Study of Structural Seismic Damage Considering Seasonal Frozen Soil–Structure Interaction
Abstract
:1. Introduction
2. Establishment of Finite Element Model
2.1. Selection of Ground Motions
2.2. Solver and Element Types
2.3. Mesh Size and Properties
2.4. Boundary Condition
2.5. Geo-Stress Balance
3. Numerical Simulation Results
3.1. Seismic Response of Four-Story Frame Structure
3.1.1. Structural Response
3.1.2. Change Amplitude of Structural Response
3.1.3. Structural Damage
3.2. Seismic Response of Sixteen-Story Frame Structure
3.2.1. Structural Response
3.2.2. Change Amplitude of Structural Response
4. Conclusions
- (1)
- For the frame structure under the ground motion of 0.1 g and 0.3 g, the structure’s maximum inter-story displacement angle in the presence of frozen soil layer is significantly reduced compared to the case without frozen soil layer.
- (2)
- When the ambient temperature is −5 °C, the seismic damage to the structure fluctuates wildly and will be close to that at the normal temperature and the lower negative temperature. When the ambient temperature is −10 °C, −15 °C, or −20 °C, the damage levels fluctuate relative to each other.
- (3)
- For the first floor of a four-story frame structure, when the temperature drops below 0 °C, the maximum inter-story displacement angle reduction amplitude is mostly between 20 and 50%. For the overall structure, the reduction amplitude is mainly between 20 and 40%. When the ground motion amplitude is increased to 0.3 g, the reduction amplitude of the first floor is also between 20 and 50%, and that for the overall structure is between 10 and 30%.
- (4)
- For the sixteen-story frame structure, when the temperature drops below 0 °C, the first floor’s maximum inter-story displacement angle reduction amplitude can reach 40%. For the overall structure, the reduction amplitude can reach 50%.
- (5)
- When the ambient temperature is negative, the tensile damage and compression damage to the frame structure are relatively minor. When the ambient temperature is positive, the damage will be more serious. The tensile damage to the structure mainly occurs at the column end (more severe at the bottom) and the whole beam, while the compressive damage to the structure mainly occurs at the beam end.
- (6)
- By analyzing the evolutionary patterns of damage status of the structure in the sequence of seasonal changes in spring, summer, autumn, and winter, it is observed that the damage status demonstrates an increasing trend followed by a decreasing trend.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, D.M. Preliminary analysis of the impact field and seismic geological conditions of the 1986 Dedu earthquake. Northeast. Seismol. Res. 1987, 3, 57–68. [Google Scholar]
- Zhang, F.M.; Yi, F.L. Source parameters of Dedu moderate earthquake of Heilongjiang province in 1986. Seismol. Res. Northeast China 1995, 11, 34–38. [Google Scholar]
- Liu, H.X.; Sun, Y.F.; Chen, Y.M.; Xu, X.Y.; Yin, Y.H. Influence of seasonally frozen ground on the seismic damages of buildings. J. Glaciol. Geocryol. 1998, 20, 46–50. [Google Scholar]
- Wu, L.B.; Qi, W.; Niu, F.J.; Niu, Y.H. A review of studies on roadbed frozen damage and countermeasures in seasonal frozen ground regions in China. J. Glaciol. Geocryol. 2015, 37, 1283–1293. [Google Scholar]
- Osama, A.; Sameer, A.D. Comparison of solar thermal and solar electric space heating and cooling systems for buildings in different climatic regions. Sol. Energy 2019, 11, 545–560. [Google Scholar]
- Li, N.; Chen, B.; Chen, F.; Xu, X. The coupled heat-moisture-mechanic model of the frozen soil. Cold Reg. Sci. Technol. 2000, 31, 199–205. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S.; Voss, C.I.; Molotch, N.P. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds. Water Resour. Res. 2018, 54, 1599–1615. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wu, Q.B.; Xun, X.Y.; Wang, B.X.; Xu, N. Climate change and the distribution of frozen soil in 1980–2010 in northern northeast China. Quat. Int. 2018, 467, 203–241. [Google Scholar] [CrossRef]
- Chen, S.S.; Zang, S.Y.; Sun, L. Permafrost degradation in northeast China and its environmental effects: Present situation and prospect. J. Glaciol. Geocryol. 2018, 40, 298–306. [Google Scholar]
- Tan, L.; Wei, C.F.; Tian, H.H.; Zhou, J.Z.; Wei, H.Z. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance. Rock Soil Mech. 2015, 36, 1566–1572. [Google Scholar]
- Ladanyi, B. An engineering theory of creep of frozen soils. Can. Geotech. J. 1972, 9, 63–80. [Google Scholar] [CrossRef]
- Chamberlain, E.; Groves, C.; Perham, R. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions. Geotechnique 1972, 23, 136–147. [Google Scholar] [CrossRef]
- Zhu, Y.; Carbee, D.L. Uniaxial compressive strength of frozen silt under constant deformation rates. Cold Reg. Sci. Technol. 1984, 9, 3–15. [Google Scholar] [CrossRef]
- Wu, Z.J.; Ma, W.; Wang, L.M.; Cheng, J.J.; Feng, W.J. Laboratory study on the effect of temperature and confining pressure on strength of frozen soil under seismic dynamic loading. J. Glaciol. Geocryol. 2003, 25, 648–652. [Google Scholar]
- Li, X.L.; Wang, H.J.; Zou, S.J.; Ma, H.C.; Niu, Y.H. Research state of deformation characteristics of frozen soil under cyclic loading and problems in frozen soil excavation. J. Glaciol. Geocryol. 2017, 39, 92–101. [Google Scholar]
- Wang, R.M.; Ma, Q.Y. Experimental analysis of the influence of freezing time on compressive strength of frozen silty clay. J. Anhui Univ. Sci. Technol. (Nat. Sci.) 2019, 39, 74–79. [Google Scholar]
- Toki, K.; Miura, F. Non-linear seismic response analysis of soil-structure interaction systems. Earthq. Eng. Struct. Dyn. 1983, 11, 77–89. [Google Scholar] [CrossRef]
- Makris, N.; Badoni, D.; Delis, E.; Gazetas, G. Prediction of observed bridge response with soil-pile-structure interaction. J. Struct. Eng. 1994, 120, 2992–3011. [Google Scholar] [CrossRef]
- Wijaya, P.K. Boundary element model coupled with finite element model for dynamic soil-pile interaction. In Proceedings of the 2009 Third Asia International Conference on Modelling and Simulation, Bundang, Indonesia, 25–29 May 2009; pp. 491–496. [Google Scholar]
- Ilaria, V.; Diana, S.; Claudio, T. The effect of soil-foundation-structure interaction on the wind-induced response of tall buildings. Eng. Struct. 2014, 7, 117–130. [Google Scholar]
- Renzi, S.; Madiai, C.; Vannucchi, G. A simplified empirical method for assessing seismic soil-structure interaction effects on ordinary shear-type buildings. Soil Dyn. Earthq. Eng. 2013, 55, 100–107. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, X.X.; Zhuang, H.Y. Fine numerical modeling of nonlinear soil-pile-frame structure interaction system and its verification. J. Disaster Prev. Mitig. Eng. 2010, 30, 558–566. [Google Scholar]
- Xu, J. Seismic Response Analysis of Transmission Tower-Line System Considering SSI; Dalian University of Technology: Dalian, China, 2008. [Google Scholar]
- Jendoubi, A.; Legeron, F. Effect of the dynamic soil-structure interaction on rigid transmission line towers subjected to wind and impulse loads. Electr. Transm. Substation Struct. 2012, 27, 250–261. [Google Scholar]
- Ma, M.J. The Seismic Performance Simulation Analysis of the Irregular of Castle Hotel of Dalian Considering the SSI Effect; Liaoning Technical University: Fuxin, China, 2013. [Google Scholar]
- Mi, P. Adverse Impact on Seismic Performance Analysis of Frame Structure Considering Soil-Structure Interaction; Guangzhou University: Guangzhou, China, 2016. [Google Scholar]
- ForcelIini, D. Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction. Bull. Earthq. Eng. 2017, 12, 2021–2042. [Google Scholar] [CrossRef]
- Forcellini, D. Cost assessment of isolation technique applied to a benchmark bridge with soil structure interaction. Bull. Earthq. Eng. 2016, 15, 51–69. [Google Scholar] [CrossRef]
- Zhao, C.; Valliappan, S. A dynamic infinite element for three-dimensional infinite-domain wave problems. Int. J. Numer. Methods Eng. 1993, 36, 2567–2580. [Google Scholar] [CrossRef]
- Jiang, X.L.; Xu, Y.; Zheng, G. Finite element and infinite element coupling method for seismic analysis of soil-underground tunnel system. Earthq. Eng. Eng. Vib. 1999, 19, 22–26. [Google Scholar]
- Nielsen, A.H. Towards a complete framework for seismic analysis in ABAQUS. Eng. Comput. Mech. 2014, 167, 3–12. [Google Scholar] [CrossRef]
- Deeks, A.J.; Randolph, M.F. Axisymmetric time-domain transmitting boundaries. J. Eng. Mech. 1994, 120, 25–42. [Google Scholar] [CrossRef]
- Liu, J.B.; Wang, Z.Y.; Du, X.L.; Du, Y.X. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems. Eng. Mech. 2005, 22, 46–51. [Google Scholar]
- Bian, X.Y.; Wang, G.X.; Li, Y.D. Experimental research on dynamic characteristics of frozen clay considering seasonal variation. Geomech. Eng. 2024, 36, 391–406. [Google Scholar]
- Li, Z.Q.; Du, C.B.; Ai, Y.M. Effect of radiation damping on seismic response of structures. J. Hohai Univ. (Nat. Sci.) 2009, 37, 400–404. [Google Scholar]
- Huang, S.; Chen, W.Z.; Wu, G.J.; Guo, X.H.; Qiao, C.J. Study of method of earthquake input in aseismic analysis for underground engineering. Chin. J. Rock Mech. Eng. 2010, 29, 1254–1262. [Google Scholar]
- Song, J.K.; Liu, Z.X.; Zhou, X.J. Analysis of the nonlinear earthquake responses of the Hong Kong-Zhuhai-Macao immersed tunnel. Chin. J. Undergr. Space Eng. 2015, 11, 323–331. [Google Scholar]
- Cai, M.F.; Qiao, L. Geostress Measurement Principle and Technology; Science Press: Beijing, China, 1995. [Google Scholar]
- Dai, R.L.; Li, Z.F.; Wang, J. Research on initial geo-stress balance method based on ABAQUS. J. Chongqing Technol. Bus. Univ. (Nat. Sci. Ed.) 2012, 9, 76–81. [Google Scholar]
Month | Daily Average Maximum Temperature (°C) | Daily Average Minimum Temperature (°C) | Historical Maximum Temperature (°C) | Historical Minimum Temperature (°C) |
---|---|---|---|---|
January | −14 | −25 | −1 | −34 |
February | −8 | −20 | 6 | −30 |
March | 3 | −9 | 22 | −24 |
April | 15 | 2 | 32 | −7 |
May | 22 | 11 | 34 | 1 |
June | 28 | 17 | 38 | 9 |
July | 29 | 20 | 35 | 14 |
August | 27 | 19 | 35 | 8 |
September | 22 | 11 | 29 | −2 |
October | 12 | 1 | 25 | −12 |
November | 0 | −9 | 16 | −24 |
December | −11 | −21 | 7 | −32 |
Soil Type | Soil Thickness (m) | Soil Properties |
---|---|---|
Miscellaneous fill | 0.60–1.00 | Mixed colors, mainly composed of construction waste, including sticky soil, with black sedimentary soil at the bottom. |
Silty clay 1 | 7.80–8.90 | Yellow-brown, plastic to rigid, with high dry strength and high toughness. |
Silty clay 2 | 2.00–4.70 | Brown, plastic, with moderate dry strength and moderate toughness. |
Silty clay 3 | 1.10–3.60 | Gray-yellow to gray, soft plastic to plastic, with moderate dry strength and low toughness. |
Fine sand 1 | 1.00–1.00 | Yellow, slightly dense to moderately dense, slightly moist. |
Fine sand 2 | 4.70–4.90 | Gray, slightly dense. |
Medium sand | 1.70–2.00 | Gray, moderately dense. |
Coarse sand | 4.50–5.50 | Yellow, moderately dense. |
Soil Thickness (m) and Soil Type | Temperature (°C) | Density (kg/m³) | Elastic Modulus (MPa) | Cohesion (kPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|
2.5 (Clay) | 23 | 1480 | 97.1 | 38.9 | 9.6 |
−5 | 1480 | 244.7 | 173.5 | 27.4 | |
−10 | 1480 | 462.1 | 343.7 | 34.1 | |
−15 | 1480 | 540.1 | 367.5 | 33.2 | |
−20 | 1480 | 568.9 | 382.4 | 32.9 | |
6.5 (Silty clay 1) | 23 | 1930 | 204.3 | 36.1 | 15.9 |
3.5 (Silty clay 2) | 23 | 1890 | 173.3 | 26.8 | 11.1 |
1.5 (Silty clay 3) | 23 | 1860 | 140.2 | 26.6 | 10.0 |
1 (Fine sand 1) | 23 | 1840 | 312.1 | 6.0 | 28.0 |
3 (Silty clay 3) | 23 | 1860 | 140.2 | 26.6 | 10.0 |
5 (Fine sand 2) | 23 | 1840 | 272.9 | 6.0 | 25.0 |
2 (Medium sand) | 23 | 1840 | 302.5 | 3.0 | 30.0 |
5 (Coarse sand) | 23 | 1840 | 358.9 | 2.0 | 35.0 |
Seismic Wave | Floor | 0.1 g | 0.3 g | ||||||
---|---|---|---|---|---|---|---|---|---|
−5 °C | −10 °C | −15 °C | −20 °C | −5 °C | −10 °C | −15 °C | −20 °C | ||
El-Centro | 1 | 0.2 | 0.43 | 0.39 | 0.43 | 0.25 | 0.44 | 0.36 | 0.32 |
2 | 0.16 | 0.27 | 0.28 | 0.28 | 0.2 | 0.24 | 0.24 | 0.21 | |
3 | 0.17 | 0.27 | 0.3 | 0.31 | 0.21 | 0.26 | 0.23 | 0.21 | |
4 | 0.24 | 0.32 | 0.32 | 0.35 | 0.22 | 0.24 | 0.18 | 0.16 | |
Average value | 19.25% | 32.25% | 32.25% | 34.25% | 22.00% | 29.50% | 25.25% | 22.50% | |
Kocaeli | 1 | 0.37 | 0.45 | 0.47 | 0.48 | 0.17 | 0.23 | 0.24 | 0.26 |
2 | 0.38 | 0.40 | 0.42 | 0.44 | 0.26 | 0.35 | 0.40 | 0.42 | |
3 | 0.40 | 0.42 | 0.46 | 0.49 | 0.23 | 0.33 | 0.39 | 0.41 | |
4 | 0.41 | 0.42 | 0.44 | 0.45 | 0.24 | 0.29 | 0.40 | 0.41 | |
Average value | 38.81% | 42.67% | 44.72% | 46.65% | 22.45% | 30.01% | 35.95% | 37.34% | |
Loma Prieta | 1 | 0.12 | 0.15 | 0.23 | 0.08 | 0.05 | 0.13 | 0.12 | 0.1 |
2 | 0.01 | 0.09 | 0.16 | 0.06 | 0.12 | 0.16 | 0.19 | 0.18 | |
3 | 0 | 0.07 | 0.14 | 0.04 | 0.13 | 0.18 | 0.21 | 0.2 | |
4 | 0.01 | 0.07 | 0.14 | 0.01 | 0.15 | 0.2 | 0.22 | 0.21 | |
Average value | 3.50% | 9.50% | 16.75% | 4.75% | 10.25% | 18.25% | 18.50% | 17.25% | |
Northridge | 1 | 0.18 | 0.31 | 0.31 | 0.21 | 0.23 | 0.42 | 0.48 | 0.5 |
2 | 0.13 | 0.26 | 0.28 | 0.14 | 0.03 | 0.19 | 0.23 | 0.25 | |
3 | 0.13 | 0.35 | 0.38 | 0.23 | 0.11 | 0.2 | 0.29 | 0.28 | |
4 | 0.15 | 0.25 | 0.33 | 0.05 | 0.21 | 0.27 | 0.32 | 0.33 | |
Average value | 14.75% | 29.25% | 32.50% | 15.75% | 14.50% | 27.00% | 33.00% | 34.00% | |
Concrete | 1 | 0.11 | 0.29 | 0.78 | 0.47 | 0.19 | 0.41 | 0.46 | 0.49 |
2 | 0.06 | 0.21 | 0.66 | 0.47 | 0.08 | 0.23 | 0.28 | 0.31 | |
3 | 0.07 | 0.22 | 0.58 | 0.45 | 0.08 | 0.22 | 0.26 | 0.29 | |
4 | 0.08 | 0.22 | 0.59 | 0.39 | 0.08 | 0.21 | 0.24 | 0.27 | |
Average value | 8.00% | 23.50% | 65.25% | 44.50% | 10.75% | 26.75% | 31.00% | 34.00% | |
Kobe | 1 | 0.2 | 0.4 | 0.34 | 0.47 | 0.38 | 0.37 | 0.31 | 0.27 |
2 | 0.01 | 0.19 | 0.17 | 0.33 | 0.06 | 0.08 | 0.08 | 0.11 | |
3 | 0.01 | 0.21 | 0.18 | 0.34 | 0.12 | 0.13 | 0.13 | 0.14 | |
4 | 0.01 | 0.23 | 0.18 | 0.36 | 0.13 | 0.09 | 0.07 | 0.08 | |
Average value | 5.75% | 25.75% | 21.75% | 37.50% | 17.28% | 16.48% | 14.70% | 14.86% | |
Shanghai | 1 | 0.24 | 0.4 | 0.35 | 0.36 | 0.32 | 0.41 | 0.41 | 0.41 |
2 | 0.16 | 0.32 | 0.25 | 0.28 | 0.28 | 0.21 | 0.15 | 0.12 | |
3 | 0.17 | 0.32 | 0.26 | 0.29 | 0.31 | 0.25 | 0.18 | 0.15 | |
4 | 0.19 | 0.33 | 0.25 | 0.28 | 0.32 | 0.28 | 0.2 | 0.17 | |
Average value | 19.00% | 34.25% | 27.75% | 30.25% | 30.75% | 28.75% | 23.50% | 21.25% | |
San Francisco | 1 | 0.37 | 0.34 | 0.53 | 0.65 | 0.2 | 0.25 | 0.52 | 0.29 |
2 | 0.51 | 0.29 | 0.56 | 0.8 | 0.14 | 0.16 | 0.5 | 0.16 | |
3 | 0.57 | 0.16 | 0.48 | 0.82 | 0.05 | 0.22 | 0.64 | 0.37 | |
4 | 0.49 | 0.13 | 0.46 | 0.72 | 0.01 | 0.17 | 0.63 | 0.27 | |
Average value | 48.50% | 23.00% | 50.75% | 74.75% | 10.00% | 20.00% | 57.25% | 27.25% | |
QianAn | 1 | 0.18 | 0.2 | 0.44 | 0.43 | 0.3 | 0.44 | 0.49 | 0.45 |
2 | 0.15 | 0.26 | 0.54 | 0.62 | 0.19 | 0.3 | 0.36 | 0.32 | |
3 | 0.16 | 0.34 | 0.51 | 0.73 | 0.19 | 0.26 | 0.36 | 0.35 | |
4 | 0.15 | 0.35 | 0.52 | 0.6 | 0.21 | 0.3 | 0.44 | 0.31 | |
Average value | 16.00% | 28.75% | 50.25% | 59.50% | 22.25% | 32.50% | 41.25% | 35.75% | |
Tangshan | 1 | 0.21 | 0.44 | 0.46 | 0.48 | 0.29 | 0.47 | 0.48 | 0.47 |
2 | 0.01 | 0.14 | 0.12 | 0.15 | 0.29 | 0.12 | 0.09 | 0.03 | |
3 | 0.01 | 0.19 | 0.17 | 0.19 | 0.3 | 0.13 | 0.11 | 0.04 | |
4 | 0.01 | 0.18 | 0.18 | 0.19 | 0.29 | 0.13 | 0.1 | 0.1 | |
Average value | 6.00% | 23.75% | 23.25% | 25.25% | 29.25% | 21.25% | 19.50% | 16.00% | |
Tianjing | 1 | 0.27 | 0.29 | 0.33 | 0.7 | 0.38 | 0.46 | 0.48 | 0.49 |
2 | 0.25 | 0.21 | 0.26 | 0.62 | 0.14 | 0.19 | 0.21 | 0.22 | |
3 | 0.26 | 0.21 | 0.25 | 0.6 | 0.13 | 0.19 | 0.19 | 0.22 | |
4 | 0.25 | 0.2 | 0.25 | 0.66 | 0.13 | 0.18 | 0.19 | 0.21 | |
Average value | 25.75% | 22.75% | 27.25% | 64.50% | 19.50% | 25.50% | 26.75% | 28.50% | |
Taft | 1 | 0.37 | 0.39 | 0.35 | 0.25 | 0.37 | 0.49 | 0.38 | 0.28 |
2 | 0.24 | 0.32 | 0.3 | 0.19 | 0.23 | 0.34 | 0.24 | 0.19 | |
3 | 0.2 | 0.31 | 0.29 | 0.21 | 0.27 | 0.36 | 0.25 | 0.2 | |
4 | 0.23 | 0.31 | 0.29 | 0.28 | 0.3 | 0.36 | 0.25 | 0.19 | |
Average value | 26.00% | 33.25% | 30.75% | 23.25% | 29.25% | 38.75% | 28.00% | 21.50% |
Seismic Wave | Position | 0.1 g | 0.3 g | ||||||
---|---|---|---|---|---|---|---|---|---|
−5 °C | −10 °C | −15 °C | −20 °C | −5 °C | −10 °C | −15 °C | −20 °C | ||
El-Centro | First floor | 13.13% | 16.45% | 18.44% | 16.45% | 21.96% | 15.25% | 11.15% | 10.37% |
Entire structure | 20.00% | 28.00% | 27.56% | 26.81% | 22.00% | 15.88% | 16.69% | 17.63% | |
Loma Prieta | First floor | 19.09% | 21.52% | 26.97% | 23.03% | 29.34% | 23.66% | 24.29% | 25.87% |
Entire structure | 14.75% | 21.94% | 22.50% | 21.38% | 24.38% | 29.31% | 29.25% | 31.31% | |
Taft | First floor | 36.49% | 40.54% | 38.29% | 41.44% | 2.40% | 8.32% | 4.81% | 5.36% |
Entire structure | 49.88% | 53.75% | 51.94% | 55.19% | 16.63% | 25.06% | 24.19% | 24.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, X.; Wang, G. Study of Structural Seismic Damage Considering Seasonal Frozen Soil–Structure Interaction. Buildings 2024, 14, 1493. https://doi.org/10.3390/buildings14061493
Bian X, Wang G. Study of Structural Seismic Damage Considering Seasonal Frozen Soil–Structure Interaction. Buildings. 2024; 14(6):1493. https://doi.org/10.3390/buildings14061493
Chicago/Turabian StyleBian, Xuyang, and Guoxin Wang. 2024. "Study of Structural Seismic Damage Considering Seasonal Frozen Soil–Structure Interaction" Buildings 14, no. 6: 1493. https://doi.org/10.3390/buildings14061493
APA StyleBian, X., & Wang, G. (2024). Study of Structural Seismic Damage Considering Seasonal Frozen Soil–Structure Interaction. Buildings, 14(6), 1493. https://doi.org/10.3390/buildings14061493