Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Material Properties of UHMWPE
2.1. Molecular Structure
2.2. Chemical Structure
2.3. Chemical and Physical Properties
3. Advancements in Manufacturing Methods of UHMWPE
3.1. Crosslinking Techniques
3.2. Doping with Nanoparticles
3.3. Surface Modification
4. Comparative Analysis of UHMWPE with Other FRPs
4.1. Comparative Analysis of Physical Properties
4.2. Other FRP Application in Concrete Repair
4.3. Advantages of UHMWPE over Other FRPs
5. Resent Research and Application of UHMWPE in Concrete Repair
5.1. The Application Research of Other FRPs
5.2. The Application of UHMWPE in Concrete Repair
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Golding, V.P.; Gharineiat, Z.; Munawar, H.S.; Ullah, F. Crack Detection in Concrete Structures Using Deep Learning. Sustainability 2022, 14, 8117. [Google Scholar] [CrossRef]
- Mohd Mehndi, S.; Ahmad, S.; Mohd Mehndi Meraj Ahmad Khan, S. Causes and Evaluation of Cracks in Concrete Structures. Int. J. Tech. Res. Appl. 2020, 2, 29–33. [Google Scholar]
- Maj, M.; Ubysz, A. Cracking of Composite Fiber-Reinforced Concrete Foundation Slabs Due to Shrinkage. Mater. Today Proc. 2021, 38, 2092–2098. [Google Scholar] [CrossRef]
- Grunwald, C.; Riedel, W.; Sauer, M.; Stolz, A.; Hiermaier, S. Modeling the Dynamic Fracture of Concrete—A Robust, Efficient, and Accurate Mesoscale Description. Comput. Methods Appl. Mech. Eng. 2024, 424, 116886. [Google Scholar] [CrossRef]
- Sakalauskas, K.; Kaklauskas, G. Pure Shear Model for Crack Width Analysis of Reinforced Concrete Members. Sci. Rep. 2023, 13, 13883. [Google Scholar] [CrossRef]
- Zeng, B.; Li, Y. TowardsPerformance-Based Design of Masonry Buildings:Literature Review. Buildings 2023, 13, 1534. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, Y.; Sun, Y.; Shao, X.; Wu, G. Deformation Ability of Precast Concrete Columns Reinforced with Steel-FRP Composite Bars (SFCBs) Based on the DIC Method. J. Build. Eng. 2023, 68, 106083. [Google Scholar] [CrossRef]
- Apandi, N.M.; Ma, C.K.; Chin, C.L.; Awang, A.Z.; Omar, W.; Rashid, A.S.A.; Zailani, W.W.A. Preliminary Pre-Damaged Level Assessment for Concrete Structures: A Review. Structures 2023, 54, 1381–1390. [Google Scholar] [CrossRef]
- Vieira, P.S.C.; da Silva, G.A.S.; Lopes, B.J.; D’Almeida, J.R.M.; da Silva, A.H.; Cardoso, D.C.T. Hygrothermal Aging of Steel/FRP Pipe Repair Systems: A Literature Review. Int. J. Press. Vessel. Pip. 2023, 201, 104881. [Google Scholar] [CrossRef]
- Peñas-Caballero, M.; Chemello, E.; Grande, A.M.; Hernández Santana, M.; Verdejo, R.; Lopez-Manchado, M.A. Poly(Methyl Methacrylate) as Healing Agent for Carbon Fibre Reinforced Epoxy Composites. Polymers 2023, 15, 1114. [Google Scholar] [CrossRef]
- Anni, I.A.; Kaminskyj, M.S.; Uddin, K.Z.; Stanzione, J.F., III; Haas, F.M.; Koohbor, B. Repair of Damaged Fiber Reinforced Polymer Composites with Cold Spray. J. Therm. Spray Technol. 2023, 84536, 742–747. [Google Scholar] [CrossRef]
- Karatzas, V.A.; Kotsidis, E.; Tsouvalis, N.G. An Experimental and Numerical Study of Corroded Steel Plates Repaired with Composite Patches. In Proceedings of the 4th International Conference on Marine Structures, MARSTRUCT 2013, Espoo, Finland, 25–27 March 2013; pp. 405–412. [Google Scholar] [CrossRef]
- Khalil, A.E.H.A.; Atta, A.M.; Baraghith, A.T.; Behiry, R.N.; Soliman, O.E. Shear Strengthening of Concrete Deep Beams Using Pre-Fabricated Strain-Hardening Cementitious Composite Plates. Eng. Struct. 2023, 278, 115548. [Google Scholar] [CrossRef]
- Arockiasamy, M.; Dutta, P.K. Retrofitting and Structural Repair with Advanced Polymer Matrix Composite Materials. In Proceedings of the Sixth International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 26 May 1996; Volume 4, pp. 336–340. [Google Scholar]
- Chandra Das, S.; Haque Nizam, E. Applications of Fibber Reinforced Polymer Composites (FRP) in Civil Engineering. Int. J. Adv. Struct. Geotech. Eng. 2014, 3, 2319–5347. [Google Scholar]
- Gonҫalves, M.C.; Fernanda, M. Materials for Construction and Civil Engineering: Science, Processing, and Design; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319082363. [Google Scholar]
- Li, D.; Yang, B.; Zhang, J.; Jin, L.; Du, X. Effects of Concrete Strength and CFRP Cloth Ratio on the Shear Performance of CFRP Cloth Strengthened RC Beams. Buildings 2023, 13, 2604. [Google Scholar] [CrossRef]
- He, C.S.; Wang, W.W.; Tang, Y.X.; Xue, Y.J. Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites. Sustainability 2023, 15, 13078. [Google Scholar] [CrossRef]
- Li, H.; Qi, Y.; Li, Y.; Bao, S.; Song, Z. Study of the Mechanical Performance of Grid-Reinforced Concrete Beams with Basalt Fiber-Reinforced Polymers. Appl. Sci. 2024, 14, 1099. [Google Scholar] [CrossRef]
- Zou, Y.; Ji, Y.; Li, W. Research on the Durability of FRP-Bonded Concrete Beams Subjected to a Performance Probabilistic Design Method. Mater. Struct. Constr. 2024, 57, 30. [Google Scholar] [CrossRef]
- Bhong, M.; Khan, T.K.H.; Devade, K.; Vijay Krishna, B.; Sura, S.; Eftikhaar, H.K.; Pal Thethi, H.; Gupta, N. Review of Composite Materials and Applications. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gupta, M.K.; Srivastava, R.K. Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polym.-Plast. Technol. Eng. 2016, 55, 626–642. [Google Scholar] [CrossRef]
- Farh, H.M.H.; Ben Seghier, M.E.A.; Zayed, T. A Comprehensive Review of Corrosion Protection and Control Techniques for Metallic Pipelines. Eng. Fail. Anal. 2023, 143, 106885. [Google Scholar] [CrossRef]
- Ortiz, J.D.; Dolati, S.S.K.; Malla, P.; Mehrabi, A.; Nanni, A. Nondestructive Testing (NDT) for Damage Detection in Concrete Elements with Externally Bonded Fiber-Reinforced Polymer. Buildings 2024, 14, 246. [Google Scholar] [CrossRef]
- Liu, S.; Ma, X.; Ma, Y.; Chen, Z.; Dong, Z.; Ma, P. Review on the Design and Application of Concrete Canvas Reinforced with Spacer Fabric. J. Eng. Fiber. Fabr. 2023, 18, 15589250231152591. [Google Scholar] [CrossRef]
- Men, P.; Wang, X.M.; Liu, D.; Zhang, Z.; Zhang, Q.; Lu, Y. On Use of Polyvinylpyrrolidone to Modify Polyethylene Fibers for Improving Tensile Properties of High Strength ECC. Constr. Build. Mater. 2024, 417, 135354. [Google Scholar] [CrossRef]
- Soliman, A.A.; Heard, W.F.; Williams, B.A.; Ranade, R. Effects of the Tensile Properties of UHPC on the Bond Behavior. Constr. Build. Mater. 2023, 392, 131990. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Yu, X.; Xu, Z.; Cui, J.; Lai, M.; Yu, J.; Bao, F.; Tang, Z.; Zhu, C.; et al. Flexible, Lightweight, High Strength and High Efficiently Hierarchical Gd2O3/PE Composites Based on the UHMWPE Fibers with Self-Reinforcing Strategy for Thermal Neutron Shielding. Compos. Sci. Technol. 2024, 251, 110549. [Google Scholar] [CrossRef]
- Atiqullah, M.; Adamu, S.; Emwas, A.H.M. UHMW Ziegler–Natta Polyethylene: Synthesis, Crystallization, and Melt Behavior. J. Taiwan Inst. Chem. Eng. 2017, 76, 141–155. [Google Scholar] [CrossRef]
- Rey-Vinolas, S.; Engel, E.; Mateos-Timoneda, M.A. Polymers for Bone Repair. In Bone Repair Biomater: Regeneration and Clinical Applicationsi, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 179–197. [Google Scholar] [CrossRef]
- Sui, G.; Zhong, W.H.; Ren, X.; Wang, X.Q.; Yang, X.P. Structure, Mechanical Properties and Friction Behavior of UHMWPE/HDPE/Carbon Nanofibers. Mater. Chem. Phys. 2009, 115, 404–412. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, X.; Ma, Y.; Zhang, G.; Wang, C.; Pang, X.; Xiong, F. Temperature-Influenced Cutting Mechanism of UHMWPE Fibres. J. Manuf. Process. 2024, 113, 183–196. [Google Scholar] [CrossRef]
- Yu, L.; Wei, D.; Zheng, A.; Xu, X.; Guan, Y. An Investigation on Tribological Properties and Mechanical Properties of UHMWPE/Polycrystalline Mullite Fiber. Polym. Bull. 2023, 80, 3041–3054. [Google Scholar] [CrossRef]
- Bajya, M.; Majumdar, A.; Butola, B.S.; Jasra, R.V. Exploration of Disentangled UHMWPE Tape as a Soft Body Armour Material. Mater. Chem. Phys. 2023, 295, 127162. [Google Scholar] [CrossRef]
- Kumar, N. Bulletproof Vest and Its Improvement—A Review. Int. J. Sci. Dev. Res. 2016, 1, 34–39. [Google Scholar]
- Wang, A.; Sun, D.C.; Stark, C.; Dumbleton, J.H. Wear Mechanisms of UHMWPE in Total Joint Replacements. Wear 1995, 181–183, 241–249. [Google Scholar] [CrossRef]
- Oral, E.; Doshi, B.N.; Fung, K.; O’Brien, C.; Wannomae, K.K.; Muratoglu, O.K. Chemically Cross-Linked UHMWPE with Superior Toughness. J. Orthop. Res. 2019, 37, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Xiaobao, Z.; Gui, G.; Bugong, S.; Honggang, W.; Yuan, Q. Study of Frictional Wear and Desorption of Nanoparticle-Rubber Blend Modified UHMWPE Composites. Polym. Compos. 2024, 28509. [Google Scholar] [CrossRef]
- Jacobs, C.A.M.; Cramer, E.E.A.; Dias, A.A.; Smelt, H.; Hofmann, S.; Ito, K. Surface Modifications to Promote the Osteoconductivity of Ultra-High-Molecular-Weight-Polyethylene Fabrics for a Novel Biomimetic Artificial Disc Prosthesis: An in Vitro Study. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2023, 111, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Suparp, S.; Ejaz, A.; Khan, K.; Hussain, Q.; Joyklad, P.; Saingam, P. Load-Bearing Performance of Non-Prismatic RC Beams Wrapped with Carbon FRP Composites. Sensors 2023, 23, 5409. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Hadigheh, S.A.; Wei, Y. Recycling of Glass Fibre Reinforced Polymer (GFRP) Composite Wastes in Concrete: A Critical Review and Cost Benefit Analysis. Structures 2023, 53, 1540–1556. [Google Scholar] [CrossRef]
- To, Q.B.; Shin, J.; Lee, G.; An, H.; Lee, K. Experimental Assessment and Effective Bond Length for RC Columns Strengthened with Aramid FRP Sheets under Cyclic Loading. Eng. Struct. 2023, 294, 116642. [Google Scholar] [CrossRef]
- Hajiesmaeili, A.; Denarié, E. Next Generation UHPFRC for Sustainable Structural Applications. Am. Concr. Inst. ACI Spec. Publ. 2018, 2018, 51711041. [Google Scholar] [CrossRef]
- Kesner, K.E.; Billington, S.L.; Douglas, K.S. Cyclic Response of Highly Ductile Fiber-Reinforced Cement-Based Composites. ACI Mater. J. 2003, 100, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, X.Q.; Zhao, D.; Hou, J.; Wu, C.; Lau, D.; Tam, L.H. Degradation of Fiber/Matrix Interface under Various Environmental and Loading Conditions: Insights from Molecular Simulations. Constr. Build. Mater. 2023, 390, 131101. [Google Scholar] [CrossRef]
- Navaratnam, S.; Selvaranjan, K.; Jayasooriya, D.; Rajeev, P.; Sanjayan, J. Applications of Natural and Synthetic Fiber Reinforced Polymer in Infrastructure: A Suitability Assessment. J. Build. Eng. 2023, 66, 105835. [Google Scholar] [CrossRef]
- Mehrbod, A.; Behnamfar, F.; Aziminejad, A.; Hashemol-Hosseini, H. Seismic Vulnerability Assessment of Stone Arch Bridges by Nonlinear Dynamic Analysis Using Discrete Element Method. Int. J. Archit. Herit. 2023, 17, 1791–1812. [Google Scholar] [CrossRef]
- Mulian, G.; Rabinovitch, O. Experimental and Analytical Study of the Dynamic Debonding in FRP Plated Beams. Int. J. Solids Struct. 2016, 92–93, 121–134. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H.; Cui, J.; Shi, Y. Interfacial Bond Behaviour between Hybrid Carbon/Basalt Fibre Composites and Concrete under Dynamic Loading. Int. J. Adhes. Adhes. 2020, 99, 102569. [Google Scholar] [CrossRef]
- Szczepansk, J.M. Modification and Integration of Shear Thickening Fluids into High Performance Fabrics. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2011. [Google Scholar]
- Mahltig, B.; Grethe, T. High-Performance and Functional Fiber Materials—A Review of Properties, Scanning Electron Microscopy SEM and Electron Dispersive Spectroscopy EDS. Textiles 2022, 2, 209–254. [Google Scholar] [CrossRef]
- Porter, R. Cost-Effective Technique Produces Strongest Polyethylene Fibers. Mater. Process. Rep. 1991, 6, 2–3. [Google Scholar] [CrossRef]
- Clauer, A.; Koucky, J. Laser Shock Processing Increases the Fatigue Life of Metal Parts. Mater. Process. Rep. 1991, 6, 3–5. [Google Scholar] [CrossRef]
- Pakhomov, P.M.; Galitsyn, V.P.; Krylov, A.L.; Khizhnyak, S.D.; Golikova, A.Y.; Chmel’, A.E. Structural Transitions in Manufacture of High-Strength Polyethylene Fibres by the Gel-Technology Method. Fibre Chem. 2005, 37, 319–326. [Google Scholar] [CrossRef]
- Smith, P.; Lemstra, P.J.; Kalb, B.; Pennings, A.J. Ultrahigh-Strength Polyethylene Filaments by Solution Spinning and Hot Drawing. Polym. Bull. 1979, 1, 733–736. [Google Scholar] [CrossRef]
- Smith, P.; Lemstra, P.J. Ultrahigh-Strength Polyethylene Filaments by Solution Spinning/Drawing. II. Influ. Solvent Draw. 1979, 180, 2983–2986. [Google Scholar] [CrossRef]
- Nazir, R.; Musolino, S.F.; MacFarlane, M.A.; Wulff, J.E. Surface Modification and Dyeing of Ultrahigh-Molecular-Weight Polyethylene Fabrics Using Diazirine-Based Polymers. ACS Appl. Polym. Mater. 2024, 6, 1688–1697. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Y.; Sun, B.; Gu, B. Hybrid Ratio Optimizations on Ballistic Penetration of Carbon Kevlar UHMWPE Fiber Laminates. Int. J. Mech. Sci. 2023, 258, 108585. [Google Scholar] [CrossRef]
- Jauffrès, D.; Lame, O.; Vigier, G.; Doré, F. Microstructural Origin of Physical and Mechanical Properties of Ultra High Molecular Weight Polyethylene Processed by High Velocity Compaction. Polymer 2007, 48, 6374–6383. [Google Scholar] [CrossRef]
- Khalil, Y.; Hopkinson, N.; Kowalski, A.; Fairclough, J.P.A. Characterisation of UHMWPE Polymer Powder for Laser Sintering. Materials 2019, 12, 3496. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M. A Primer on UHMWPE, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780323354011. [Google Scholar]
- Li, J.; Luo, C.; Jie, J.; Cui, H. Rheological Properties and Microscopic Morphology Evaluation of UHMWPE-Modified Corn Stover Oil Bio-Asphalt. Buildings 2023, 13, 2167. [Google Scholar] [CrossRef]
- Shen, H.; Hu, Y.; Gao, A.; Meng, F.; Li, L.; Ju, G. The Influence of UHMWPE with Varying Morphologies on the Non-Isothermal Crystallization Kinetics of HDPE. RSC Adv. 2023, 13, 35592–35601. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Ghosh, A.K.; Bhatnagar, N. Enhancement of Electrospun UHMWPE Fiber Performance through Post-Processing Treatment. J. Appl. Polym. Sci. 2023, 140, 54221. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.; Olifirov, L.K.; Chukov, D.; Kolesnikov, E.; Kaloshkin, S.D.; Telyshev, D.V. Structural, Mechanical, and Tribological Properties of Oriented Ultra-High Molecular Weight Polyethylene/Graphene Nanoplates/Polyaniline Films. Polymers 2023, 15, 758. [Google Scholar] [CrossRef]
- Deng, B.; Chen, L.; Zhong, Y.; Li, X.; Wang, Z. The Effect of Temperature on the Structural Evolution of Ultra-High Molecular Weight Polyethylene Films with Pre-Reserved Shish Crystals during the Stretching Process. Polymer 2023, 267, 125690. [Google Scholar] [CrossRef]
- Lermontov, S.A.; Maksimkin, A.V.; Sipyagina, N.A.; Malkova, A.N.; Kolesnikov, E.A.; Zadorozhnyy, M.Y.; Straumal, E.A.; Dayyoub, T. Ultra-High Molecular Weight Polyethylene with Hybrid Porous Structure. Polymer 2020, 202, 122744. [Google Scholar] [CrossRef]
- Egorov, V.M.; Ivan’kova, E.M.; Kulik, V.B.; Lebedev, D.V.; Myasnikova, L.P.; Marikhin, V.A.; Radovanova, E.I.; Yagovkina, M.A.; Seydewitz, V.; Goerlitz, S.; et al. Features of the Amorphous-Crystalline Structure of UHMWPE. Polym. Sci.-Ser. C 2011, 53, 75–88. [Google Scholar] [CrossRef]
- Xia, L.; Xi, P.; Cheng, B. A Comparative Study of UHMWPE Fibers Prepared by Flash-Spinning and Gel-Spinning. Mater. Lett. 2015, 147, 79–81. [Google Scholar] [CrossRef]
- da Silva, N.P.; de Oliveira Aguiar, V.; da Costa Garcia Filho, F.; da Silva Figueiredo, A.B.H.; Monteiro, S.N.; Huaman, N.R.C.; de Fátima Vieira, M. Ballistic Performance of Boron Carbide Nanoparticles Reinforced Ultra-High Molecular Weight Polyethylene (UHMWPE). J. Mater. Res. Technol. 2022, 17, 1799–1811. [Google Scholar] [CrossRef]
- Ohta, T. Review on processing ultra high tenacity fibers from flexible polymer. Polym. Eng. Sci. 1983, 23, 697–703. [Google Scholar] [CrossRef]
- Kirschbaum, R.; van Dingenen, J.L.J. Advances in Gel-Spinning Technology and Dyneema Fiber Applications. In Integration of Fundamental Polymer Science and Technology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 178–198. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, W.; Ma, S.; Wang, B.; Wu, G.; Cheng, J.; Ni, Z.; Zhao, G. Strength and Toughness of Semicrystalline Polymer Fibers: Influence of Molecular Chain Entanglement. Polymer 2024, 304, 127119. [Google Scholar] [CrossRef]
- Sui, Y.; Qiu, Z.; Liu, Y.; Li, J.; Cui, Y.; Wei, P.; Cong, C.; Meng, X.; Zhou, Q. Ultra-High Molecular Weight Polyethylene (UHMWPE)/High-Density Polyethylene (HDPE) Blends with Outstanding Mechanical Properties, Wear Resistance, and Processability. J. Polym. Res. 2023, 30, 1–10. [Google Scholar] [CrossRef]
- Chen, L.; Xing, C.; Gao, J.; Li, Y.; Wang, Z. Structural Evolution of Ultra-High Molecular Weight Polyethylene Gel Film Stretching at Different Temperatures with Reservation of Shish Crystals. Polymer 2023, 284, 126283. [Google Scholar] [CrossRef]
- Dong, T.; Niu, F.; Qiang, Z.; Wang, X.; Guo, J.; Wang, Y.; He, Y. Structure and Properties Evolution of UV Crosslinked Ultra-High Molecular Weight Polyethylene Fiber during Processing. J. Polym. Sci. 2024, 1–14. [Google Scholar] [CrossRef]
- Sun, W.J.; Liu, X.J.; Yuan, L.J.; Xiao, H.; Lu, J.M. Investigation on the Crystallinity of Crosslinked Polyethylene. In Polymer Bulletin; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Li, J.; Du, Y.; Liu, T.; Zhao, S. Size Effects of Silica on the Viscosity of Ultra-High Molecular Weight Polyethylene and Its Disentanglement Mechanism. J. Appl. Polym. Sci. 2023, 140, 54273. [Google Scholar] [CrossRef]
- Movva, S.; Burrell, R.K.; Garmestani, H.; Jacob, K.I. Characterization of Hardness and Elastic Modulus Using Nanoindentation and Correlation with Wear Behavior of UHMWPE during Uniaxial Tension. J. Mech. Behav. Biomed. Mater. 2023, 147, 106142. [Google Scholar] [CrossRef]
- Ries, M.D.; Pruitt, L. Effect of Cross-Linking on the Microstructure and Mechanical Properties of Ultra-High Molecular Weight Polyethylene. Clin. Orthop. Relat. Res. 2005, 440, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Simis, K.S.; Bistolfi, A.; Bellare, A.; Pruitt, L.A. The Combined Effects of Crosslinking and High Crystallinity on the Microstructural and Mechanical Properties of Ultra High Molecular Weight Polyethylene. Biomaterials 2006, 27, 1688–1694. [Google Scholar] [CrossRef]
- Bistolfi, A.; Turell, M.B.; Lee, Y.L.; Bellare, A. Tensile and Tribological Properties of High-Crystallinity Radiation Crosslinked UHMWPE. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2009, 90B, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Edidin, A.A.; Kurtz, S.M. Influence of Mechanical Behavior on the Wear of 4 Clinically Relevant Polymeric Biomaterials in a Hip Simulator. J. Arthroplast. 2000, 15, 321–331. [Google Scholar] [CrossRef]
- Chang, T.; Guo, Z.; Yuan, C. Study on Influence of Koch Snowflake Surface Texture on Tribological Performance for Marine Water-Lubricated Bearings. Tribol. Int. 2019, 129, 29–37. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Chen, K.; Xu, H. Effect of Ellipse Motion Paths with Different Aspect Ratios on Friction and Wear of Highly Crosslinked Polyethylene. J. Thermoplast. Compos. Mater. 2021, 36, 555–576. [Google Scholar] [CrossRef]
- Lee, R.K.; Korduba, L.A.; Wang, A. An Improved Theoretical Model of Orientation Softening and Cross-Shear Wear of Ultra High Molecular Weight Polyethylene. Wear 2011, 271, 2230–2233. [Google Scholar] [CrossRef]
- Minn, M.; Sinha, S.K. Molecular Orientation, Crystallinity, and Topographical Changes in Sliding and Their Frictional Effects for UHMWPE Film. Tribol. Lett. 2009, 34, 133–140. [Google Scholar] [CrossRef]
- Austin Chiumia Tax Policy Developments. Donor Inflows and Economic Growth in Malawi. J. Econ. Int. Financ. 2012, 4, 2478–2485. [Google Scholar] [CrossRef]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for Biomedical Applications: Performance and Functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Oliveira, G.L.; Costa, M.F. Optimization of Process Conditions, Characterization and Mechanical Properties of Silane Crosslinked High-Density Polyethylene. Mater. Sci. Eng. A 2010, 527, 4593–4599. [Google Scholar] [CrossRef]
- Gul, R.M.; Fung, K.; Doshi, B.N.; Oral, E.; Muratoglu, O.K. Surface Cross-Linked UHMWPE Using Peroxides. J. Orthop. Res. 2017, 35, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, L.; Li, R.; Hu, J.; Wang, M.; Wu, G. Improving the Creep Resistance and Tensile Property of UHMWPE Sheet by Radiation Cross-Linking and Annealing. Radiat. Phys. Chem. 2016, 125, 41–49. [Google Scholar] [CrossRef]
- Bracco, P.; Brunella, V.; Luda, M.P.; Zanetti, M.; Costa, L. Radiation-Induced Crosslinking of UHMWPE in the Presence of Co-Agents: Chemical and Mechanical Characterisation. Polymer 2005, 46, 10648–10657. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.M. Mechanical and Tribological Properties of Zeolite-Reinforced UHMWPE Composite for Implant Application. Procedia Eng. 2013, 68, 88–94. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Ali, A.B.; Nesar, M. Evaluation of Tribological Properties of Organoclay Reinforced UHMWPE Nanocomposites. J. Tribol. 2017, 139, 4033188. [Google Scholar] [CrossRef]
- Plumlee, K.; Schwartz, C.J. Improved Wear Resistance of Orthopaedic UHMWPE by Reinforcement with Zirconium Particles. Wear 2009, 267, 710–717. [Google Scholar] [CrossRef]
- Hiremath, A.; Murthy, A.A.; Thipperudrappa, S.; Bharath, K.N. Nanoparticles Filled Polymer Nanocomposites: A Technological Review. Cogent Eng. 2021, 8, 1991229. [Google Scholar] [CrossRef]
- Zaferani, S.H. Introduction of Polymer-Based Nanocomposites; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081019115. [Google Scholar]
- Oleiwi, J.K.; Anaee, R.A.; Radhi, S.H. CNTS and NHA as Reinforcement to Improve Flexural and Impact Properties of Uhmwpe Nanocomposites for Hip Joint Applications. Int. J. Mech. Eng. Technol. 2018, 9, 121–129. [Google Scholar]
- Ruan, F.; Bao, L. Mechanical Enhancement of UHMWPE Fibers by Coating with Carbon Nanoparticles. Fibers Polym. 2014, 15, 723–728. [Google Scholar] [CrossRef]
- Mahfuz, H.; Khan, M.R.; Leventouri, T.; Liarokapis, E. Investigation of MWCNT Reinforcement on the Strain Hardening Behavior of Ultrahigh Molecular Weight Polyethylene. J. Nanotechnol. 2011, 2011, 637395. [Google Scholar] [CrossRef]
- Ruan, S.; Gao, P.; Yu, T.X. Ultra-Strong Gel-Spun UHMWPE Fibers Reinforced Using Multiwalled Carbon Nanotubes. Polymer 2006, 47, 1604–1611. [Google Scholar] [CrossRef]
- Chhetri, S.; Bougherara, H. A Comprehensive Review on Surface Modification of UHMWPE Fiber and Interfacial Properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, C.; Jia, L.; Shi, B.; Chen, Z.; Zhang, X.; Wei, S.; Han, Y.; Liu, Z.; Yan, R. Influence of Oxygen/Argon/Nitrogen Multi-Component Plasma Modification on Interlayer Toughening of UHMWPE Fiber Reinforced Composites. Compos. Struct. 2024, 339, 118142. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Xiang, Y.; Sun, Q.; Xia, Y.; Xiong, Z. Superior Enhancement of the UHMWPE Fiber/Epoxy Interface through the Combination of Plasma Treatment and Polypyrrole In-Situ Grown Fibers. Polymers 2023, 15, 2265. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhao, Y.; Chen, Z.; Shi, B.; Zhang, X.; Jia, L.; Yan, R. Influence of Oxygen/Argon Duoplasmatron Synergistic Modification on the Mechanical Properties of UHMWPE/Vinyl Ester Composites. Polym. Compos. 2023, 44, 6811–6825. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, J.Y.; Tsai, C.S.; Hsieh, K.H.; Yeh, J.T.; Chen, K.N. Effects of Argon Plasma Treatment on the Adhesion Property of Ultra High Molecular Weight Polyethylene (UHMWPE) Textile. Surf. Coatings Technol. 2013, 231, 507–511. [Google Scholar] [CrossRef]
- Shelly, D.; Lee, S.Y.; Park, S.J. Compatibilization of Ultra-High Molecular Weight Polyethylene (UHMWPE) Fibers and Their Composites for Superior Mechanical Performance: A Concise Review. Compos. Part B Eng. 2024, 275, 111294. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, R. Research Progress on Surface Modification and Application Status of UHMWPE Fiber. J. Phys. Conf. Ser. 2022, 2263, 012016. [Google Scholar] [CrossRef]
- Liu, H.; Pei, Y.; Xie, D.; Deng, X.; Leng, Y.X.; Jin, Y.; Huang, N. Surface Modification of Ultra-High Molecular Weight Polyethylene (UHMWPE) by Argon Plasma. Appl. Surf. Sci. 2010, 256, 3941–3945. [Google Scholar] [CrossRef]
- Bahramian, N.; Atai, M.; Naimi-Jamal, M.R. Ultra-High-Molecular-Weight Polyethylene Fiber Reinforced Dental Composites: Effect of Fiber Surface Treatment on Mechanical Properties of the Composites. Dent. Mater. 2015, 31, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P.; Kumar, A.; Kumar, A.; Dwivedi, P.K. Optimization of Surface Treatments for Improving Adhesion of UHMWPE Nonwoven Composite with Dissimilar Materials. Fibers Polym. 2023, 24, 1431–1440. [Google Scholar] [CrossRef]
- Han, N.; Zhao, X.; Thakur, V.K. Adjusting the Interfacial Adhesion via Surface Modification to Prepare High-Performance Fibers. Nano Mater. Sci. 2023, 5, 1–14. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Zhang, R.; Wang, G.; Jia, J. Effect of Surface Modifications on the Properties of UHMWPE Fibres and Their Composites. e-Polymers 2019, 19, 40–49. [Google Scholar] [CrossRef]
- Sherazi, T.A.; Rehman, T.; Naqvi, S.A.R.; Shaikh, A.J.; Shahzad, S.A.; Abbas, G.; Raza, R.; Waseem, A. Surface Functionalization of Solid State Ultra-High Molecular Weight Polyethylene through Chemical Grafting; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 359, ISBN 9299238359. [Google Scholar]
- Shanmugam, L.; Feng, X.; Yang, J. Enhanced Interphase between Thermoplastic Matrix and UHMWPE Fiber Sized with CNT-Modified Polydopamine Coating. Compos. Sci. Technol. 2019, 174, 212–220. [Google Scholar] [CrossRef]
- Zaharescu, T.; Nicula, N.; Râpă, M.; Iordoc, M.; Tsakiris, V.; Marinescu, V.E. Structural Insights into LDPE/UHMWPE Blends Processed by γ-Irradiation. Polymers 2023, 15, 696. [Google Scholar] [CrossRef]
- Blichova, Z.; Vilcekova, S.; Kridlova Burdova, E.; Katunský, D. Life Cycle Assessment of Residential Buildings and Scenarios for Prolonged Life Span. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1252, 012006. [Google Scholar] [CrossRef]
- Teng, Y.; Li, Z.; Liu, S.; Tiong, R.L.K.; Li, T. Revealing the Influence Mechanism of the Service Lifespan of Residential Buildings in China. Habitat Int. 2023, 142, 102947. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z. Behavior of Macro Synthetic Fiber Concrete Beams Strengthened with Different CFRP Composite Configurations. J. Build. Eng. 2018, 20, 595–608. [Google Scholar] [CrossRef]
- Sabzi, J.; Esfahani, M.R.; Ramezani, A.; Ozbakkaloglu, T. A Comparison between the Behavior of Beams Strengthened by FRP Sheets and FRCM Composites. Eng. Struct. 2024, 306, 117796. [Google Scholar] [CrossRef]
- Zhang, Y. Repair and Strengthening of Reinforced Concrete Beams. Bachelor’s Thesis, The Ohio State University, Columbus, OH, USA, 2012. Volume 66. [Google Scholar]
- Retrofitting of Concrete Reinforced Structure. Available online: https://www.linkedin.com/pulse/retrofitting-concrete-reinforced-structure-fahiz-vp (accessed on 21 March 2024).
- Parvin, A.; Shah, T.S. Fiber Reinforced Polymer Strengthening of Structures by Near-Surface Mounting Method. Polymers 2016, 8, 298. [Google Scholar] [CrossRef] [PubMed]
- Best Steps in the Steel Plate Bonding Process. Available online: https://www.horseen.com/solution/best-steps-in-the-steel-plate-bonding-process (accessed on 21 March 2024).
- Strengthening of RCC Beams in Shear Using Externally Bonded FRP Strips. Available online: https://theconstructor.org/structural-engg/rcc-beams-strengthening-shear-frp-plate/15148/ (accessed on 21 March 2024).
- Kumar, R.; Mikkelsen, L.P.; Lilholt, H.; Madsen, B. Understanding the Mechanical Response of Glass and Carbon Fibres: Stress-Strain Analysis and Modulus Determination. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 12033. [Google Scholar] [CrossRef]
- Mesquita, F.; Bucknell, S.; Leray, Y.; Lomov, S.V.; Swolfs, Y. Single Carbon and Glass Fibre Properties Characterised Using Large Data Sets Obtained through Automated Single Fibre Tensile Testing. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106389. [Google Scholar] [CrossRef]
- Chandrathilaka, E.R.K.; Baduge, S.K.; Mendis, P.; Thilakarathna, P.S.M. Structural Applications of Synthetic Fibre Reinforced Cementitious Composites: A Review on Material Properties, Fire Behaviour, Durability and Structural Performance. Structures 2021, 34, 550–574. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Ozbakkaloglu, T. Synthetic Fibers for Cementitious Composites: A Critical and in-Depth Review of Recent Advances. Constr. Build. Mater. 2019, 207, 491–518. [Google Scholar] [CrossRef]
- Verma, N.; Pathak, H.; Zafar, S. Multi-Scale Modelling for Adhesive Wear in Tribo-Pairs of Nano-Hydroxyapatite Reinforced UHMWPE Bio-Composite and Co-Cr Alloy. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 567–582. [Google Scholar] [CrossRef]
- Sindhu, R.; Johnpaul, V.; Sunil Gulab, S.; Subash, P.; Sohail Ahamed, Z. An Experimental Study on Rehabilitation of Concrete Beam. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1006, 5–9. [Google Scholar] [CrossRef]
- Pach, J.; Frączek, N.; Kaczmar, J. The Effects of Hybridisation of Composites Consisting of Aramid, Carbon, and Hemp Fibres in a Quasi-Static Penetration Test. Materials 2020, 13, 4686. [Google Scholar] [CrossRef]
- Ursache, Ș.; Cerbu, C.; Hadăr, A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers 2024, 16, 127. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Zhang, X.; Yang, C. Testing and Characterization of High-Temperature Degradation Performance of Para-Aramid Fibres. Ind. Textila 2024, 75, 102–110. [Google Scholar] [CrossRef]
- Meng, F.; McKechnie, J.; Pickering, S.J. An Assessment of Financial Viability of Recycled Carbon Fibre in Automotive Applications. Compos. Part A Appl. Sci. Manuf. 2018, 109, 207–220. [Google Scholar] [CrossRef]
- Muthukumarana, T.V.; Arachchi, M.A.V.H.M.; Somarathna, H.M.C.C.; Raman, S.N. A Review on the Variation of Mechanical Properties of Carbon Fibre-Reinforced Concrete. Constr. Build. Mater. 2023, 366, 130173. [Google Scholar] [CrossRef]
- Groetsch, T.; Maghe, M.; Creighton, C.; Varley, R.J. Environmental, Property and Cost Impact Analysis of Carbon Fibre at Increasing Rates of Production. J. Clean. Prod. 2023, 382, 135292. [Google Scholar] [CrossRef]
- Groetsch, T.; Maghe, M.; Creighton, C.; Varley, R.J. Economic and Environmental Effects of Precursor Variation in a Continuous Carbon Fibre Manufacturing Process. J. Ind. Eng. Chem. 2023, 127, 554–566. [Google Scholar] [CrossRef]
- Harahap, M.; Perangin-Angin, Y.A.; Purwandari, V.; Goei, R.; Gea, S. Acetylated Lignin from Oil Palm Empty Fruit Bunches and Its Electrospun Nanofibres with PVA: Potential Carbon Fibre Precursor. Heliyon 2023, 9, e14556. [Google Scholar] [CrossRef] [PubMed]
- Kondratiev, A.; Píštěk, V.; Gajdachuk, V.; Kharchenko, M.; Nabokina, T.; Kučera, P.; Kučera, O. Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores. Polymers 2023, 15, 2503. [Google Scholar] [CrossRef]
- Sasikumar, R.; Venkadeshwaran, K.; Kannan, C.R.; De Poures, M.V.; Aruna, M.; Mukilarasan, N.; Kaliyaperumal, G.; Murugan, A. Mechanical and Thermal Adsorption Actions on Epoxy Hybrid Composite Layered with Various Sequences of Alkali-Treated Jute and Carbon Fibre. Adsorpt. Sci. Technol. 2023, 2023, 5272245. [Google Scholar] [CrossRef]
- Zweifel, L.; Kupski, J.; Dransfeld, C.; Caglar, B.; Baz, S.; Cessario, D.; Gresser, G.T.; Brauner, C. Multiscale Characterisation of Staple Carbon Fibre-Reinforced Polymers. J. Compos. Sci. 2023, 7, 465. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Stróżyk, M.A.; Muddasar, M.; Conroy, T.J.; Hermansson, F.; Janssen, M.; Svanström, M.; Frank, E.; Culebras, M.; Collins, M.N. Decreasing the Environmental Impact of Carbon Fibre Production via Microwave Carbonisation Enabled by Self-Assembled Nanostructured Coatings. Adv. Compos. Hybrid Mater. 2024, 7, 1–16. [Google Scholar] [CrossRef]
- Obunai, K.; Okubo, K. Mechanical Characteristics of Reclaimed Carbon Fibre under Superheated Steam Atmosphere and Its Feasibility for Remanufacturing CFRP/CFRTP. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107843. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H. Bond Behaviour between Hybrid Fiber Reinforced Polymer Sheets and Concrete. Constr. Build. Mater. 2019, 210, 93–110. [Google Scholar] [CrossRef]
- Soudki1, K.; Alkhrdaji2, T. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-02). In Proceedings of the Structures Congress 2005: Metropolis and Beyond, New York, NY, USA, 20–24 April 2004; pp. 1–8. [Google Scholar]
- Chen, Y.; Wu, C.; Chen, C.; Chen, F. Effect of Using Magnesium Phosphate Cement on the Strengthening of Concrete Bonded with Different Fiber Cloths. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 12065. [Google Scholar] [CrossRef]
- Munir, S.; Dai, J.G.; Ding, Z. A Comparative Study of Different Inorganic Pastes for the Development of Fiber Reinforced Inorganic Polymer (FRiP) Strengthening Technology. Sustain. Constr. Mater. Technol. 2013, 2013, 1–9. [Google Scholar]
- Li, W.; Jiang, Z.; Yang, Z.; Zhao, N.; Yuan, W. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption. PLoS ONE 2013, 8, 81616. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.P.A.; Al Khazaleh, M.; Prakash, F.; Raj, F.M. Experimental Study of Reinforced Concrete Piles Wrapped with Fibre Reinforced Polymer under Vertical Load. Rev. Mater. 2023, 28, 1–14. [Google Scholar] [CrossRef]
- Geetha, J.; Padmapriya, R. International Journal of Sustainable Construction Engineering and Technology Numerical Studies on Flexural Behaviour of Carbon Fiber Reinforced Polymer-Wrapped Reinforced Concrete Beam. Int. J. Sustain. Constr. Eng. Technol. 2023, 14, 76–84. [Google Scholar]
- Liu, J.; Ma, D.; Dong, F.; Liu, Z. Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns. Materials 2023, 16, 6373. [Google Scholar] [CrossRef]
- Campione, G. Influence of FRP Wrapping Techniques on the Compressive Behavior of Concrete Prisms. Cem. Concr. Compos. 2006, 28, 497–505. [Google Scholar] [CrossRef]
- Suon, S.; Saleem, S.; Pimanmas, A. Compressive Behavior of Basalt FRP-Confined Circular and Non-Circular Concrete Specimens. Constr. Build. Mater. 2019, 195, 85–103. [Google Scholar] [CrossRef]
- Kun, Z.; Boshi, P.; Hangyu, L.; Wenjia, Z.; Ran, C.; Kai, W. Research and Analysis of Axial Compressive Properties of Concrete Columns Strengthened with Composited Fiber Cloth. E3S Web Conf. 2020, 165, 04025. [Google Scholar] [CrossRef]
- Chinthapalli, H.K.; Chellapandian, M.; Agarwal, A.; Suriya Prakash, S. Effectiveness of Hybrid Fibre-Reinforced Polymer Retrofitting on Behaviour of Fire Damaged RC Columns under Axial Compression. Eng. Struct. 2020, 211, 110458. [Google Scholar] [CrossRef]
- Dalyan, İ.; Doran, B. An Investigation on the Flexural Behaviour of RC Beams Wrapped with CFRP. Int. Adv. Res. Eng. J. 2021, 5, 97–105. [Google Scholar] [CrossRef]
- Kim, M.; Pokhrel, A.; Jung, D.; Kim, S.; Park, C. The Strengthening Effect of CFRP for Reinforced Concrete Beam. Procedia Eng. 2017, 210, 141–147. [Google Scholar] [CrossRef]
- Kissman, V.; Sundar, L. An Experimental Study on Strengthening of RC Column with GFRP. Mater. Today Proc. 2020, 21, 278–285. [Google Scholar] [CrossRef]
- Mohammed, A. Shear Behavior of Reinforced Concrete Beams Strengthened by CFRP Strips. J. Appl. Eng. Sci. 2021, 19, 415–423. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Liu, L.; Zhang, F.; Han, F.; Lv, T.; Zhang, W.; Yang, Y. Application Design of Concrete Canvas (CC) in Soil Reinforced Structure. Geotext. Geomembr. 2016, 44, 557–567. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. The Effect of Shear Strength on the Ballistic Response of Laminated Composite Plates. Eur. J. Mech. A/Solids 2013, 42, 35–53. [Google Scholar] [CrossRef]
- Kartikeya, K.; Chouhan, H.; Ahmed, A.; Bhatnagar, N. Determination of Tensile Strength of UHMWPE Fiber-Reinforced Polymer Composites. Polym. Test. 2020, 82, 106293. [Google Scholar] [CrossRef]
- Sun, G.; Liang, R.; Zhang, J.; Li, Z.; Weng, L.T. Mechanism of Cement Paste Reinforced by Ultra-High Molecular Weight Polyethylene Powder and Thermotropic Liquid Crystalline Copolyester Fiber with Enhanced Mechanical Properties. Cem. Concr. Compos. 2017, 78, 57–62. [Google Scholar] [CrossRef]
- Lv, L.; Hong, X.; Ding, Z.; Ma, X.; Li, H. Preparation and Characterization of Calcium Sulfoaluminate Based Engineered Cementitious Composites for Rapid Repairing of Concrete Member. Front. Mater. 2020, 7, 282. [Google Scholar] [CrossRef]
- Pimentel Tinoco, M.; de Andrade Silva, F. Repair of Pre-Damaged RC Beams Using Hybrid Fiber Reinforced Strain Hardening Cementitious Composites. Eng. Struct. 2021, 235, 112081. [Google Scholar] [CrossRef]
- Meijer, H.E.H.; Govaert, L.E. Mechanical Performance of Polymer Systems: The Relation between Structure and Properties. Prog. Polym. Sci. 2005, 30, 915–938. [Google Scholar] [CrossRef]
- Maisha, I.A.; Kazi, M.M.; Ruhul, A.K. A Review on the Application of High-Performance Fiber-Reinforced Polymer Composite Materials. GSC Adv. Res. Rev. 2022, 10, 20–36. [Google Scholar] [CrossRef]
- Alberto, M. Introduction of Fibre-Reinforced Polymers—Polymers and Composites: Concepts, Properties and Processes. In Fiber Reinforced Polymers—The Technology Applied for Concrete Repair; IntechOpen: Tokyo, Japan, 2013; pp. 3–40. [Google Scholar] [CrossRef]
- Liang Dr, R.; Hota, G. Fiber-Reinforced Polymer (FRP) Composites in Environmental Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781845691455. [Google Scholar]
- Verma, M.; Nigam, M. Effect of FRP on the Strength of Geopolymer Concrete. AIP Conf. Proc. 2023, 2721, 020030. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Bridges. Fibers 2023, 11, 4–6. [Google Scholar] [CrossRef]
- Grzesiak, S.; Pahn, M.; Klingler, A.; Akpan, E.I.; Schultz-Cornelius, M.; Wetzel, B. Mechanical and Thermal Properties of Basalt Fibre Reinforced Polymer Lamellas for Renovation of Concrete Structures. Polymers 2022, 14, 790. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Nevone Blasi, P.; Pranno, A. The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings 2023, 13, 1139. [Google Scholar] [CrossRef]
- Shahid, A.T.; Silvestre, J.D.; Hofmann, M.; Garrido, M.; Correia, J.R. Life Cycle Assessment of an Innovative Bio-Based Unsaturated Polyester Resin and Its Use in Glass Fibre Reinforced Bio-Composites Produced by Vacuum Infusion. J. Clean. Prod. 2024, 441, 140906. [Google Scholar] [CrossRef]
- Thomason, J.; Xypolias, G. Hydrothermal Ageing of Glass Fibre Reinforced Vinyl Ester Composites: A Review. Polymers 2023, 15, 835. [Google Scholar] [CrossRef] [PubMed]
- Nodehi, M. Epoxy, Polyester and Vinyl Ester Based Polymer Concrete: A Review. Innov. Infrastruct. Solut. 2022, 7, 1–24. [Google Scholar] [CrossRef]
- Thomsen, H.; Spacone, E.; Limkatanyu, S.; Camata, G. Failure Mode Analyses of Reinforced Concrete Beams Strengthened in Flexure with Externally Bonded Fiber-Reinforced Polymers. J. Compos. Constr. 2004, 8, 123–131. [Google Scholar] [CrossRef]
- Hamilton, H.R.; Brown, J.; Tatar, J.; Lisek, M.; Brenkus, N.R. Durability Evaluation o f Florida’s Fiber-Reinforced Polymer (FRP) Composite Reinforcement for Concrete Structures. Dep. Civ. Coast. Eng. Univ. Florida 2017, 273. [Google Scholar]
- Maraveas, C.; Miamis, K.; Vrakas, A.A. Fiber-Reinforced Polymer-Strengthened/Reinforced Concrete Structures Exposed to Fire: A Review. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2012, 22, 500–513. [Google Scholar] [CrossRef]
- Sai Madupu, L.N.K.; Sai Ram, K.S. Repair of Fire Damaged Axially Loaded Short Rc Columns Using Gfrp Wrap. Civ. Eng. Archit. 2021, 9, 2039–2054. [Google Scholar] [CrossRef]
- Li, J.; Xie, J.; Liu, F.; Lu, Z. A Critical Review and Assessment for FRP-Concrete Bond Systems with Epoxy Resin Exposed to Chloride Environments. Compos. Struct. 2019, 229, 111372. [Google Scholar] [CrossRef]
- Granata, P.J.; Parvin, A. An Experimental Study on Kevlar Strengthening of Beam-Column Connections. Compos. Struct. 2001, 53, 163–171. [Google Scholar] [CrossRef]
- Kandekar, S.B.; Talikoti, R.S. Study of Torsional Behavior of Reinforced Concrete Beams Strengthened with Aramid Fiber Strips. Int. J. Adv. Struct. Eng. 2018, 10, 465–474. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Wu, M. Mechanical Properties of FRP-Strengthened Concrete at Elevated Temperature. Constr. Build. Mater. 2017, 134, 424–432. [Google Scholar] [CrossRef]
- Li, Y.F.; Tsai, T.H.; Yang, T.H. A Novel Strengthening Method for Damaged Pipeline under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material. Materials 2019, 12, 3484. [Google Scholar] [CrossRef] [PubMed]
- Kejia, L.; Chengyou, W.; Baikiin, C.; Panpan, L.; Ruiyang, P.; Yuwen, L. Repair Effect of Magnesium Phosphate Cement and Carbon Fiber Cloth on Concrete Structure. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 1–10. [Google Scholar] [CrossRef]
- Xing, S.; Wu, C. Preparation of Magnesium Phosphate Cement and Application in Concrete Repair. MATEC Web Conf. 2018, 142, 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Q.; Yang, Y.; Zhang, J.; Zhang, J.; Duan, G. Experimental Research on Magnesium Phosphate Cements Modified by Fly Ash and Metakaolin. Coatings 2022, 12, 1030. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Chen, B.; Li, Y. Performance of Magnesium Phosphate Cement at Elevated Temperatures. Constr. Build. Mater. 2015, 91, 126–132. [Google Scholar] [CrossRef]
- Behavior, L.; Deskovic, B.N.; Member, S.; Meier, U.; Triantafillou, T.C. Frp Combined with Concrete; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1079–1089. [Google Scholar]
- Mikami, C.; Wu, H.C.; Elarbi, A. Effect of Hot Temperature on Pull-off Strength of FRP Bonded Concrete. Constr. Build. Mater. 2015, 91, 180–186. [Google Scholar] [CrossRef]
- Blackburn, B.P.; Tatar, J.; Douglas, E.P.; Hamilton, H.R. Effects of Hygrothermal Conditioning on Epoxy Adhesives Used in FRP Composites. Constr. Build. Mater. 2015, 96, 679–689. [Google Scholar] [CrossRef]
- Genedy, M.; Daghash, S.; Soliman, E.; Reda Taha, M.M. Improving Fatigue Performance of GFRP Composite Using Carbon Nanotubes. Fibers 2015, 3, 13–29. [Google Scholar] [CrossRef]
- Al-Tamimi, A.K.; Hawileh, R.A.; Abdalla, J.A.; Rasheed, H.A.; Al-Mahaidi, R. Durability of the Bond between CFRP Plates and Concrete Exposed to Harsh Environments. J. Mater. Civ. Eng. 2015, 27, 1226. [Google Scholar] [CrossRef]
- Li, L. Durability of Wet-Bond between Hybrid Frp Laminate and Cast-in-Place Concrete. 2007. Available online: https://escholarship.mcgill.ca/concern/theses/dn39x416n (accessed on 21 March 2024).
- Jegan, M.; Annadurai, R.; Kannan Rajkumar, P.R. A State of the Art on Effect of Alkali Activator, Precursor, and Fibers on Properties of Geopolymer Composites. Case Stud. Constr. Mater. 2023, 18, e01891. [Google Scholar] [CrossRef]
- Shao, R.; Wu, C.; Liu, Z.; Su, Y.; Liu, J.; Chen, G.; Xu, S. Penetration Resistance of Ultra-High-Strength Concrete Protected with Layers of High-Toughness and Lightweight Energy Absorption Materials. Compos. Struct. 2018, 185, 807–820. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Liu, Z.X. Comparative Evaluation of Steel Wire Mesh, Steel Fibre and High Performance Polyethylene Fibre Reinforced Concrete Slabs in Blast Tests. Thin-Walled Struct. 2018, 126, 117–126. [Google Scholar] [CrossRef]
- Faruk, O.; Yang, Y.; Zhang, J.; Yu, J.; Lv, J.; Lv, W.; Du, Y.; Wu, J.; Qi, D. A Comprehensive Review of Ultrahigh Molecular Weight Polyethylene Fibers for Applications Based on Their Different Preparation Techniques. Adv. Polym. Technol. 2023, 2023, 6656692. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, J.; Zhang, B.; Feng, Y.; Chen, C.; Lu, Z.; Yang, J.; Xie, J. Case Studies in Construction Materials Physical, Mechanical and Microstructural Properties of Ultra-Lightweight High-Strength Geopolymeric Composites. Case Stud. Constr. Mater. 2023, 19, e02446. [Google Scholar] [CrossRef]
- Osman, B.H.; Tian, Z.; Jiang, G.; Sun, X.; Carroll, A. Experimental Study on Dynamic Properties of UHMWPE and PVA Fibers Concrete. KSCE J. Civ. Eng. 2020, 24, 2993–3011. [Google Scholar] [CrossRef]
- Czarnecki, L. Polymer-Concrete Composites for the Repair of Concrete Structures. MATEC Web Conf. 2018, 199, 01006. [Google Scholar] [CrossRef]
Polymer | Density () | Molecular Area () | Ultimate Strength () | Strength of Commercial Fiber () |
---|---|---|---|---|
PE | 0.96 | 0.193 | 372 | 9.0 |
Ny-6 | 1.14 | 0.192 | 316 | 9.5 |
POM | 1.41 | 0.185 | 264 | - |
PVA | 1.28 | 0.228 | 236 | 9.5 |
Kevlar | 1.43 | 0.205 | 235 | 25.0 |
PET | 1.37 | 0.217 | 232 | 9.5 |
PP | 0.91 | 0.348 | 218 | 9.0 |
PVC | 1.39 | 0.294 | 169 | 4.0 |
Rayon | 1.50 | 0.346 | 133 | 5.2 |
PMMA | 1.19 | 0.667 | 87 | - |
Fiber/FRP Type | Specific Gravity (kg/m3) | Modulus of Elasticity (GPa) | Tensile Strength (MPa) | Elongation (%) | Approx. Cost (USD/kg) |
---|---|---|---|---|---|
Polypropylene (PP) [131] | 910 | 1.5–12 | 240–900 | - | 1–2.5 |
Polyethylene (PE) [131] | 920–960 | 5–100 | 80–600 | - | 2–20 |
Polyvinyl alcohol (PVA) [131] | 1290–1300 | 20–42.8 | 1000–1600 | - | 1–15 |
Ultra-High Molecular Weight Polyethylene (UHMWPE) [110,132] | 970–980 | 91–140 | 3700–4000 | 3.5–3.7 | Around 2.477 |
Steel [131] | 7840 | 200 | 500–2000 | - | 1–8 |
Kevlar [110,133,134,135,136] | 1430–1440 | 55–143 | 3600 | 1.5–2.8 | - |
Carbon [110,137,138,139,140,141,142,143,144,145,146,147] | 1500–1800 | 255–395 | 2300–3490 | 1.5–1.8 | 5–70 |
CFRP [148] | - | 191 | 1990 | 1.04 (rupture strain) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Tuladhar, R.; Yin, S.; Shi, F.; Dang, F. Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review. Buildings 2024, 14, 1631. https://doi.org/10.3390/buildings14061631
Pan Z, Tuladhar R, Yin S, Shi F, Dang F. Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review. Buildings. 2024; 14(6):1631. https://doi.org/10.3390/buildings14061631
Chicago/Turabian StylePan, Zengrui, Rabin Tuladhar, Shi Yin, Feng Shi, and Faning Dang. 2024. "Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review" Buildings 14, no. 6: 1631. https://doi.org/10.3390/buildings14061631
APA StylePan, Z., Tuladhar, R., Yin, S., Shi, F., & Dang, F. (2024). Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review. Buildings, 14(6), 1631. https://doi.org/10.3390/buildings14061631