Analyzing Land Shape Typologies in South Korean Apartment Complexes Using Machine Learning and Deep Learning Techniques
Abstract
:1. Introduction
2. Related Work
2.1. Survey and Analysis of Parcel Shapes
2.1.1. Classification of Parcel Shapes
2.1.2. Analysis of Parcel Shapes
2.2. Trends in Architecture Using AI
2.2.1. Machine Learning in Architecture and Urban Studies
2.2.2. Research in Urban and Architectural Fields Using Deep Learning
3. Materials and Methods
3.1. Apartment Complex Parcel Shape Dataset
3.1.1. Scope of Apartment Complexes
3.1.2. Parcel Shape Types
3.2. Image Dataset
3.2.1. Image Acquisition
3.2.2. Image Processing
3.3. Research Methods
3.3.1. Image Clustering
3.3.2. Image Classifier
3.3.3. You Only Look Once (YOLO) Model
3.3.4. Analysis of Parcel Shapes
3.3.5. Evaluation Metrics Accuracy
4. Results and Discussions
4.1. Parcel Shape Clustering
4.1.1. K-Means Clustering
4.1.2. Parcel Shape Classification and Analysis
4.2. Parcel Shape Type Classifier
4.2.1. Evaluation Matrix
4.2.2. Test Data Results
5. Conclusions
5.1. Summary
5.2. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, I.; Lim, S.; Kim, C. Analysis of the effect of parcel shape on the development density. J. Urban Des. Inst. Korea 2009, 10, 151–162. [Google Scholar]
- Ko, Y. A Comparative Analysis of Floor Area Ratio According to the Standardization of Small-Size Irregular Parcel. Master Thesis, Seoul National University of Science and Technology, Seoul, Republic of Korea, 2016. [Google Scholar]
- Choi, J.; Lee, S. A study on the method of land shape recognition using the geometric feature information of parcel and the technique of decision tree. J. Real Estate Anal. 2017, 3, 19–34. [Google Scholar] [CrossRef]
- MOLIT. Guidelines for Investigation and Calculation of Individual Official Land Price Applied in 2023; MOLIT: Sejong, Republic of Korea, 2023; pp. 105–107.
- Park, H. Self-Study Machine Learning and Deep Learning; Hanbit Media: Seoul, Republic of Korea, 2020. [Google Scholar]
- Hong, I. Land use classification using LBSN (Location-Based Social Network) data and machine learning technique. J. Korean Cartogr. Assoc. 2017, 17, 59–67. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; USDA Forest Service General Technical Report PNW-351, Corvallis; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Choi, J.; Sim, J.; Kim, B. A Study on Improvement of Land Characteristic Survey; Research Institute of REB: Daegu, Republic of Korea, 2015. [Google Scholar]
- Demetriou, D.; See, L.; Stillwell, J. A Parcel Shape Index for Use in Land Consolidation Planning. Trans. GIS 2013, 17, 861–882. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Cho, S.; Kim, J. Comparison of Models to Forecast Real Estates Index Introducing Machine Learning. J. Archit. Inst. Korea 2021, 37, 191–199. [Google Scholar]
- Yoo, D.; Kim, K.; Choi, C.; Cho, S.; Jang, H. Development of a Machine Learning-based Low-rise Residential Building Energy Consumption Prediction Model. J. KIAEBS 2021, 15, 152–165. [Google Scholar]
- Shin, D. Discovering Anomalous Power Usage Patterns in Rental Housing Through Small-Scale Data. J. Archit. Inst. Korea 2024, 40, 81–88. [Google Scholar]
- Yun, S.B.; Mun, S.; Park, S.Y.; Kim, T. Data-driven analysis for future land-use change prediction: Case study on Seoul. J. Broadcast Eng. 2021, 25, 176–184. [Google Scholar]
- Min, M. Classification of Seoul metro stations based on boarding/alighting patterns using machine learning clustering. J. Inst. Internet Broadcast. Commun. 2018, 18, 13–18. [Google Scholar]
- Kang, M.; Jung, Y.; Jang, D. A study on the search of optimal aquaculture farm condition based on machine learning. J. Inst. Internet Broadcast. Commun. 2017, 17, 135–140. [Google Scholar] [CrossRef]
- Han, S.; Seo, J.; Purwaningati, S.; Oh, J.; Kim, J. Application and development of a machine learning based model for identification of apartment building types. J. Korean Assoc. Geogr. Inf. Stud. 2023, 26, 55–67. [Google Scholar]
- Lee, S.; Baek, S.; Lee, J.; Kim, K.; Kim, S.; Kim, H. Development of disaster severity classification model using machine learning technique. J. Korea Water Resour. Assoc. 2023, 56, 261–272. [Google Scholar]
- Talha, S.A.; Manasreh, D.; Nazzal, M.D. The Use of Lidar and Artificial Intelligence Algorithms for Detection and Size Estimation of Potholes. Buildings 2024, 14, 1078. [Google Scholar] [CrossRef]
- Sobieraj, J.; Fernández, M.; Metelski, D. A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland). Buildings 2022, 12, 2115. [Google Scholar] [CrossRef]
- Ghandour, A.J.; Jezzini, A.A. Autonomous Building Detection Using Edge Properties and Image Color Invariants. Buildings 2018, 8, 65. [Google Scholar] [CrossRef]
- Tapeh, A.T.G.; Naser, M.Z. Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices. Arch. Computat. Methods Eng. 2023, 30, 115–159. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Xie, X.; Yousefi, A.M.; Zhang, G.; Li, J.; Samali, B. Compressive strength evaluation of cement-based materials in sulphate environment using optimized deep learning technology. Dev. Built Environ. 2023, 16, 100298. [Google Scholar] [CrossRef]
- Yu, Y.; Hoshyar, A.N.; Samali, B.; Zhang, G.; Rashidi, M.; Mohammadi, M. Corrosion and coating defect assessment of coal handling and preparation plants (CHPP) using an ensemble of deep convolutional neural networks and decision-level data fusion. Neural Comput. Appl. 2023, 35, 18697–18718. [Google Scholar] [CrossRef]
- Park, H.J. A Study on Architectural Spatial Relationship Interpretation and Recommendation Model Using Deep Learning. Ph.D. Thesis, Kyungpook National University, Daegu, Republic of Korea, 2022. [Google Scholar]
- Choo, S.Y.; Seo, J.H.; Park, H.J.; Ku, H.M.; Lee, J.K.; Kim, K.T.; Park, S.H.; Kim, J.S.; Song, J.Y.; Lee, S.H.; et al. AI-Based Architectural Design Automation Technology Development; Korea Agency for Infrastructure Technology Advancement: Seoul, Republic of Korea, 2020. [Google Scholar]
- Chaillou, S. ‘Archigan: A Generative Stack for Apartment Building Design’; NVIDIA Corporation: Santa Clara, CA, USA, 2019. [Google Scholar]
- Nauata, N.; Chang, K.H.; Cheng, C.Y.; Mori, G.; Furukawa, Y. ‘House-gan: Relational generative adversarial networks for graph-constrained house layout generation’. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 162–177. [Google Scholar] [CrossRef]
- K-apt. Available online: http://www.k-apt.go.kr/cmmn/main.do (accessed on 23 October 2023).
- Park, I.S.; Park, N.H.; Chun, H.S. Changes in Apartment Unit Plan Caused by the Revision of Regulations for Area Calculating Criteria and Balcony Use. J. Korean Hous. Assoc. 2014, 25, 27–36. [Google Scholar] [CrossRef]
- Hong, S.J.; Lee, Y.S. Typification of Irregular Shaped Land Parcels Using Machine Learning. J. Archit. Inst. Korea 2022, 38, 59–67. [Google Scholar]
- KakaoMap. Available online: https://map.kakao.com/ (accessed on 23 October 2023).
- Google Map. Available online: https://www.google.com/maps/?hl=ko (accessed on 23 October 2023).
- Yoon, S.-B.; Hwang, S.-E.; Kang, B.S.; Lee, J.H. An analysis of South Korean apartment complex types by period using deep learning. Buildings 2024, 14, 776. [Google Scholar] [CrossRef]
- Roboflow. Available online: https://roboflow.com/ (accessed on 20 December 2023).
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the 2014 European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON, Canada, 2009. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Howards, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Myung, H.J.; Song, J.W. Deep Learning-based Poultry Object Detection Algorithm. J. Digit. Contents Soc. 2022, 23, 1323–1330. [Google Scholar] [CrossRef]
- Ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 21 December 2023).
- Medium. Available online: https://sidharkal.medium.com/image-classification-with-yolov8-40a14fe8e4bc (accessed on 21 December 2023).
- Lee, J.K.; Son, Y.H. Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts. J. Korean Inst. Landsc. Archit. 2022, 50, 42–57. [Google Scholar] [CrossRef]
Clusters | Results of K-Means Clustering | Center Images |
---|---|---|
Cluster 0 (N = 135) | ||
Cluster 1 (N = 134) | ||
Cluster 2 (N = 128) | ||
Cluster 3 (N = 191) | ||
Cluster 4 (N = 177) | ||
Cluster 5 (N = 160) | ||
Cluster 6 (N = 197) | ||
Cluster 7 (N = 136) | ||
Cluster 8 (N = 171) | ||
Cluster 9 (N = 187) | ||
Cluster 10 (N = 158) | ||
Cluster 11 (N = 148) | ||
Cluster 12 (N = 97) | ||
Cluster 13 (N = 68) | ||
Cluster 14 (N = 129) | ||
Cluster 15 (N = 220) | ||
Cluster 16 (N = 146) | ||
Cluster 17 (N = 153) | ||
Cluster 18 (N = 79) | ||
Cluster 19 (N = 186) |
Type | Clusters | ||
---|---|---|---|
Avocado (N = 900) | Cluster 5 | Cluster 11 | Cluster 12 |
Cluster 14 | Cluster 15 | Cluster 16 | |
Potato (N = 678) | Cluster 1 | Cluster 8 | Cluster 9 |
Cluster 19 | |||
Trapezoid (N = 876) | Cluster 3 | Cluster 4 | Cluster 6 |
Cluster 10 | Cluster 17 | ||
Stick (N = 546) | Cluster 0 | Cluster 2 | Cluster 7 |
Cluster 13 | Cluster 18 | ||
Type | Clusters | SI | STI | WR |
---|---|---|---|---|
Avocado | Cluster 5 | 1.222 | 0.723 | 1.827 |
Cluster 11 | 1.157 | 0.705 | 1.316 | |
Cluster 12 | 1.153 | 0.737 | 1.306 | |
Cluster 14 | 1.206 | 0.727 | 1.663 | |
Cluster 15 | 1.172 | 0.779 | 1.712 | |
Cluster 16 | 1.251 | 0.703 | 1.894 | |
Average | 1.194 | 0.729 | 1.619 | |
Potato | Cluster 1 | 1.129 | 0.752 | 1.159 |
Cluster 8 | 1.126 | 0.826 | 1.355 | |
Cluster 9 | 1.138 | 0.803 | 1.404 | |
Cluster 19 | 1.125 | 0.824 | 1.193 | |
Average | 1.129 | 0.801 | 1.278 | |
Trapezoid | Cluster 3 | 1.099 | 0.837 | 1.265 |
Cluster 4 | 1.148 | 0.813 | 1.593 | |
Cluster 6 | 1.078 | 0.874 | 1.245 | |
Cluster 10 | 1.067 | 0.886 | 1.090 | |
Cluster 17 | 1.126 | 0.816 | 1.451 | |
Average | 1.104 | 0.845 | 1.329 | |
Stick | Cluster 0 | 1.262 | 0.708 | 1.929 |
Cluster 2 | 1.358 | 0.668 | 2.425 | |
Cluster 7 | 1.306 | 0.714 | 2.340 | |
Cluster 13 | 1.274 | 0.681 | 1.958 | |
Cluster 18 | 1.405 | 0.662 | 2.692 | |
Average | 1.321 | 0.687 | 2.269 | |
Total | 1.187 | 0.766 | 1.624 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
Avocado | 0.86 | 0.85 | 0.85 |
Potato | 0.87 | 0.86 | 0.86 |
Trapezoid | 0.87 | 0.87 | 0.87 |
Stick | 0.84 | 0.89 | 0.87 |
Accuracy | 0.86 | ||
Macro-F1 | 0.86 | ||
Weighted-F1 | 0.86 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
Avocado | 0.86 | 0.84 | 0.85 |
Potato | 0.86 | 0.86 | 0.86 |
Trapezoid | 0.87 | 0.87 | 0.87 |
Stick | 0.84 | 0.87 | 0.85 |
Accuracy | 0.86 | ||
Macro-F1 | 0.85 | ||
Weighted-F1 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-B.; Hwang, S.-E. Analyzing Land Shape Typologies in South Korean Apartment Complexes Using Machine Learning and Deep Learning Techniques. Buildings 2024, 14, 1876. https://doi.org/10.3390/buildings14061876
Yoon S-B, Hwang S-E. Analyzing Land Shape Typologies in South Korean Apartment Complexes Using Machine Learning and Deep Learning Techniques. Buildings. 2024; 14(6):1876. https://doi.org/10.3390/buildings14061876
Chicago/Turabian StyleYoon, Sung-Bin, and Sung-Eun Hwang. 2024. "Analyzing Land Shape Typologies in South Korean Apartment Complexes Using Machine Learning and Deep Learning Techniques" Buildings 14, no. 6: 1876. https://doi.org/10.3390/buildings14061876
APA StyleYoon, S. -B., & Hwang, S. -E. (2024). Analyzing Land Shape Typologies in South Korean Apartment Complexes Using Machine Learning and Deep Learning Techniques. Buildings, 14(6), 1876. https://doi.org/10.3390/buildings14061876