Investigation on the Impacts of Three Sea Salt Ions on the Performance of CSA-OPC Binary System
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Raw Materials
2.2. Preparation Specimens
2.3. Experimental Methods
2.3.1. Flexural/Compressive Strength
2.3.2. X-ray Diffraction Analysis
2.3.3. Scanning Electron Microscopy
2.3.4. Hydration Heat
2.3.5. Apparent Porosity
2.3.6. The pH Value of the Pore Solution
3. Results and Analysis
3.1. The Effect of Cl−
3.1.1. The Failure Morphology
3.1.2. Hydration Heat Analysis
3.1.3. Hydration Products and Microstructure Analysis
3.2. The Effect of SO42−/Mg2+
3.2.1. The Apparent Porosity
3.2.2. The Flexural/Compressive Strength
3.2.3. XRD Analysis and pH of Pore Solution
3.2.4. SEM/EDS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Impacts of booming concrete production on water resources worldwide. Nat. Sustain. 2018, 1, 69–76. [Google Scholar] [CrossRef]
- Telesca, A.; Marroccoli, M.; Coppola, L.; Coffetti, D.; Candamano, S. Tartaric acid effects on hydration development and physico-mechanical properties of blended calcium sulphoaluminate cements. Cem. Concr. Compos. 2021, 124, 104275. [Google Scholar] [CrossRef]
- Sanfelix, S.G.; Zea-Garcia, J.D.; Londono-Zuluaga, D.; Santacruz, I.; De la Torre, A.G.; Kjoniksen, A.-L. Hydration development and thermal performance of calcium sulphoaluminate cements containing microencapsulated phase change materials. Cem. Concr. Res. 2020, 132, 106039. [Google Scholar] [CrossRef]
- Ke, G.J.; Zhang, J.; Liu, Y.Z. Shrinkage characteristics of calcium sulphoaluminate cement concrete. Constr. Build. Mater. 2022, 337, 127627. [Google Scholar] [CrossRef]
- Li, J.; Yan, J.; Xue, G.; Niu, J. Acoustic emission behavior of polyvinyl alcohol (PVA) fiber reinforced calcium sulphoaluminate cement mortar under flexural load. J. Build. Eng. 2021, 40, 102734. [Google Scholar] [CrossRef]
- Hou, W.; Liu, Z.; He, F.; Huang, J.; Zhou, J. Sulfate diffusion in calcium sulphoaluminate mortar. Constr. Build. Mater. 2019, 234, 117312. [Google Scholar] [CrossRef]
- Etxeberria, M.; Gonzalez-corominas, A.; Pardo, P. Influence of seawater and blast furnace cement employment on recycled aggregate concrete properties. Constr. Build. Mater. 2016, 115, 496–505. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Wang, K.; Tam, V.W.Y.; Zhang, S. Effects of seawater and undesalted sea sand on the hydration products, mechanical properties and microstructures of cement mortar. Constr. Build. Mater. 2021, 310, 125229. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Shen, P.; Lu, J.; Cai, Y.; Poon, C.S. Physicochemical investigation of Portland cement pastes prepared and cured with seawater. Mater. Struct. 2022, 55, 150. [Google Scholar] [CrossRef]
- De Weerdt, K.; Justnes, H. The effect of sea water on the phase assemblage of hydrated cement paste. Cem. Concr. Compos. 2015, 55, 215–222. [Google Scholar] [CrossRef]
- Stroh, J.; Meng, B.; Emmerling, F. Deterioration of hardened cement paste under combined sulphate-chloride attack investigated by synchrotron XRD. Solid State Sci. 2016, 56, 29–44. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Zhang, T.; Zhang, Y.; Liu, Z.; Zhao, X. Influence of the Concentration of Seawater on the Early Hydration Properties of Calcium Sulphoaluminate (CSA) Cement: A Preliminary Study. Buildings 2021, 11, 243. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.M.; Roussel, N.; Divet, L.; De Lacaillerie, J.B.D. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, C.; De Schutter, G.; Audenaert, K.; Deng, D. Chloride binding of cement-based materials subjected to external chloride environment—A review. Constr. Build. Mater. 2009, 23, 1–13. [Google Scholar] [CrossRef]
- Ben-Yair, M. The effect of chlorides on concrete in hot and arid regions. Cem. Concr. Res. 1974, 4, 405–416. [Google Scholar] [CrossRef]
- Suryavanshi, A.K.; Narayan Swamy, R. Stability of Friedel’s salt in carbonated concrete structural elements. Cem. Concr. Res. 1996, 26, 729–741. [Google Scholar] [CrossRef]
- Kim, T.; Kang, C.; Hong, S.; Seo, K.Y. Investigating the Effects of Polyaluminum Chloride on the Properties of Ordinary Portland Cement. Materials 2019, 12, 3290. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Z.; Huang, X.; Bai, X. Effect of Friedel’s salt on strength enhancement of stabilized chloride saline soil. J. Cent. South Univ. 2017, 24, 937–946. [Google Scholar] [CrossRef]
- Cheng, S.; Shui, Z.; Sun, T.; Gao, X.; Guo, C. Effects of sulfate and magnesium ion on the chloride transportation behavior and binding capacity of Portland cement mortar. Constr. Build. Mater. 2019, 204, 265–275. [Google Scholar] [CrossRef]
- Ding, Q.; Yang, J.; Zhang, G.; Hou, D. Effect of magnesium on the C-S-H nanostructure evolution and aluminate phases transition in cement-slag blend. J. Wuhan Univ. Technol.-Mater Sci. Ed. 2018, 33, 108–116. [Google Scholar] [CrossRef]
- Bonen, D.; Cohen, M.D. Magnesium sulfate attack on portland cement paste-I. Microstructural analysis. Cem. Concr. Res. 1992, 22, 169–180. [Google Scholar] [CrossRef]
- Li, X.; Shui, Z.; Yu, R.; Wang, X. Magnesium induced hydration kinetics of ultra-high performance concrete (UHPC) served in marine environment: Experiments and modelling. Constr. Build. Mater. 2019, 224, 1056–1068. [Google Scholar] [CrossRef]
- Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Constr. Build. Mater. 2017, 155, 1101–1111. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, J.; Zhang, P.; Wang, T. Effects of C$H2 and CH on Strength and Hydration of Calcium Sulphoaluminate Cement Prepared from Phosphogypsum. Buildings 2022, 12, 1692. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, L.; Chen, B.; Wu, J. Thermodynamic modelling and experimental investigation on chloride binding in cement exposed to chloride and chloride-sulfate solution. Constr. Build. Mater. 2020, 246, 118398. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Q.; Gao, Z.; Chang, J. Microstructure Control of AH3 Gel Formed in Various Calcium Sulfoaluminate Cements as a Function of pH. ACS Sustain. Chem. Eng. 2021, 9, 11534–11547. [Google Scholar] [CrossRef]
- Khalil, N.; Aouad, G.; Kleib, J.; Rémond, S. Portland/Sulfoaluminate Cement Blends for the Control of Early Age Hydration and Yield Stress. Buildings 2023, 13, 409. [Google Scholar] [CrossRef]
- GB/T 17671-1999; Method of Testing Cements—Determination of Strength. State Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- ASTM C20-2000; Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractor Brick and Shapes by Boiling Water. ASTM: West Conshohocken, PA, USA, 2015.
- Deng, X.; Guo, H.; Tan, H.; Zhang, J.; Zheng, Z.; Li, M.; Chen, P.; He, X.; Yang, J.; Wang, J. Comparison on early hydration of Portland cement and sulphoaluminate cement in the presence of nano ettringite. Constr. Build. Mater. 2022, 360, 129516. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, G.; Liu, Y.; Ding, Z.; Pan, J.; Qin, D.; Dong, B.; Shao, H. Study on the effect of chloride ion on the early age hydration process of concrete by a non-contact monitoring method. Constr. Build. Mater. 2018, 172, 499–508. [Google Scholar] [CrossRef]
- Burlion, N.; Bernard, D.; Chen, D. X-ray microtomography: Application to microstructure analysis of a cementitious material during leaching process. Cem. Concr. Res. 2006, 36, 346–357. [Google Scholar] [CrossRef]
- Tosun, K.; Baradan, B. Effect of ettringite morphology on DEF-related expansion. Cem. Concr. Compos. 2010, 32, 271–280. [Google Scholar] [CrossRef]
- Diamond, S.; Landis, E. Microstructural features of a mortar as seen by computed microtomography. Mater. Struct. 2006, 40, 989–993. [Google Scholar] [CrossRef]
- Odler, I.; Colán-Subauste, J. Investigations on cement expansion associated with ettringite formation. Cem. Concr. Res. 1999, 29, 731–735. [Google Scholar] [CrossRef]
- Thiebaut, Y.; Multon, S.; Sellier, A.; Lacarrière, L.; Boutillon, L.; Belili, D.; Linger, L.; Cussigh, F.; Hadji, S. Effects of stress on concrete expansion due to delayed ettringite formation. Constr. Build. Mater. 2018, 183, 626–641. [Google Scholar] [CrossRef]
- Bertola, F.; Gastaldi, D.; Irico, S.; Paul, G.; Canonico, F. Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements. Cem. Concr. Res. 2020, 151, 106634. [Google Scholar] [CrossRef]
- Liao, Y.; Yao, J.; Deng, F.; Li, H.; Wang, K.; Tang, S. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime. J. Build. Eng. 2023, 80, 2352–7102. [Google Scholar] [CrossRef]
- Padilla-Encinas, P.; Palomo, A.; Blanco-Varela, M.T.; Fernandez-Jimenez, A. Calcium sulfoaluminate clinker hydration at different alkali concentrations. Cem. Concr. Res. 2020, 138, 106251. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Tai, B.; Zhang, Z.; Zhu, Y. Effect of environmental pH value on mechanical properties and microstructure of hardened sulphoaluminate cement paste. Constr. Build. Mater. 2020, 325, 126848. [Google Scholar] [CrossRef]
- Ben Haha, M.; Winnefeld, F.; Pisch, A. Advances in understanding ye’elimite-rich cements. Cem. Concr. Res. 2019, 12, 105778. [Google Scholar] [CrossRef]
- Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. C4A3Š hydration in different alkaline media. Cem. Concr. Res. 2013, 46, 41–49. [Google Scholar] [CrossRef]
- Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. C3S and C2S hydration in the presence of Na2CO3 and Na2SO4. J. Am. Ceram. Soc. 2017, 100, 3188–3198. [Google Scholar] [CrossRef]
- Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. Alkaline Hydration Of C2S and C3S. J. Am. Ceram. Soc. 2016, 99, 604–611. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, S.; Wang, S.; Siraj Al Qunaynah Wan, S.; Yuan, Z.; Xu, P.; Tang, S. A study on the hydration of calcium aluminate cement pastes containing silica fume using non-contact electrical resistivity measurement. J. Mater. Res. Technol. 2023, 24, 8135–8149. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Zhou, S.; Tang, S.; Lu, X. Investigation of microstructure of C-S-H and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement 2021, 185, 110019. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Wu, Y.; Zhou, Y.; Tang, S. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr. Build. Mater. 2021, 272, 121952. [Google Scholar] [CrossRef]
Name | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | TiO2 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|
OPC | 57.80 | 21.83 | 3.59 | 6.30 | 0.35 | 2.61 | 0.84 | 0.23 | |
CSA | 45.30 | 7.23 | 18.60 | 4.30 | 12.50 | 1.35 | 0.87 |
Ion | Cl− | SO42− | Na+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|
Concentration | 16.50~18.50 | 2.00~2.60 | 9.50~10.50 | 0.95~1.40 | 0.28~0.38 |
Sample | NaCl | Na2SO4 | Mg(CH3COO)2 |
---|---|---|---|
Control | |||
CL1.0 | 31.89 | ||
CL2.0 | 63.78 | ||
CL3.0 | 95.67 | ||
SO1.0 | 3.36 | ||
SO2.0 | 6.72 | ||
SO3.0 | 10.08 | ||
MG1.0 | 4.40 | ||
MG2.0 | 8.80 | ||
MG3.0 | 13.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhou, S.; Ou, Q.; Zhang, Y. Investigation on the Impacts of Three Sea Salt Ions on the Performance of CSA-OPC Binary System. Buildings 2024, 14, 1481. https://doi.org/10.3390/buildings14051481
Wang C, Zhou S, Ou Q, Zhang Y. Investigation on the Impacts of Three Sea Salt Ions on the Performance of CSA-OPC Binary System. Buildings. 2024; 14(5):1481. https://doi.org/10.3390/buildings14051481
Chicago/Turabian StyleWang, Chuanlin, Shupeng Zhou, Qingyou Ou, and Yuxuan Zhang. 2024. "Investigation on the Impacts of Three Sea Salt Ions on the Performance of CSA-OPC Binary System" Buildings 14, no. 5: 1481. https://doi.org/10.3390/buildings14051481
APA StyleWang, C., Zhou, S., Ou, Q., & Zhang, Y. (2024). Investigation on the Impacts of Three Sea Salt Ions on the Performance of CSA-OPC Binary System. Buildings, 14(5), 1481. https://doi.org/10.3390/buildings14051481