An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.1.1. Test Chamber
2.1.2. Ventilation System
2.1.3. Thermal Breathing Manikin
2.1.4. Measured Parameters and Instrumentation
2.2. Experimental Process and Scenarios
2.3. Evaluation Indices
3. Results
3.1. Assumption of Steady State
3.2. Local Air Quality Index
3.3. Point Source Ventilation Effectiveness for Breathing Zone
4. Discussion
5. Conclusions
- (1)
- Local exhaust systems with displacement air distribution remained more effective as compared to mixing. With displacement air distribution, it enhanced the local air quality near the infector by up to 35% and improved ventilation effectiveness ) in the meeting room’s entire breathing zone by a maximum of 25%.
- (2)
- The addition of a table plenum increased up to 15% compared to configurations without it. Additionally, it improved local air quality, particularly for occupants farther from the displacement air supply inlet.
- (3)
- The number of operational local exhaust points directly impacts air quality with displacement ventilation. However, in the mixing system, an operational local exhaust with the infector reduces the importance of other exhaust points. In real scenarios, where the infector is often unknown or asymptomatic, it is advisable to utilize all available local exhaust points to maintain optimal air quality.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, R.; Obrenovic, B.; Du, J.; Godinic, D.; Khudaykulov, A. COVID-19 Pandemic Implications for Corporate Sustainability and Society: A Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 1592. [Google Scholar] [CrossRef] [PubMed]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, Y.; Pastore, A.; Mu, K.; Rossi, L.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: A Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [PubMed]
- WHO. Considerations for Implementing and Adjusting Public Health and Social Measures in the Context of COVID-19: Interim Guidance; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Sheikhnejad, Y.; Aghamolaei, R.; Fallahpour, M.; Motamedi, H.; Moshfeghi, M.; Mirzaei, P.A.; Bordbar, H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sustain. Cities Soc. 2022, 79, 103704. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Al-Ahmed, S.H.; Al-Malkey, M.; Alsubki, R.; Ezzikouri, S.; Al-Hababi, F.H.; Sah, R.; Al Mutair, A.; Alhumaid, S.; Al-Tawfiq, J.A.; et al. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: Droplets and aerosols. Infez Med. 2022, 29, 10–19. [Google Scholar]
- Morawska, L.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Dancer, S.J.; Floto, A.; Franchimon, F.; Haworth, C.; Hogeling, J.; et al. Coronavirus Disease 2019 and Airborne Transmission: Science Rejected, Lives Lost. Can Society Do Better? Clin. Infect. Dis. 2023, 76, 1854–1859. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef] [PubMed]
- Baboli, Z.; Neisi, N.; Babaei, A.A.; Ahmadi, M.; Sorooshian, A.; Birgani, Y.T.; Goudarzi, G. On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos. Environ. 2021, 261, 118563. [Google Scholar] [CrossRef] [PubMed]
- Robotto, A.; Civra, A.; Quaglino, P.; Polato, D.; Brizio, E.; Lembo, D. SARS-CoV-2 airborne transmission: A validated sampling and analytical method. Environ. Res. 2021, 200, 111783. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Indoor aerosol science aspects of SARS-CoV-2 transmission. Indoor Air 2022, 32, e12970. [Google Scholar] [CrossRef]
- Scientific Brief: SARS-CoV-2 Transmission. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html# (accessed on 7 May 2021).
- Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, G.; Liu, X.; Li, X. CFD modelling of infection control in indoor environments: A focus on room-level air recirculation systems. Energy Build. 2023, 288, 113033. [Google Scholar] [CrossRef]
- Diep, F. The 5 biggest lessons we’ve learned about how coronavirus spreads on campus. In The Chronicle of Higher Education; NASPA: Washington, DC, USA, 2020; Volume 3. [Google Scholar]
- Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. Airborne transmission of SARS-CoV-2 in indoor environments: A comprehensive review. Sci. Technol. Built Environ. 2021, 27, 1331–1367. [Google Scholar] [CrossRef]
- Qian, H.; Zheng, X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 2018, 10, S2295–S2304. [Google Scholar] [CrossRef]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment ? A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef]
- REHVA. REHVA COVID-19 Guidance Document: How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces. In Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA); REHVA: Ixelles, Belgium, 2021; Volume 3, Available online: https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf (accessed on 1 March 2024).
- Zhao, X.; Liu, S.; Yin, Y.; Zhang, T.; Chen, Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Indoor Air 2022, 32, e13056. [Google Scholar] [CrossRef] [PubMed]
- Kurnitski, J.; Kiil, M.; Mikola, A.; Võsa, K.-V.; Aganovic, A.; Schild, P.; Seppänen, O. Post-COVID ventilation design: Infection risk-based target ventilation rates and point source ventilation effectiveness. Energy Build. 2023, 296, 113386. [Google Scholar] [CrossRef]
- Hirnikel, D.J. Validation of a CFD model for temperature and particulate concentration in a test room with mixed air and displacement ventilation/Discussion. ASHRAE Trans. 2003, 109, 80. [Google Scholar]
- Liu, S.; Koupriyanov, M.; Paskaruk, D.; Fediuk, G.; Chen, Q. Investigation of airborne particle exposure in an office with mixing and displacement ventilation. Sustain. Cities Soc. 2022, 79, 103718. [Google Scholar] [CrossRef]
- Barbosa, B.P.P.; de Carvalho Lobo Brum, N. Ventilation mode performance against airborne respiratory infections in small office spaces: Limits and rational improvements for COVID-19. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 316. [Google Scholar] [CrossRef]
- Bhagat, R.K.; Wykes, M.D.; Dalziel, S.B.; Linden, P. Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 2020, 903, F1. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, W.; Gupta, J.K.; Guity, A.; Marmion, P.; Manning, A.; Gulick, B.; Zhang, X.; Chen, Q. Experimental study on displacement and mixing ventilation systems for a patient ward. HVAC&R Res. 2009, 15, 1175–1191. [Google Scholar]
- Tian, X.; Li, B.; Ma, Y.; Liu, D.; Li, Y.; Cheng, Y. Experimental study of local thermal comfort and ventilation performance for mixing, displacement and stratum ventilation in an office. Sustain. Cities Soc. 2019, 50, 101630. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Li, Y.; Buus, M.; Winther, F.V. Risk of cross-infection in a hospital ward with downward ventilation. J. Affect. Disord. 2010, 45, 2008–2014. [Google Scholar] [CrossRef]
- Zhang, C.; Nielsen, P.V.; Liu, L.; Sigmer, E.T.; Mikkelsen, S.G.; Jensen, R.L. The source control effect of personal protection equipment and physical barrier on short-range airborne transmission. J. Affect. Disord. 2022, 211, 108751. [Google Scholar] [CrossRef]
- Su, W.; Yang, B.; Melikov, A.; Liang, C.; Lu, Y.; Wang, F.; Li, A.; Lin, Z.; Li, X.; Cao, G.; et al. Infection probability under different air distribution patterns. J. Affect. Disord. 2022, 207, 108555. [Google Scholar] [CrossRef]
- Danca, P.; Coşoiu, C.I.; Nastase, I.; Bode, F.; Georgescu, M.R. Personalized Ventilation as a Possible Strategy for Reducing Airborne Infectious Disease Transmission on Commercial Aircraft. Appl. Sci. 2022, 12, 2088. [Google Scholar] [CrossRef]
- Lu, Y.; Oladokun, M.; Lin, Z. Reducing the exposure risk in hospital wards by applying stratum ventilation system. J. Affect. Disord. 2020, 183, 107204. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, S.-Z.; Li, Z.-T.; Wen, C.-Y.; Lu, W.-Z. Transmission mitigation of COVID-19: Exhaled contaminants removal and energy saving in densely occupied space by impinging jet ventilation. J. Affect. Disord. 2023, 232, 110066. [Google Scholar] [CrossRef]
- Cheong, C.H.; Park, B.; Ryu, S.R. Effect of under-floor air distribution system to prevent the spread of airborne pathogens in classrooms. Case Stud. Therm. Eng. 2021, 28, 101641. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Curtius, J.; Granzin, M.; Schrod, J. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci. Technol. 2021, 55, 586–599. [Google Scholar] [CrossRef]
- Sheraz, M.; Mir, K.A.; Anus, A.; Kim, S.; Lee, W.R. SARS-CoV-2 airborne transmission: A review of risk factors and possible preventative measures using air purifiers. Environ. Sci. Process. Impacts 2022, 24, 2191–2216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Liu, Y.; Chen, C. Air purifiers: A supplementary measure to remove airborne SARS-CoV-2. J. Affect. Disord. 2020, 177, 106918. [Google Scholar] [CrossRef]
- Ng, Y.; Li, Z.; Chua, Y.X.; Chaw, W.L.; Zhao, Z.; Er, B.; Pung, R.; Chiew, C.J.; Lye, D.C.; Heng, D.; et al. Evaluation of the Effectiveness of Surveillance and Containment Measures for the First 100 Patients with COVID-19 in Singapore—January 2–February 29, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Bivolarova, M.P.; Melikov, A.K.; Mizutani, C.; Kajiwara, K.; Bolashikov, Z.D. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms. J. Affect. Disord. 2016, 100, 10–18. [Google Scholar] [CrossRef]
- Dygert, R.K.; Dang, T.Q. Mitigation of cross-contamination in an aircraft cabin via localized exhaust. J. Affect. Disord. 2010, 45, 2015–2026. [Google Scholar] [CrossRef]
- Dygert, R.K.; Dang, T.Q. Experimental validation of local exhaust strategies for improved IAQ in aircraft cabins. J. Affect. Disord. 2012, 47, 76–88. [Google Scholar] [CrossRef]
- Yang, J.; Sekhar, C.; Cheong, D.K.; Raphael, B. A time-based analysis of the personalized exhaust system for airborne infection control in healthcare settings. Sci. Technol. Built Environ. 2015, 21, 172–178. [Google Scholar] [CrossRef]
- Olmedo, I.; Sánchez-Jiménez, J.; Peci, F.; de Adana, M.R. Personal exposure to exhaled contaminants in the near environment of a patient using a personalized exhaust system. J. Affect. Disord. 2022, 223, 109497. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Xu, C.; Fu, L.; Wang, Y.; Nielsen, P.V.; Zhang, C. Exploring the potentials of personalized ventilation in mitigating airborne infection risk for two closely ranged occupants with different risk assessment models. Energy Build. 2021, 253, 111531. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sekhar, S.C.; Cheong, K.W.D.; Raphael, B. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control. Indoor Air 2015, 25, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.T.; Boisvert, L.N.; Zuo, Y.Y. Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Adv. Colloid Interface Sci. 2021, 292, 102435. [Google Scholar] [CrossRef] [PubMed]
- Brienen, N.C.J.; Timen, A.; Wallinga, J.; Van Steenbergen, J.E.; Teunis, P.F.M. The Effect of Mask Use on the Spread of Influenza during a Pandemic. Risk Anal. 2010, 30, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.P.; Fischer, M.C.; Grass, D.; Henrion, I.; Warren, W.S.; Westman, E. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Sci. Adv. 2020, 6, eabd3083. [Google Scholar] [CrossRef]
- Saunders-Hastings, P.; Crispo, J.A.; Sikora, L.; Krewski, D. Effectiveness of personal protective measures in reducing pandemic influenza transmission: A systematic review and meta-analysis. Epidemics 2017, 20, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. The history and value of face masks. Eur. J. Med. Res. 2020, 25, 1–6. [Google Scholar] [CrossRef]
- Ahmad, F.; Wahab, S.; Ahmad, F.A.; Alam, M.I.; Ather, H.; Siddiqua, A.; Ashraf, S.A.; Abu Shaphe, M.; Khan, M.I.; Beg, R.A. A novel perspective approach to explore pros and cons of face mask in prevention the spread of SARS-CoV-2 and other pathogens. Saudi Pharm. J. 2021, 29, 121–133. [Google Scholar] [CrossRef]
- Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. Face masks: Benefits and risks during the COVID-19 crisis. Eur. J. Med. Res. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. J. Affect. Disord. 2021, 200, 107926. [Google Scholar] [CrossRef]
- Geiss, O. Effect of Wearing Face Masks on the Carbon Dioxide Concentration in the Breathing Zone. Aerosol Air Qual. Res. 2021, 21, 200403. [Google Scholar] [CrossRef]
- Patel, S.; Majmundar, S. Physiology, Carbon Dioxide Retention. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA. Available online: https://pubmed.ncbi.nlm.nih.gov/29494063/ (accessed on 1 March 2024).
- Suen, L.; Guo, Y.; Ho, S.; Au-Yeung, C.; Lam, S. Comparing mask fit and usability of traditional and nanofibre N95 filtering facepiece respirators before and after nursing procedures. J. Hosp. Infect. 2020, 104, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Pleil, J.D.; Wallace, M.A.G.; Davis, M.D.; Matty, C.M. The physics of human breathing: Flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration. J. Breath Res. 2021, 15, 042002. [Google Scholar] [CrossRef] [PubMed]
- Laporthe, S.; Virgone, J.; Castanet, S. A comparative study of two tracer gases: SF6 and N2O. J. Affect. Disord. 2001, 36, 313–320. [Google Scholar] [CrossRef]
- Wu, Y.; Tung, T.C.; Niu, J.-L. On-site measurement of tracer gas transmission between horizontal adjacent flats in residential building and cross-infection risk assessment. J. Affect. Disord. 2016, 99, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lestinen, S.; Kilpeläinen, S.; Yuan, X.; Jokisalo, J.; Kosonen, R.; Guo, M. Exploring the potential to mitigate airborne transmission risks with convective and radiant cooling systems in an office. J. Affect. Disord. 2023, 245, 110936. [Google Scholar] [CrossRef]
- Mundt, M.; Mathisen, H.M.; Moser, M.; Nielsen, P.V. Ventilation Effectiveness: Rehva Guidebooks; Rehva Guidebook, no. 2; Federation of European Heating and Ventilation Association: Brussels, Belgium, 2004. [Google Scholar]
- Zhou, Q.; Qian, H.; Ren, H.; Li, Y.; Nielsen, P.V. The lock-up phenomenon of exhaled flow in a stable thermally-stratified indoor environment. J. Affect. Disord. 2017, 116, 246–256. [Google Scholar] [CrossRef]
- Flynn, M.R.; Ellenbecker, M.J. Capture Efficiency of Flanged Circular Local Exhaust Hoods. Ann. Occup. Hyg. 1986, 30, 497–513. [Google Scholar] [CrossRef]
- Huang, R.F.; Chen, J.L.; Chen, Y.-K.; Chen, C.-C.; Yeh, W.-Y.; Chen, C.-W. The Capture Envelope of a Flanged Circular Hood in Cross Drafts. Am. Ind. Hyg. Assoc. J. 2001, 62, 199–207. [Google Scholar] [CrossRef]
- Cheong, K.; Phua, S. Development of ventilation design strategy for effective removal of pollutant in the isolation room of a hospital. J. Affect. Disord. 2006, 41, 1161–1170. [Google Scholar] [CrossRef]
- Ai, Z.; Mak, C.M.; Gao, N.; Niu, J. Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment. Build. Simul. 2020, 13, 489–496. [Google Scholar] [CrossRef] [PubMed]
Sources of Heat Gain (W) | Heat Gains | |
---|---|---|
64 (W/m2) | 33.2 (W/m2) | |
Manikin | 80 W | 80 W |
Dummies (75 × 5 pc) | 375 W | 375 W |
Laptops (40 × 2 pc) | 80 W | 80 W |
Ceiling light | 90 W | 90 W |
Simulated solar gain from windows | 235 W | 25 W |
Simulated direct solar gain at floor | 420 W | 0 W |
Equipment (manikin’s controllers) | 50 W | 50 W |
Total heat gain | 1330 W | 700 W |
Case | Heat Gain | Air Distribution System | No. of Local Exhaust | Exhaust Flow Rates | |
---|---|---|---|---|---|
Local Exhausts | General Exhaust | ||||
1 | 33.2 W/m2 | Mixing (61 L/s ± 5%, 25 ± 1 °C) | 0 (Reference Case) | 0 L/s | ~61 L/s |
2 | 2 | 20 L/s: 2 × 10 L/s | ~41 L/s | ||
3 | 6 | 60 L/s: 6 × 10 L/s | ~0~1 L/s | ||
4 | Displacement (61 L/s ± 5%, 25 ± 1 °C) | 0 (Reference Case) | 0 L/s | ~61 L/s | |
5 | 2 | 20 L/s: 2 × 10 L/s | ~41 L/s | ||
6 | 6 | 60 L/s: 6 × 10 L/s | ~0~1 L/s | ||
7 | Displacement with table plenum (61 L/s ± 5%, 25 ± 1 °C) | 2 | 20 L/s: 2 × 10 L/s | ~41 L/s | |
8 | 6 | 60 L/s: 6 × 10 L/s | ~0~1 L/s | ||
9 | 64 W/m2 | Mixing (116 L/s ± 5%, 25 ± 1 °C) | 0 (Reference Case) | 0 L/s | ~116 L/s |
10 | 2 | 20 L/s: 2 × 10 L/s | ~96 L/s | ||
11 | 6 | 60 L/s: 6 × 10 L/s | ~56 L/s | ||
12 | Displacement (116 L/s ± 5%, 25 ± 1 °C) | 0 (Reference Case) | 0 L/s | ~116 L/s | |
13 | 2 | 20 L/s: 2 × 10 L/s | ~96 L/s | ||
14 | 6 | 60 L/s: 6 × 10 L/s | ~56 L/s | ||
15 | Displacement with table plenum (116 L/s ± 5%, 25 ± 1 °C) | 2 | 20 L/s: 2 × 10 L/s | ~96 L/s | |
16 | 6 | 60 L/s: 6 × 10 L/s | ~56 L/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, M.F.; Kilpeläinen, S.; Mustakallio, P.; Zhao, W.; Kosonen, R. An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room. Buildings 2024, 14, 1272. https://doi.org/10.3390/buildings14051272
Ejaz MF, Kilpeläinen S, Mustakallio P, Zhao W, Kosonen R. An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room. Buildings. 2024; 14(5):1272. https://doi.org/10.3390/buildings14051272
Chicago/Turabian StyleEjaz, Muhammad Farhan, Simo Kilpeläinen, Panu Mustakallio, Weixin Zhao, and Risto Kosonen. 2024. "An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room" Buildings 14, no. 5: 1272. https://doi.org/10.3390/buildings14051272
APA StyleEjaz, M. F., Kilpeläinen, S., Mustakallio, P., Zhao, W., & Kosonen, R. (2024). An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room. Buildings, 14(5), 1272. https://doi.org/10.3390/buildings14051272