. [Google Scholar] [CrossRef]
- Tsangas, M.; Papamichael, I.; Zorpas, A.A. Sustainable Energy Planning in a New Situation. Energies 2023, 16, 1626. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Future Trajectories of Renewable Energy Consumption in the European Union. Resources 2018, 7, 10. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Spinthiropoulos, K.; Tsanaktsidis, C.; Garefalakis, S.; Panitsidis, K.; Garefalakis, A.; Arabatzis, G. Energy and Mineral Resources Exploitation in the Delignitization Era: The Case of Greek Peripheries. Energies 2022, 15, 4732. [Google Scholar] [CrossRef]
- Szczepanik-Scislo, N.; Scislo, L. Dynamic Real-Time Measurements and a Comparison of Gas and Wood Furnaces in a Dual-Fuel Heating System in Order to Evaluate the Occupants’ Safety and Indoor Air Quality. Buildings 2023, 13, 2125. [Google Scholar] [CrossRef]
- Savvides, A.; Vassiliades, C.; Vardopoulos, I.; Lau, K.; Rizzo, A. A Comprenhesive Exploration of Building-Integrated Photovoltaics and Urban Design Strategies in Luleå, Sweden and Limassol, Cyprus. In 1st Open-Air Cities International Conference: Local and Regional Sustainable Development and Urban Reconstruction, 16–18 February, 2024. Book of Abstracts; Open-Air Cities Institute: Athens, Greece, 2024; p. 211. ISBN 9786188707009. [Google Scholar]
- Söderholm, P. Fuel Choice in West European Power Generation Since the 1960s. OPEC Rev. 1998, 22, 201–231. [Google Scholar] [CrossRef]
- Marinakis, V.; Flamos, A.; Stamtsis, G.; Georgizas, I.; Maniatis, Y.; Doukas, H. The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis. Sustainability 2020, 12, 10575. [Google Scholar] [CrossRef]
- Sundberg, G.; Henning, D. Investments in Combined Heat and Power Plants: Influence of Fuel Price on Cost Minimised Operation. Energy Convers. Manag. 2002, 43, 639–650. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tsirivis, A.S. Sustainable Development of the European Electricity Sector: Investigating the Impact of Electricity Price, Market Liberalization and Energy Taxation on RES Deployment. Energies 2023, 16, 5567. [Google Scholar] [CrossRef]
- Laurikka, H. The Impact of Climate Policy on Heat and Power Capacity Investment Decisions. In Emissions Trading and Business; Physica-Verlag HD: Heidelberg, Germany, 2006; pp. 133–149. [Google Scholar]
- Kyriakopoulos, G.L.; Streimikiene, D.; Baležentis, T. Addressing Challenges of Low-Carbon Energy Transition. Energies 2022, 15, 5718. [Google Scholar] [CrossRef]
- Brunsgaard, C.; Dvořáková, P.; Wyckmans, A.; Stutterecker, W.; Laskari, M.; Almeida, M.; Kabele, K.; Magyar, Z.; Bartkiewicz, P.; Veld, P.O. Integrated Energy Design—Education and Training in Cross-Disciplinary Teams Implementing Energy Performance of Buildings Directive (EPBD). Build. Environ. 2014, 72, 1–14. [Google Scholar] [CrossRef]
- Abela, A.; Hoxley, M.; McGrath, P.; Goodhew, S. A Comparative Analysis of Implementation of the Energy Performance of Buildings Directive in the Mediterranean. Int. J. Law Built Environ. 2013, 5, 222–240. [Google Scholar] [CrossRef]
- Dascalaki, E.G.; Balaras, C.A.; Gaglia, A.G.; Droutsa, K.G.; Kontoyiannidis, S. Energy Performance of Buildings-EPBD in Greece. Energy Policy 2012, 45, 469–477. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 Years of EU Energy Efficiency Policies for Buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Towards Nearly Zero-Energy Buildings in Mediterranean Countries: Fifteen Years of Implementing the Energy Performance of Buildings Directive in Spain (2006–2020). J. Build. Eng. 2021, 44, 102962. [Google Scholar] [CrossRef]
- Panayiotou, G.P.; Kalogirou, S.A.; Florides, G.A.; Maxoulis, C.N.; Papadopoulos, A.M.; Neophytou, M.; Fokaides, P.; Georgiou, G.; Symeou, A.; Georgakis, G. The Characteristics and the Energy Behaviour of the Residential Building Stock of Cyprus in View of Directive 2002/91/EC. Energy Build. 2010, 42, 2083–2089. [Google Scholar] [CrossRef]
- Tsangas, M.; Jeguirim, M.; Limousy, L.; Zorpas, A. The Application of Analytical Hierarchy Process in Combination with PESTEL-SWOT Analysis to Assess the Hydrocarbons Sector in Cyprus. Energies 2019, 12, 791. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Ioannides, S.; Georgiou, M.; Voukkali, I.; Salvati, L.; Doukas, Y.E. Shaping Sustainable Cities: A Long-Term GIS-Emanated Spatial Analysis of Settlement Growth and Planning in a Coastal Mediterranean European City. Sustainability 2023, 15, 11202. [Google Scholar] [CrossRef]
- Vassiliades, C.; Minterides, C.; Astara, O.E.; Barone, G.; Vardopoulos, I. Socio-Economic Barriers to Adopting Energy-Saving Bioclimatic Strategies in a Mediterranean Sustainable Real Estate Setting: A Quantitative Analysis of Resident Perspectives. Energies 2023, 16, 7952. [Google Scholar] [CrossRef]
- Fokaides, P.A.A.; Christoforou, E.A.A.; Kalogirou, S.A.A. Legislation Driven Scenarios Based on Recent Construction Advancements towards the Achievement of Nearly Zero Energy Dwellings in the Southern European Country of Cyprus. Energy 2014, 66, 588–597. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Polycarpou, K.; Kalogirou, S. The Impact of the Implementation of the European Energy Performance of Buildings Directive on the European Building Stock: The Case of the Cyprus Land Development Corporation. Energy Policy 2017, 111, 1–8. [Google Scholar] [CrossRef]
- Pavlides, T.; Vardopoulos, I.; Papamichael, I.; Voukkali, I.; Stylianos, M.; Zorpas, A.A. Environmental Sustainability Assessment of Excavation, Construction, and Demolition Waste Conditions and Practices across Greece and Cyprus. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012037. [Google Scholar] [CrossRef]
- Mastouri, H.; Bahi, H.; Radoine, H.; Benhamou, B. Improving Energy Efficiency in Buildings: Review and Compiling. Mater. Today Proc. 2020, 27, 2999–3003. [Google Scholar] [CrossRef]
- Gruber, J.K.; Prodanovic, M.; Alonso, R. Estimation and Sensitivity Analysis of Building Energy Demand. Proc. Inst. Civ. Eng. Eng. Sustain. 2017, 170, 81–92. [Google Scholar] [CrossRef]
- Zachariadis, T.; Michopoulos, A.; Vougiouklakis, Y.; Piripitsi, K.; Ellinopoulos, C.; Struss, B. Determination of Cost-Effective Energy Efficiency Measures in Buildings with the Aid of Multiple Indices. Energies 2018, 11, 191. [Google Scholar] [CrossRef]
- Katafygiotou, M.; Protopapas, P.; Dimopoulos, T. How Sustainable Design and Awareness May Affect the Real Estate Market. Sustainability 2023, 15, 16425. [Google Scholar] [CrossRef]
- Savvides, A.; Michael, A.; Vassiliades, C.; Parpa, D.; Triantafyllidou, E.; Englezou, M. An Examination of the Design for a Prefabricated Housing Unit in Cyprus in Terms of Energy, Daylighting and Cost. Sci. Rep. 2023, 13, 12611. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, A.; Katafygiotou, M.; Dimopoulos, T.; Kapellakis, I. Retrofitting of an Existing Cultural Hall into a Net-Zero Energy Building. Energies 2024, 17, 1602. [Google Scholar] [CrossRef]
- Hadjinicolaou, N. Implementation of the EPBD Cyprus: Status 2020. 2020. Available online: https://epbd-ca.eu/wp-content/uploads/2022/03/Implementation-of-the-EPBD-in-Cyprus.pdf (accessed on 2 April 2024).
- Savvides, A.; Michael, A.; Vassiliades, C.; Triantafyllidou, E. Towards An Environmentally—Purpose Designed Prefabricated Housing Unit: An Affordable And Spatially Flexible Housing Solution. Int. J. Environ. Sci. 2023, 5, 235–240. [Google Scholar]
- Li, N.; Yang, Z.; Becerik-Gerber, B.; Tang, C.; Chen, N. Why Is the Reliability of Building Simulation Limited as a Tool for Evaluating Energy Conservation Measures? Appl. Energy 2015, 159, 196–205. [Google Scholar] [CrossRef]
- Raslan, R.; Davies, M. Results Variability in Accredited Building Energy Performance Compliance Demonstration Software in the UK: An Inter-Model Comparative Study. J. Build. Perform. Simul. 2010, 3, 63–85. [Google Scholar] [CrossRef]
- Kelly, S.; Crawford-Brown, D.; Pollitt, M.G. Building Performance Evaluation and Certification in the UK: Is SAP Fit for Purpose? Renew. Sustain. Energy Rev. 2012, 16, 6861–6878. [Google Scholar] [CrossRef]
- Brady, L.; Abdellatif, M. Assessment of Energy Consumption in Existing Buildings. Energy Build. 2017, 149, 142–150. [Google Scholar] [CrossRef]
- Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of Building Energy Performance Certification Schemes towards Future Improvement. Renew. Sustain. Energy Rev. 2019, 113, 109244. [Google Scholar] [CrossRef]
- Berg, F.; Donarelli, A. Energy Performance Certificates and Historic Apartment Buildings: A Method to Encourage User Participation and Sustainability in the Refurbishment Process. Hist. Environ. Policy Pract. 2019, 10, 224–240. [Google Scholar] [CrossRef]
- Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical Review and Methodological Approach to Evaluate the Differences among International Green Building Rating Tools. Renew. Sustain. Energy Rev. 2018, 82, 950–960. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Giuzio, G.F.; Palombo, A. Towards Zero Energy Infrastructure Buildings: Optimal Design of Envelope and Cooling System. Energy 2023, 279, 128039. [Google Scholar] [CrossRef]
- Fouseki, K.; Newton, D.; Murillo Camacho, K.S.; Nandi, S.; Koukou, T. Energy Efficiency, Thermal Comfort, and Heritage Conservation in Residential Historic Buildings as Dynamic and Systemic Socio-Cultural Practices. Atmosphere 2020, 11, 604. [Google Scholar] [CrossRef]
- Mazzeo, D.; Matera, N.; Cornaro, C.; Oliveti, G.; Romagnoni, P.; De Santoli, L. EnergyPlus, IDA ICE and TRNSYS Predictive Simulation Accuracy for Building Thermal Behaviour Evaluation by Using an Experimental Campaign in Solar Test Boxes with and without a PCM Module. Energy Build. 2020, 212, 109812. [Google Scholar] [CrossRef]
- Coelho, L.; Koukou, M.K.; Dogkas, G.; Konstantaras, J.; Vrachopoulos, M.G.; Rebola, A.; Benou, A.; Choropanitis, J.; Karytsas, C.; Sourkounis, C.; et al. Latent Thermal Energy Storage Application in a Residential Building at a Mediterranean Climate. Energies 2022, 15, 1008. [Google Scholar] [CrossRef]
- Bellia, L.; Mazzei, P.; Palombo, A. Weather Data for Building Energy Cost-Benefit Analysis. Int. J. Energy Res. 1998, 22, 1205–1215. [Google Scholar] [CrossRef]
- Aspetakis, G.; Wang, Q. Critical Review of Air-Based PVT Technology and Its Integration to Building Energy Systems. Energy Built Environ. 2023; in press. [Google Scholar] [CrossRef]
- Buonomano, A.; Palombo, A. Building Energy Performance Analysis by an In-House Developed Dynamic Simulation Code: An Investigation for Different Case Studies. Appl. Energy 2014, 113, 788–807. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room. Energies 2019, 12, 4107. [Google Scholar] [CrossRef]
- Douvi, E.; Pagkalos, C.; Dogkas, G.; Koukou, M.K.; Stathopoulos, V.N.; Caouris, Y.; Vrachopoulos, M.G. Phase Change Materials in Solar Domestic Hot Water Systems: A Review. Int. J. Thermofluids 2021, 10, 100075. [Google Scholar] [CrossRef]
- Pasichnyi, O.; Wallin, J.; Levihn, F.; Shahrokni, H.; Kordas, O. Energy Performance Certificates—New Opportunities for Data-Enabled Urban Energy Policy Instruments? Energy Policy 2019, 127, 486–499. [Google Scholar] [CrossRef]
- Goldstein, D.B.; Eley, C. A Classification of Building Energy Performance Indices. Energy Effic. 2014, 7, 353–375. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; González, R.; Maestre, I.R.R. A Review of Benchmarking, Rating and Labelling Concepts within the Framework of Building Energy Certification Schemes. Energy Build. 2009, 41, 272–278. [Google Scholar] [CrossRef]
- Yousif, C.; Diez, R.M.; Martínez, F.J.R. Asset and Operational Energy Performance Rating of a Modern Apartment in Malta. In Sustainability in Energy and Buildings. Smart Innovation, Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 531–543. [Google Scholar]
- Nikolaou, T.G.; Kolokotsa, D.S.; Skias, I.D.; Stavrakakis, G.S. Asset and Operational Benchmarking for Office Buildings in Greece. Int. J. Sustain. Energy 2009, 28, 77–91. [Google Scholar] [CrossRef]
- Gonzalez-Caceres, A.; Arvid Vik, T.; Granheim, P.; Fælth, J.P.; Berg, L. Improving the Energy Performance Certificate Recommendations’ Accuracy for Residential Building through Simple Measurements of Key Inputs. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 032053. [Google Scholar] [CrossRef]
- Madrazo, L.; Sicilia, A.; Massetti, M.; Plazas, F.; Ortet, E. Enhancing Energy Performance Certificates with Energy Related Data to Support Decision Making for Building Retrofitting. Therm. Sci. 2018, 22, 957–969. [Google Scholar] [CrossRef]
- Pagliaro, F.; Hugony, F.; Zanghirella, F.; Basili, R.; Misceo, M.; Colasuonno, L.; Del Fatto, V. Assessing Building Energy Performance and Energy Policy Impact through the Combined Analysis of EPC Data—The Italian Case Study of SIAPE. Energy Policy 2021, 159, 112609. [Google Scholar] [CrossRef]
- Kim, J.H.; Augenbroe, G.; Suh, H. Comparative Study Of The Leed And Iso-Cen Building Energy Performance Rating Methods. In Proceedings of the BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013. [Google Scholar]
- Tronchin, L.; Fabbri, K. Energy Performance Building Evaluation in Mediterranean Countries: Comparison between Software Simulations and Operating Rating Simulation. Energy Build. 2008, 40, 1176–1187. [Google Scholar] [CrossRef]
- Maile, T.; Bazjanac, V.; Fischer, M. A Method to Compare Simulated and Measured Data to Assess Building Energy Performance. Build. Environ. 2012, 56, 241–251. [Google Scholar] [CrossRef]
- Charalambides, A.G.; Maxoulis, C.N.; Kyriacou, O.; Blakeley, E.; Frances, L.S. The Impact of Energy Performance Certificates on Building Deep Energy Renovation Targets. Int. J. Sustain. Energy 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Droutsa, K.G.; Kontoyiannidis, S.; Dascalaki, E.G.; Balaras, C.A. Mapping the Energy Performance of Hellenic Residential Buildings from EPC (Energy Performance Certificate) Data. Energy 2016, 98, 284–295. [Google Scholar] [CrossRef]
- Semple, S.; Jenkins, D. Variation of Energy Performance Certificate Assessments in the European Union. Energy Policy 2020, 137, 111127. [Google Scholar] [CrossRef]
- Maduta, C.; D’Agostino, D.; Tsemekidi-Tzeiranaki, S.; Castellazzi, L.; Melica, G.; Bertoldi, P. Towards Climate Neutrality within the European Union: Assessment of the Energy Performance of Buildings Directive Implementation in Member States. Energy Build. 2023, 301, 113716. [Google Scholar] [CrossRef]
- Ferrantelli, A.; Kurnitski, J. Energy Performance Certificate Classes Rating Methods Tested with Data: How Does the Application of Minimum Energy Performance Standards to Worst-Performing Buildings Affect Renovation Rates, Costs, Emissions, Energy Consumption? Energies 2022, 15, 7552. [Google Scholar] [CrossRef]
- Gonzalez-Caceres, A.; Lassen, A.K.; Nielsen, T.R. Barriers and Challenges of the Recommendation List of Measures under the EPBD Scheme: A Critical Review. Energy Build. 2020, 223, 110065. [Google Scholar] [CrossRef]
- Zuhaib, S.; Schmatzberger, S.; Volt, J.; Toth, Z.; Kranzl, L.; Eugenio Noronha Maia, I.; Verheyen, J.; Borragán, G.; Monteiro, C.S.; Mateus, N.; et al. Next-Generation Energy Performance Certificates: End-User Needs and Expectations. Energy Policy 2022, 161, 112723. [Google Scholar] [CrossRef]
- Taranu, V.; Verbeeck, G. A Closer Look into the European Energy Performance Certificates under the Lenses of Behavioural Insights—A Comparative Analysis. Energy Effic. 2018, 11, 1745–1761. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. GIS-Based Urban Energy Modelling and Energy Efficiency Scenarios Using the Energy Performance Certificate Database. Energy Effic. 2021, 14, 47. [Google Scholar] [CrossRef]
- Raushan, K.; Ahern, C.; Norton, B. Determining Realistic U-Values to Substitute Default U-Values in EPC Database to Make More Representative; a Case-Study in Ireland. Energy Build. 2022, 274, 112358. [Google Scholar] [CrossRef]
- Abela, A.; Hoxley, M.; McGrath, P.; Goodhew, S. An Investigation of the Appropriateness of Current Methodologies for Energy Certification of Mediterranean Housing. Energy Build. 2016, 130, 210–218. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Escrivà Saneugenio, F.; Sateriano, A.; Salvati, L. Homage (and Criticism) to the Mediterranean City. Regional Sustainability and Economic Resilience; River Publishers: Gistrup, Denmark, 2024; ISBN 9788770041775. [Google Scholar]
- Manso-Burgos, Á.; Ribó-Pérez, D.; As, J.V.; Montagud-Montalvá, C.; Royo-Pastor, R. Diagnosis of the Building Stock Using Energy Performance Certificates for Urban Energy Planning in Mediterranean Compact Cities. Case of Study: The City of València in Spain. Energy Convers. Manag. X 2023, 20, 100450. [Google Scholar] [CrossRef]
- Mahdavi, A.; Berger, C.; Amin, H.; Ampatzi, E.; Andersen, R.K.; Azar, E.; Barthelmes, V.M.; Favero, M.; Hahn, J.; Khovalyg, D.; et al. The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality? Sustainability 2021, 13, 3146. [Google Scholar] [CrossRef]
- Eon, C.; Breadsell, J.K.; Byrne, J.; Morrison, G.M. The Discrepancy between As-Built and As-Designed in Energy Efficient Buildings: A Rapid Review. Sustainability 2020, 12, 6372. [Google Scholar] [CrossRef]
- Crawley, J.; Biddulph, P.; Northrop, P.J.; Wingfield, J.; Oreszczyn, T.; Elwell, C. Quantifying the Measurement Error on England and Wales EPC Ratings. Energies 2019, 12, 3523. [Google Scholar] [CrossRef]
- Hardy, A.; Glew, D. An Analysis of Errors in the Energy Performance Certificate Database. Energy Policy 2019, 129, 1168–1178. [Google Scholar] [CrossRef]
- Koengkan, M.; Silva, N.; Fuinhas, J.A. Assessing Energy Performance Certificates for Buildings: A Fuzzy Set Qualitative Comparative Analysis (FsQCA) of Portuguese Municipalities. Energies 2023, 16, 3240. [Google Scholar] [CrossRef]
- Fleckinger, P.; Glachant, M.; Tamokoué Kamga, P.-H. Energy Performance Certificates and Investments in Building Energy Efficiency: A Theoretical Analysis. Energy Econ. 2019, 84, 104604. [Google Scholar] [CrossRef]
- Meles, T.H.H.; Farrell, N.; Curtis, J. How Well Do Building Energy Performance Certificates Predict Heat Loss? Energy Effic. 2023, 16, 74. [Google Scholar] [CrossRef]
- Iribar, E.; Sellens, I.; Angulo, L.; Hidalgo, J.M.; Sala, J.M. Nonconformities, Deviation and Improvements in the Quality Control of Energy Performance Certificates in the Basque Country. Sustain. Cities Soc. 2021, 75, 103286. [Google Scholar] [CrossRef]
- Coyne, B.; Denny, E. Mind the Energy Performance Gap: Testing the Accuracy of Building Energy Performance Certificates in Ireland. Energy Effic. 2021, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Herrando, M.; Cambra, D.; Navarro, M.; de la Cruz, L.; Millán, G.; Zabalza, I. Energy Performance Certification of Faculty Buildings in Spain: The Gap between Estimated and Real Energy Consumption. Energy Convers. Manag. 2016, 125, 141–153. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Maxoulis, C.N.; Panayiotou, G.P.; Neophytou, M.K.A.; Kalogirou, S.A. Comparison between Measured and Calculated Energy Performance for Dwellings in a Summer Dominant Environment. Energy Build. 2011, 43, 3099–3105. [Google Scholar] [CrossRef]
- Dimitriou, S.; Kyprianou, I.; Papanicolas, C.N.; Serghides, D. A New Approach in the Refurbishment of the Office Buildings—From Standard to Alternative Nearly Zero Energy Buildings. Int. J. Sustain. Energy 2020, 39, 761–778. [Google Scholar] [CrossRef]
- Acaroğlu, H.; Baykul, M.C. Economic Analysis of Flat-Plate Solar Collectors (FPSCs): A Solution to the Unemployment Problem in the City of Eskisehir. Renew. Sustain. Energy Rev. 2016, 64, 607–617. [Google Scholar] [CrossRef]
- Ntanos, S.; Skordoulis, M.; Kyriakopoulos, G.; Arabatzis, G.; Chalikias, M.; Galatsidas, S.; Batzios, A.; Katsarou, A. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability 2018, 10, 2626. [Google Scholar] [CrossRef]
- Xydis, G.; Vlachakis, N. Feed-in-Premium Renewable Energy Support Scheme: A Scenario Approach. Resources 2019, 8, 106. [Google Scholar] [CrossRef]
- Piderit, M.; Vivanco, F.; van Moeseke, G.; Attia, S. Net Zero Buildings—A Framework for an Integrated Policy in Chile. Sustainability 2019, 11, 1494. [Google Scholar] [CrossRef]
- Petrakkas, M.; Achilleos, M.; Kyprou, S.; Karra, S.; Ioannou, A. Κτιριακό Aπόθεμα Της Κύπρου. Υφιστάμενη Κατάσταση, Τάσεις Και Προοπτικές Για Τη Βελτίωση Της Ενεργειακής Aπόδοσης; Cyprus Energy Agency: Nicosia, Cyprus, 2021. [Google Scholar]
- Βασιλειάδης, Κ. Κτιριακή Ενσωμάτωση Ενεργειακών Hλιακών Συστημάτων: Εγχειρίδιο; iWrite: Athens, Greece, 2023; ISBN 9789606274466. [Google Scholar]
- Cyprus Energy Agency. Μεθοδολογία Υπολογισμού Της Ενεργειακής Aπόδοσης Κτιρίου; Cyprus Energy Agency: Nicocia, Cyprus, 2015. [Google Scholar]
- Uddin, M.N.; Wei, H.-H.; Chi, H.L.; Ni, M. Influence of Occupant Behavior for Building Energy Conservation: A Systematic Review Study of Diverse Modeling and Simulation Approach. Buildings 2021, 11, 41. [Google Scholar] [CrossRef]
Thermal Conductivity Coefficient Values W/(m2k) | ||
---|---|---|
Element | Cyprus Building Stock Typical Thermal Conductivity Coefficient Values (before 2008) | nZEB Standards (after 2020) |
External Walls | 1.400 | 0.400 |
Roofs | 3.300 | 0.400 |
Load Bearing Structures | 2.800 | 0.400 |
Floors | 2.000 | 0.400 |
Windows | 6.000 | 2.250 |
External Masonry | ||
---|---|---|
Element | U-Value W/(m2k) | Cm (kJ/m2K) |
External Wall (Insulated 29 cm) | 0.684 | 116.000 |
Roof (Insulated 28.9 cm) | 0.469 | 240.000 |
Load Bearing Structure 1 (No Insulation 29 cm) | 1.667 | 228.000 |
Load Bearing Structure 1 (No Insulation 24 cm) | 3.448 | 228.000 |
Windows | 2.800 | |
Internal Masonry | ||
Internal Wall 1 (No Insulation 24 cm) | 1.250 | 116.000 |
Internal Wall 2 (No Insulation 14 cm) | 1.818 | 86.000 |
Internal Doors (5 cm) | 2.155 | 18.000 |
First Floor Slab (No insulation 29 cm) | 0.740 | 93.000 |
Period | Recorded Consumption from EAC (kWh) | Primary Energy Consumption (kWh) | Primary Energy Consumption (kWh/m2) |
---|---|---|---|
December 2012– January 2013 | 890.06 | 2403.16 | 15.42 |
February– March 2013 | 761.1 | 2054.97 | 13.19 |
April– May 2013 | 643.09 | 1736.34 | 11.14 |
June– July 2013 | 786.03 | 2122.28 | 13.62 |
August– September 2013 | 661.02 | 1784.75 | 11.45 |
October– November 2013 | 696.06 | 1879.36 | 12.06 |
Total | 4437.36 | 11,980.87 | 76.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardopoulos, I.; Santamouris, M.; Zorpas, A.A.; Barone, G.; Italos, C.; Vassiliades, C. A Comparative Study on Discrepancies in Residential Building Energy Performance Certification in a Mediterranean Context. Buildings 2024, 14, 1009. https://doi.org/10.3390/buildings14041009
Vardopoulos I, Santamouris M, Zorpas AA, Barone G, Italos C, Vassiliades C. A Comparative Study on Discrepancies in Residential Building Energy Performance Certification in a Mediterranean Context. Buildings. 2024; 14(4):1009. https://doi.org/10.3390/buildings14041009
Chicago/Turabian StyleVardopoulos, Ioannis, Mattheos Santamouris, Antonis A. Zorpas, Giovanni Barone, Christos Italos, and Constantinos Vassiliades. 2024. "A Comparative Study on Discrepancies in Residential Building Energy Performance Certification in a Mediterranean Context" Buildings 14, no. 4: 1009. https://doi.org/10.3390/buildings14041009
APA StyleVardopoulos, I., Santamouris, M., Zorpas, A. A., Barone, G., Italos, C., & Vassiliades, C. (2024). A Comparative Study on Discrepancies in Residential Building Energy Performance Certification in a Mediterranean Context. Buildings, 14(4), 1009. https://doi.org/10.3390/buildings14041009