Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. The Study Framework
2.3. Methods for the Exploration of Spatial Balance between Urban Flood Vulnerability and Resilience
2.3.1. Urban Flood Vulnerability Model
2.3.2. Urban Flood Resilience Model
2.3.3. Identifying the Relationship of Vulnerability and Resilience
2.4. Analysis of Obstacle Factors
2.5. Data Source
3. Results
3.1. Urban Flood Vulnerability Assessment
3.1.1. Hazard
3.1.2. Exposure
3.1.3. The Spatial Distribution Characteristics of Vulnerability
3.2. Urban Flood Resilience Assessment
3.3. Spatial Balance between Vulnerability and Resilience
3.4. Obstacle Factor Analysis
4. Discussion
4.1. Assessment of Urban Flood Vulnerability and Resilience
4.2. Strategies for Qinghai Province to Improve Urban Flood Resilience
4.3. Contribution and Implication
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kotzee, I.; Reyers, B. Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecol. Indic. 2016, 60, 45–53. [Google Scholar] [CrossRef]
- Abbas, A.; Bhatti, A.S.; Ullah, S.; Ullah, W.; Waseem, M.; Zhao, C.; Dou, X.; Ali, G. Projection of precipitation extremes over South Asia from CMIP6 GCMs. J. Arid. Land 2023, 15, 274–296. [Google Scholar] [CrossRef]
- Ullah, W.; Karim, A.; Ullah, S.; Rehman, A.U.; Bibi, T.; Wang, G.; Ullah, S.; Bhatti, A.S.; Ali, G.; Abbas, A. An increasing trend in daily monsoon precipitation extreme indices over Pakistan and its relationship with atmospheric circulations. Front. Environ. Sci. 2023, 11, 1228817. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Lou, D.; Ullah, S.; Bhatti, A.S.; Ullah, S.; Karim, A.; Hagan, D.F.T.; Ali, G. Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmos. Res. 2021, 253, 105489. [Google Scholar] [CrossRef]
- Bin, L.; Xu, K.; Pan, H.; Zhuang, Y.; Shen, R. Urban flood risk assessment characterizing the relationship among hazard, exposure, and vulnerability. Environ. Sci. Pollut. Res. 2023, 30, 86463–86477. [Google Scholar] [CrossRef]
- Mu, Y.; Li, Y.; Yan, R.; Luo, P.; Liu, Z.; Sun, Y.; Wang, S.; Zhu, W.; Zha, X. Analysis of the Ongoing Effects of Disasters in Urbanization Process and Climate Change: China’s Floods and Droughts. Sustainability 2024, 16, 14. [Google Scholar] [CrossRef]
- Eccles, R.; Zhang, H.; Hamilton, D.; Trancoso, R.; Syktus, J. Impacts of climate change on streamflow and floodplain inundation in a coastal subtropical catchment. Adv. Water Resour. 2021, 147, 103825. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol.-Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, H.M.; Huang, J.; Sun, D.C.; Liu, G.F. Evaluation of Urban Flood Resilience Enhancement Strategies-A Case Study in Jingdezhen City under 20-Year Return Period Precipitation Scenario. ISPRS Int. J. Geo-Inf. 2022, 11, 285. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Peng, C.; Shu, J.F.; Zhai, W.; Cheng, J.Q. Spatiotemporal characteristics and influencing factors of urban resilience efficiency in the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. 2022, 29, 39807–39826. [Google Scholar] [CrossRef]
- Coaffee, J.; Therrien, M.C.; Chelleri, L.; Henstra, D.; Aldrich, D.P.; Mitchell, C.L.; Tsenkova, S.; Rigaud, É. Urban resilience implementation: A policy challenge and research agenda for the 21st century. J. Contingencies Crisis Manag. 2018, 26, 403–410. [Google Scholar] [CrossRef]
- Bozza, A.; Asprone, D.; Manfredi, G. Developing an integrated framework to quantify resilience of urban systems against disasters. Nat. Hazards 2015, 78, 1729–1748. [Google Scholar] [CrossRef]
- Tate, E.; Strong, A.; Kraus, T.; Xiong, H.Y. Flood recovery and property acquisition in Cedar Rapids, Iowa. Nat. Hazards 2016, 80, 2055–2079. [Google Scholar] [CrossRef]
- Duy, P.N.; Chapman, L.; Tight, M.; Thuong, L.V.; Linh, P.N. Urban resilience to floods in coastal cities: Challenges and opportunities for Ho Chi Minh city and other emerging cities in southeast Asia. J. Urban Plan. Dev. 2018, 144, 5017018. [Google Scholar] [CrossRef]
- Song, J.; Chang, Z.; Li, W.F.; Feng, Z.; Wu, J.S.; Cao, Q.W.; Liu, J.Z. Resilience-vulnerability balance to urban flooding: A case study in a densely populated coastal city in China. Cities 2019, 95, 102381. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Env. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, X.; Wu, H.; Li, Z. Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China. Land 2022, 11, 921. [Google Scholar] [CrossRef]
- Sun, R.; Shi, S.; Reheman, Y.; Li, S. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Zhou, H.; Qian, X.; Zhang, X. Urban Flood Resilience Assessment Based on VIKOR-GRA: A Case Study in Chongqing, China. KSCE J. Civ. Eng. 2022, 26, 4178–4194. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Pathak, S.D.; Kulshrestha, M. Assessment of Flood Resilience Using RAAAR Framework: The Case of Narmada River Basin, India. Environ. Eng. Manag. J. (EEMJ) 2021, 20, 1263–1276. [Google Scholar]
- Chen, X.; Jiang, S.; Xu, L.; Xu, H.; Guan, N. Resilience assessment and obstacle factor analysis of urban areas facing waterlogging disasters: A case study of Shanghai, China. Env. Sci. Pollut. Res. 2023, 30, 65455–65469. [Google Scholar] [CrossRef] [PubMed]
- Tempa, K. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan. PLoS ONE 2022, 17, e270467. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, M.; Loosemore, M.; Mojtahedi, M.; Sanderson, D.; Haghani, M. An integration of operations research and design science research methodology: With an application in hospital disaster management. Prog. Disaster Sci. 2023, 20, 100300. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D. A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events. Prog. Disaster Sci. 2022, 13, 100218. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D.; Dixit, V. An integrated decision model for managing hospital evacuation in response to an extreme flood event: A case study of the Hawkesbury-Nepean River, NSW, Australia. Saf. Sci. 2022, 155, 105867. [Google Scholar] [CrossRef]
- Yazdani, M.; Haghani, M. Elderly people evacuation planning in response to extreme flood events using optimisation-based decision-making systems: A case study in western Sydney, Australia. Knowl.-Based Syst. 2023, 274, 110629. [Google Scholar] [CrossRef]
- Kreibich, H.; Di Baldassarre, G.; Vorogushyn, S.; Aerts, J.C.; Apel, H.; Aronica, G.T.; Arnbjerg Nielsen, K.; Bouwer, L.M.; Bubeck, P.; Caloiero, T. Adaptation to flood risk: Results of international paired flood event studies. Earth’s Future 2017, 5, 953–965. [Google Scholar] [CrossRef]
- Bai, D.; Cao, J.; Zhang, Y. Temporal and spatial distribution of extreme precipitation in Qinghai Province in recent 60 years. Yangtze River 2022, 53, 59–64. (In Chinese) [Google Scholar]
- Han, Z.; Song, W.; Deng, X.Z.; Xu, X.L. Trade-Offs and Synergies in Ecosystem Service within the Three-Rivers Headwater Region, China. Water 2017, 9, 588. [Google Scholar] [CrossRef]
- Guo, J.; Wei, Z.; Ren, J.; Luo, Z.; Zhou, H. Early-warning measures for ecological security in the Qinghai alpine agricultural area. Int. J. Environ. Res. Public Health 2020, 17, 9292. [Google Scholar] [CrossRef]
- Yang, H.; Shen, H.; Ma, Y.; Yang, Y.; Wang, X.; Feng, G. Research on the Characteristics and Influence Factors of Autumn Continuous Rain in Qinghai Province. Front. Earth Sc. 2022, 10, 801075. [Google Scholar] [CrossRef]
- Ye, S.; Ge, Y.; Xu, S.; Ma, X. Measurement and prediction of coupling coordination level of economic development, social stability and ecological environment in Qinghai—Thoughts on sustainable societal safety. Sustainability 2022, 14, 10515. [Google Scholar] [CrossRef]
- Bruwier, M.; Maravat, C.; Mustafa, A.; Teller, J.; Pirotton, M.; Erpicum, S.; Archambeau, P.; Dewals, B. Influence of urban forms on surface flow in urban pluvial flooding. J. Hydrol. 2020, 582, 124493. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Song, C.S.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.G.; Ruckelshaus, M.; Shi, F.Q.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Yang, W.; Xu, K.; Lian, J.; Bin, L.; Ma, C. Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model. J. Environ. Manag. 2018, 213, 440–450. [Google Scholar] [CrossRef]
- Li, W.; Yu, D.; Feng, X.; Zhang, T. Risk assessment of rainstorm and flood disasters based on the hazard grades/indices in Qinghai Province. J. Glaciol. Geocryol. 2019, 41, 680–688. (In Chinese) [Google Scholar]
- Hemmati, M.; Ellingwood, B.R.; Mahmoud, H.N. The role of urban growth in resilience of communities under flood risk. Earth’s Future 2020, 8, e2019EF001382. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Thorne, C.R. Drivers of future urban flood risk. Philos. Trans. R. Soc. A 2020, 378, 20190216. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Cao, Y.; Li, Z.; Fan, J. Prediction of Collapsibility of Loess of Construction Sites in Xining Based on Machine Learning Methods. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bosher, L.; Dainty, A.; Carrillo, P.; Glass, J.; Price, A. Attaining improved resilience to floods: A proactive multi-stakeholder approach. Disaster Prev. Manag. Int. J. 2009, 18, 9–22. [Google Scholar] [CrossRef]
- McCarthy, J.F. Using community led development approaches to address vulnerability after disaster: Caught in a sad romance. Glob. Environ. Chang. 2014, 27, 144–155. [Google Scholar] [CrossRef]
- Namdeo, A.; Tiwary, A.; Farrow, E. Estimation of age-related vulnerability to air pollution: Assessment of respiratory health at local scale. Environ. Int. 2011, 37, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Miguez, M.G.; Veról, A.P. A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design. Environ. Plan. B-Urban 2017, 44, 925–946. [Google Scholar] [CrossRef]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Song, J.L.; Huang, B.; Li, R.R. Measuring Recovery to Build up Metrics of Flood Resilience Based on Pollutant Discharge Data: A Case Study in East China. Water 2017, 9, 619. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Aina, Y.A. The prospects and challenges of developing more inclusive, safe, resilient and sustainable cities in Nigeria. Land Use Policy 2019, 87, 104105. [Google Scholar] [CrossRef]
- Zhang, X.W.; Song, J.; Peng, J.; Wu, J.S. Landslides-oriented urban disaster resilience assessment-A case study in ShenZhen, China. Sci. Total Environ. 2019, 661, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.A.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing Spatial Flood Vulnerability at Kalapara Upazila in Bangladesh Using an Analytic Hierarchy Process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef]
- Liao, K.H. A Theory on Urban Resilience to Floods-A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Ruan, J.E.; Chen, Y.B.; Yang, Z.W. Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios. Int. J. Disaster Risk Reduct. 2021, 66, 102578. [Google Scholar] [CrossRef]
- Wood, N.J.; Burton, C.G.; Cutter, S.L. Community variations in social vulnerability to Cascadia-related tsunamis in the US Pacific Northwest. Nat. Hazards 2010, 52, 369–389. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Andrade, C. Z scores, standard scores, and composite test scores explained. Indian J. Psychol. Med. 2021, 43, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, G.; Li, H.; Liu, L.; Fan, Z.; Wen, T. Spatiotemporal Variations and Causes of Wind/Rainfall Erosion Climatic Erosivity in Qinghai Province, China. Atmosphere 2022, 13, 1649. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Baig, M.A.; Hassan, W.; Al-Shaibah, B. Gis-based urban flood resilience assessment using urban flood resilience model: A case study of peshawar city, khyber pakhtunkhwa, pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Witten, K.; Exeter, D.; Field, A. The Quality of Urban Environments: Mapping Variation in Access to Community Resources. Urban Stud. 2003, 40, 161–177. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R.; Wu, H.; Xie, J.; Zhao, Y.; Song, Y.; Li, F. A System Dynamics Model of Urban Rainstorm and Flood Resilience to Achieve the Sustainable Development Goals. Sustain. Cities Soc. 2023, 96, 104631. [Google Scholar] [CrossRef]
- Frigerio, I.; Ventura, S.; Strigaro, D.; Mattavelli, M.; De Amicis, M.; Mugnano, S.; Boffi, M. A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 2016, 74, 12–22. [Google Scholar] [CrossRef]
- Shepard, D.P.; Humphreys, T.E.; Fansler, A.A. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. Int. J. Crit. Infrastruct. Prot. 2012, 5, 146–153. [Google Scholar] [CrossRef]
- Song, G.; Chen, Y.; Tian, M.; Lv, S.; Zhang, S.; Liu, S. The Ecological Vulnerability Evaluation in Southwestern Mountain Region of China Based on GIS and AHP Method. Procedia Environ. Sci. 2010, 2, 465–475. [Google Scholar] [CrossRef]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; Van der Leeuw, S.; Rockström, J. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 2010, 15, 11. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef]
- Kourehpaz, P.; Molina Hutt, C. Machine learning for enhanced regional seismic risk assessments. J. Struct. Eng. 2022, 148, 4022126. [Google Scholar] [CrossRef]
- Forcellini, D. An expeditious framework for assessing the seismic resilience (SR) of structural configurations. Structures 2023, 56, 105015. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Xie, Y.; Gou, Q.; Li, R.; Qiu, Y.; Hu, Y.; Huang, B. Assessment and Improvement of Urban Resilience to Flooding at a Subdistrict Level Using Multi-Source Geospatial Data: Jakarta as a Case Study. Remote Sens. 2022, 14, 2010. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Ma, Y.; Feng, C.; Hajiyev, A. A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. Int. J. Disaster Risk Reduct. 2019, 36, 101140. [Google Scholar] [CrossRef]
- DB63/T 372-2011; Qinghai Province Bureau of Quality and Technology Supervision. Local Standards of Qinghai Province: Meteorological Disasters Standards. Qinghai Province Bureau of Quality and Technology Supervision: Xining, China, 2011.
- Zhu, S.; Feng, H.; Arashpour, M.; Zhang, F. Enhancing urban flood resilience: A coupling coordinated evaluation and geographical factor analysis under SES-PSR framework. Int. J. Disaster Risk Reduct. 2024, 101, 104243. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, X.; Cheng, Y.; Jia, H.; Jia, Q.; Yang, Y. Can flood resilience of green-grey-blue system cope with future uncertainty? Water Res. 2023, 242, 120315. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, H.M.; Huang, J.; Wang, Y.X.; Liu, G.F. A study on dynamic simulation and improvement strategies of flood resilience for urban road system. J. Environ. Manag. 2023, 344, 118770. [Google Scholar] [CrossRef]
- Qasim, S.; Qasim, M.; Shrestha, R.P.; Khan, A.N.; Tun, K.; Ashraf, M. Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 100–106. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Li, L.; Shen, D.; Wei, G.; Dong, S. Measuring the resilience to floods: A comparative analysis of key flood control cities in China. Int. J. Disaster Risk Reduct. 2021, 59, 102248. [Google Scholar] [CrossRef]
Component | Criterion Layer | Indicator | Data Source |
---|---|---|---|
Urban vulnerability | Hazard | Frequency of rainstorm | Calculated based on daily precipitation from the China Meteorological Data Sharing Service System (http://data.cma.cn/site/index.html (accessed on 20 October 2023)). |
RDLS | Calculated using digital elevation model (DEM) data with 12.5 m spatial resolution from ALOS (Advanced Land Observing Satellite) (https://search.asf.alaska.edu/#/ (accessed on 21 October 2023)). | ||
Collapsible loess | The map of collapsible loess from Qinghai Geological Data Museum | ||
Exposure | The density of the population | County Statistical Yearbook in China | |
The number of children | Population Census Yearbook in Qinghai | ||
The number of elderly | Population Census Yearbook in Qinghai | ||
GDP | County Statistical Yearbook in China | ||
Urban resilience | Society A | A1 Education level of people | Population Census Yearbook in Qinghai |
A2 Number of beds in medical institutions | Statistical Yearbook of County Construction in China | ||
Economy B | B1 per capita GDP | County Statistical Yearbook in China | |
B2 Ratio of tertiary industry | County Statistical Yearbook in China | ||
Environment C | C1 Vegetation covering | Annual Report of Construction Statistics of Qinghai Province | |
C2 Proportion of blue-green space | Calculated by Data of the Third National Land Survey | ||
Infrastructure D | D1 Density of roads | Annual Report of Construction Statistics of Qinghai Province | |
D2 Density of drainage networks | Annual Report of Construction Statistics of Qinghai Province | ||
D3 The length of levee | Annual Report of Construction Statistics of Qinghai Province |
Flood Vulnerability | Flood Resilience | Combination | Classify |
---|---|---|---|
≥0 | ≥0 | High–High | Self-adaptive |
≥0 | ≤0 | High–Low | Deficient in terms of nature–nurture |
≤0 | ≥0 | Low–High | Over-abundant |
≤0 | ≤0 | Low–Low | Self-adaptive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xu, C.; He, J.; Chi, Z.; Bai, W.; Liu, R. Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau. Buildings 2024, 14, 1274. https://doi.org/10.3390/buildings14051274
Wang W, Xu C, He J, Chi Z, Bai W, Liu R. Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau. Buildings. 2024; 14(5):1274. https://doi.org/10.3390/buildings14051274
Chicago/Turabian StyleWang, Wenjing, Chao Xu, Junchao He, Zhongwen Chi, Weilan Bai, and Rui Liu. 2024. "Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau" Buildings 14, no. 5: 1274. https://doi.org/10.3390/buildings14051274
APA StyleWang, W., Xu, C., He, J., Chi, Z., Bai, W., & Liu, R. (2024). Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau. Buildings, 14(5), 1274. https://doi.org/10.3390/buildings14051274