Intelligent Systems Integrating BIM and VR for Urban Subway Microenvironmental Health Risks Management
Abstract
:1. Introduction
2. Background
2.1. Research on Subway Microenvironmental Health Risk Using Standard Approaches
2.2. Research Applying BIM or VR
3. Methodology
3.1. Proposed Approach
3.2. Framework Development
3.2.1. Setting Indicators and Coping Behaviors
3.2.2. Building Information Modeling
3.2.3. Accepting Front-End Work for System Development
3.2.4. Developing an Expert Visual-Based Health Risk Assessment System
3.2.5. Developing a Passenger Risk Prevention Gamification Simulation System
4. Case Study
4.1. Setting of the Risk Indicators and Coping Behaviors
4.2. Virtual Simulation
5. Results
5.1. Expert Visual-Based Health Risk Assessment System
5.2. Passenger Risk Prevention Gamification Simulation System
5.3. Results of Subject Evaluation with Questionnaire Surveys
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Yu, W. Comparison of Chinese and foreign urban rail transit system and analysis on their development trend. In Asia-Pacific Power and Energy Engineering Conference; IEEE Computer Society: Washington, DC, USA, 2011; pp. 1–4. [Google Scholar] [CrossRef]
- He, S.J.; Zhi, J.Y. Study on Occupancy Behaviors of Passengers in the Subway Cabin: An Observation in Chengdu, China. J. Adv. Transp. 2022, 2022, 8781489. [Google Scholar] [CrossRef]
- Han, B.; Yang, Z.; Yu, Y.; Qian, L.; Chen, J.; Ran, J.; Sun, Y.; Xi, Z.; Lu, F. Statistical analysis of urban rail transit operation in the world in 2020: A review. Urban Rapid Rail Transit 2021, 34, 5–11. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Yan, J.W. Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system. Atmos. Environ. 2011, 45, 4882–4891. [Google Scholar] [CrossRef]
- Moreno, T.; de Miguel, E. Improving air quality in subway systems: An overview. Environ. Pollut. 2018, 239, 829–831. [Google Scholar] [CrossRef]
- Yang, J.; Fan, X.; Zhang, H.; Zheng, W.; Ye, T. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations. Sci. Total Environ. 2023, 869, 161781. [Google Scholar] [CrossRef] [PubMed]
- McCreanor, J.; Cullinan, P.; Nieuwenhuijsen, M.J.; Stewart-Evans, J.; Malliarou, E.; Jarup, L.; Harrington, R.; Svartengren, M.; Han, I.-K.; Ohman-Strickland, P.; et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N. Engl. J. Med. 2007, 357, 2348–2358. [Google Scholar] [CrossRef]
- Miller, D.; King, M.F.; Nally, J.; Drodge, J.R.; Reeves, G.I.; Bate, A.M.; Cooper, H.; Dalrymple, U.; Hall, I.; López-García, M.; et al. Modeling the factors that influence exposure to SARS-CoV-2 on a subway train carriage. Indoor Air. 2022, 32, e12976. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Zhu, D.; Gao, H.O.; Xie, Y.; Li, H.; Xu, X.; Wang, H. Characteristics of particulate matter (PM) concentrations influenced by piston wind and train door opening in the Shanghai subway system. Transp. Res. Part D Transp. Environ. 2016, 47, 77–88. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, P.; Zhu, S.; Xu, X.; Feng, H. A decision-aid system for subway microenvironment health risk intervention based on backpropagation neural network and permutation feature importance method. Build. Environ. 2024, 253, 111292. [Google Scholar] [CrossRef]
- Zhang, S.; Sunindijo, R.Y.; Loosemore, M.; Wang, S.; Gu, Y.; Li, H. Identifying critical factors influencing the safety of Chinese subway construction projects. Eng. Constr. Archit. Manag. 2021, 28, 1863–1886. [Google Scholar] [CrossRef]
- Yang, B.; Yang, C.; Ni, L.; Wang, Y.; Yao, Y. Investigation on thermal environment of subway stations in severe cold region of China: A case study in Harbin. Build. Environ. 2022, 212, 108761. [Google Scholar] [CrossRef]
- Mao, P.; Li, J.; Xiong, L.; Wang, R.; Wang, X.; Tan, Y.; Li, H. Characterization of urban subway microenvironment exposure—A case of Nanjing in China. Int. J. Environ. Res. Public Health 2019, 16, 625. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Nagendra, S.S.; Maiya, M.P. Assessment of exposure to airborne aerosol and bio-aerosol particles and their deposition in the respiratory tract of subway metro passengers and workers. Atmos. Pollut. Res. 2021, 12, 101218. [Google Scholar] [CrossRef]
- Hsu, W.T.; Chen, J.L.; Lung, S.C.C.; Chen, Y.C. PM2.5 exposure of various microenvironments in a community: Characteristics and applications. Environ. Pollut. 2020, 263, 114522. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.; Martins, V.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Eleftheriadis, K.; Almeida, S.M. Particle exposure and inhaled dose while commuting in Lisbon. Environ. Pollut. 2020, 257, 113547. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Minguillón, M.C.; Moreno, T.; Querol, X.; de Miguel, E.; Capdevila, M.; Centelles, S.; Lazaridis, M. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 2015, 90, 103–113. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Sandvik, K.B.; Jacobsen, K.L.; McDonald, S.M. Do no harm: A taxonomy of the challenges of humanitarian experimentation. Int. Rev. Red Cross 2017, 99, 319–344. [Google Scholar] [CrossRef]
- LaFrance, M. The disappearing fourth wall: Law, ethics, and experimental theatre. Vand. J. Ent. Tech. L. 2012, 15, 507–582. [Google Scholar]
- Patten, M. Questionnaire Research: A Practical Guide; Routledge: London, UK, 2016. [Google Scholar]
- Borkowski, A.S. A Literature Review of BIM Definitions: Narrow and Broad Views. Technologies 2023, 11, 176. [Google Scholar] [CrossRef]
- Cheng, D.; Peng, S.; Wei, L.I.; Wu, X.; Chang, J.; Zhang, M.; Luo, Q. Application Research of BIM in the Whole Life Cycle of Metro Station. In Proceedings of the 2019 International Conference on Intelligent Informatics and Biomedical Sciences, Shanghai, China, 21–24 November 2019; pp. 79–85. [Google Scholar]
- Marzouk, M.; Abdelaty, A. BIM-based framework for managing performance of subway stations. Autom. Constr. 2014, 41, 70–77. [Google Scholar] [CrossRef]
- Wiig, H.; Tenstad, O.; Iversen, P.O.; Kalluri, R.; Bjerkvig, R. Interstitial fluid: The overlooked component of the tumor microenvironment? Fibrogenesis Tissue Repair 2010, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K. Factors affecting variability in PM2. 5 exposure concentrations in a metro system. Environ. Res. 2018, 160, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Reche, C.; Rivas, I.; Minguillón, M.C.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M.; et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Midander, K.; Elihn, K.; Wallén, A.; Belova, L.; Karlsson, A.K.B.; Wallinder, I.O. Characterisation of nano-and micron-sized airborne and collected subway particles, a multi-analytical approach. Sci. Total Environ. 2012, 427, 390–400. [Google Scholar] [CrossRef]
- Buonanno, G.; Stabile, L.; Morawska, L. Personal exposure to ultrafine particles: The influence of time-activity patterns. Sci. Total Environ. 2014, 468, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Kulka, R.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ. Health Perspect. 2011, 119, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Barmparesos, N.; Assimakopoulos, D.V.; Niki Assimakopoulos, M.; Tsairidi, E. Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environ. 2016, 3, 199–219. [Google Scholar] [CrossRef]
- Ye, X.; Lian, Z.; Jiang, C.; Zhou, Z.; Chen, H. Investigation of indoor environmental quality in Shanghai metro stations, China. Environ. Monit. Assess. 2010, 167, 643–651. [Google Scholar] [CrossRef]
- Dybwad, M.; Granum, P.E.; Bruheim, P.; Blatny, J.M. Characterization of airborne bacteria at an underground subway station. Appl. Environ. Microbiol. 2012, 78, 1917–1929. [Google Scholar] [CrossRef]
- GB3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2012.
- Han, J.E.; Kwon, S.B.; Chun, C.Y. A study on the evaluation of indoor environment and passengers comfort in the subway stations in summer. J. Archit. Inst. Korea Plan. Des. 2015, 31, 129–136. [Google Scholar] [CrossRef]
- Mao, P.; Wang, X.; Wang, R.; Wang, E.; Li, H. Passengers’ Sensitivity and Adaptive Behaviors to Health Risks in the Subway Microenvironment: A Case Study in Nanjing, China. Buildings 2022, 12, 386. [Google Scholar] [CrossRef]
- Leite, F.; Akcamete, A.; Akinci, B.; Atasoy, G.; Kiziltas, S. Analysis of modeling effort and impact of different levels of detail in building information models. Autom. Constr. 2011, 20, 601–609. [Google Scholar] [CrossRef]
- Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of building information modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef]
- Becerik-Gerber, B.; Rice, S. The perceived value of building information modeling in the US building industry. J. Inf. Technol. Constr. 2010, 15, 185–201. [Google Scholar]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for transportation infrastructure–Literature review, applications, challenges, and recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Tang, Y.; Xia, N.; Lu, Y.; Varga, L.; Li, Q.; Chen, G.; Luo, J. BIM-based safety design for emergency evacuation of metro stations. Autom. Constr. 2021, 123, 103511. [Google Scholar] [CrossRef]
- Garbett, J.; Hartley, T.; Heesom, D. A multi-user collaborative BIM-AR system to support design and construction. Autom. Constr. 2021, 122, 103487. [Google Scholar] [CrossRef]
- El Ammari, K.; Hammad, A. Remote interactive collaboration in facilities management using BIM-based mixed reality. Autom. Constr. 2019, 107, 102940. [Google Scholar] [CrossRef]
- Abbas, J.R.; O’Connor, A.; Ganapathy, E.; Isba, R.; Payton, T.; MgGrath, B.; Tolley, N.; Bruce, I. What is Virtual Reality? A healthcare-focused systematic review of definitions. Health Policy Technol. 2023, 12, 100741. [Google Scholar] [CrossRef]
- Delgado, J.M.D.; Oyedele, L.; Demian, P.; Beach, T. A research agenda for augmented and virtual reality in architecture, engineering and construction. Adv. Eng. Inform. 2020, 45, 101122. [Google Scholar] [CrossRef]
- Shi, Y.; Du, J.; Lavy, S.; Zhao, D. A multiuser shared virtual environment for facility management. Procedia Eng. 2016, 145, 120–127. [Google Scholar] [CrossRef]
- Lewińska, P.; Róg, M.; Żądło, A.; Szombara, S. To save from oblivion: Comparative analysis of remote sensing means of documenting forgotten architectural treasures–Zagórz Monastery complex, Poland. Measurement 2022, 189, 110447. [Google Scholar] [CrossRef]
- Schiavi, B.; Havard, V.; Beddiar, K.; Baudry, D. BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Autom. Constr. 2022, 134, 104054. [Google Scholar] [CrossRef]
- Rahimian, F.P.; Chavdarova, V.; Oliver, S.; Chamo, F.; Amobi, L.P. OpenBIM-Tango integrated virtual showroom for offsite manufactured production of self-build housing. Autom. Constr. 2019, 102, 1–16. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, H.; Lu, X.; Xu, Y.; Zhang, Z.; Li, Y. A prediction method of building seismic loss based on BIM and FEMA P-58. Autom. Constr. 2019, 102, 245–257. [Google Scholar] [CrossRef]
- Chen, H.; Hou, L.; Zhang, G.K.; Moon, S. Development of BIM, IoT and AR/VR technologies for fire safety and upskilling. Autom. Constr. 2021, 125, 103631. [Google Scholar] [CrossRef]
- Rokooei, S. Building Information Modeling in Project Management: Necessities, Challenges and Outcomes. Procedia Soc. Behav. Sci. 2015, 210, 87–95. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Radzi, A.R.; Rezaeiashtiani, M.; Famili, A.; Rashidi, M.E.; Rahman, R.A. Key Assessment Criteria for Organizational BIM Capabilities: A Cross-Regional Study. Buildings 2022, 12, 1013. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Rezaeiashtiani, M.; Radzi, A.R.; Famili, A.; Rezaeiashtiani, A.; Rahman, R.A. Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran. Appl. Syst. Innov. 2022, 5, 109. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Response-surface-model based on influencing factor analysis of subway tunnel temperature. Build. Environ. 2019, 160, 106140. [Google Scholar] [CrossRef]
- Hoover, T.E.; Hitchcock, W.W.; Kennedy, W.D.; Guinan, J.W. Computer Simulation of Subway Environment. Transp. Eng. J. ASCE 1973, 99, 53–72. [Google Scholar] [CrossRef]
- Kim, G.S.; Son, Y.S.; Lee, J.H.; Kim, I.W.; Kim, J.C.; Oh, J.T.; Kim, H. Air pollution monitoring and control system for subway stations using environmental sensors. J. Sens. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- GB50157-2013; Code for the Design of Subway. Ministry of Housing and Urban-Rural Development: Beijing, China, 2013.
- Shiraly, R.; Khoshdel, N.; Jeihooni, A.K.; McLaws, M.L. Nudging physical distancing behaviors during the pandemic: A field experiment on passengers in the subway stations of shiraz, Iran. BMC Public Health 2022, 22, 702. [Google Scholar] [CrossRef] [PubMed]
- Park, J. Changes in subway ridership in response to COVID-19 in Seoul, South Korea: Implications for social distancing. Cureus 2020, 12, e7668. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kwon, S.B.; Chun, C. Indoor environment and passengers’ comfort in subway stations in Seoul. Build. Environ. 2016, 104, 221–231. [Google Scholar] [CrossRef]
- Xu, J.; Xiang, Z.R.; Zhi, J.Y.; Chen, Y.D.; Xu, X.F. Assessment of visual comfort in the lighting environments of subway cabins in China. Int. J. Rail Transp. 2023, 11, 406–427. [Google Scholar] [CrossRef]
- Wen, Y.; Leng, J.; Yu, F.; Yu, C.W. Integrated design for underground space environment control of subway stations with atriums using piston ventilation. Indoor Built Environ. 2020, 29, 1300–1315. [Google Scholar] [CrossRef]
- Xu, S.Y.; Jiang, C.; Huang, L. Public health impacts from subway noise: Case study Hong Kong. J. Acoust. Soc. Am. 2019, 145, 1867. [Google Scholar] [CrossRef]
- Neitzel, R.; Gershon, R.R.; Zeltser, M.; Canton, A.; Akram, M. Noise levels associated with New York City’s mass transit systems. Am. J. Public Health 2009, 99, 1393–1399. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Gomez-Perales, J.E.; Colvile, R.N. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environ. 2007, 41, 7995–8006. [Google Scholar] [CrossRef]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2. 5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Hwang, S.H.; Park, W.M. Indoor air quality assessment with respect to culturable airborne bacteria, total volatile organic compounds, formaldehyde, PM10, CO2, NO2, and O3 in underground subway stations and parking lots. Air Qual. Atmos. Health 2019, 12, 435–441. [Google Scholar] [CrossRef]
- Ji, W.; Liu, Z.; Liu, C.; Wang, C.; Li, X. Characteristics of fine particulate matter and volatile organic compounds in subway station offices in China. Build. Environ. 2021, 188, 107502. [Google Scholar] [CrossRef]
- Mathew, A.P. Using the environment as an interactive interface to motivate positive behavior change in a subway station. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1637–1640. [Google Scholar]
- Xue, X.; Zhang, R.; Zhang, X.; Yang, R.J.; Li, H. Environmental and social challenges for urban subway construction: An empirical study in China. Int. J. Proj. Manag. 2015, 33, 576–588. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Huang, Z.; Hung, K.K.C.; Chan, G.K.W.; Lam, H.C.Y.; Lo, E.S.K.; Yeung, M.P.S. Health emergency disaster risk management of public transport systems: A population-based study after the 2017 subway fire in Hong Kong, China. Int. J. Environ. Res. Public Health 2019, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, W.; Xu, H.; Zhi, Y.; Wang, Z.; Jiang, J. Investigation of the probability of a safe evacuation to succeed in subway fire emergencies based on Bayesian theory. KSCE J. Civ. Eng. 2018, 22, 877–886. [Google Scholar] [CrossRef]
- Miyako, J.; Nakagawa, K.; Sagisaka, R.; Tanaka, S.; Takeuchi, H.; Takyu, H.; Tanaka, H. Neurological outcomes of out-of-hospital cardiac arrest occurring in Tokyo train and subway stations. Resusc. Plus 2021, 8, 100175. [Google Scholar] [CrossRef]
- Chen, H.; Chen, B.; Zhang, L.; Li, H.X. Vulnerability modeling, assessment, and improvement in urban metro systems: A probabilistic system dynamics approach. Sustain. Cities Soc. 2021, 75, 103329. [Google Scholar] [CrossRef]
- Bo, Y.; Jun, Y.; Yi, H. Research on the Structure of Urban Rail Transit Talent Training System. In Proceedings of the 2020 International Conference on Big Data and Informatization Education, Zhangjiajie, China, 23–25 April 2020; pp. 221–224. [Google Scholar]
- Liu, D.Q.; Sun, S.R.; Qian, Z.W. Discussion on Critical Factors in Passenger Evacuation based on the Environment Management of Metro Stations-A Case of Shanghai. Ekoloji 2019, 28, 359–364. [Google Scholar]
- Deng, Y.; Song, L.; Zhou, J.; Wang, J. Evaluation and reduction of vulnerability of subway equipment: An integrated framework. Saf. Sci. 2018, 103, 172–182. [Google Scholar] [CrossRef]
- Xu, X.; Song, B.; Li, C.; Hu, X. Study on the safety and disaster-prevention signing system of the subway based on site investigation at home and abroad. In Proceedings of the 2009 International Conference on Management and Service Science, Beijing, China, 20–22 September 2009; pp. 1–4. [Google Scholar]
- Chen, T.; Zhang, S.Y.; Zhao, L.Z.; Xia, J.J.; Fu, X.C.; Bao, Z.M.; Chen, Y.; Zhang, X.Z.; Wang, R.J.; Hu, C.; et al. Comparison of safety equipment between London underground and Beijing subway. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012179. [Google Scholar] [CrossRef]
- Wang, J.H.; Yan, W.Y.; Zhi, Y.R.; Jiang, J.C. Investigation of the panic psychology and behaviors of evacuation crowds in subway emergencies. Procedia Eng. 2016, 135, 128–137. [Google Scholar] [CrossRef]
- Xiong, G.; Shen, D.; Dong, X.; Hu, B.; Fan, D.; Zhu, F. Parallel transportation management and control system for subways. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1974–1979. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, N. Virtual and augmented reality technologies for emergency management in the built environments: A state-of-the-art review. J. Saf. Sci. Resil. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Long, X.; Wang, R.; Chen, B.; Wu, N. A system for remote monitoring information management and risk control in the underground engineering. In Information Technology in Geo-Engineering; IOS Press: Amsterdam, The Netherlands, 2010; pp. 338–344. [Google Scholar]
- Luglio, D.G.; Katsigeorgis, M.; Hess, J.; Kim, R.; Adragna, J.; Raja, A.; Gordon, C.; Fine, J.; Thurston, G.; Gordon, T.; et al. PM 2.5 concentration and composition in subway systems in the Northeastern United States. Environ. Health Perspect. 2021, 129, 027001. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sun, Y.; Xue, Y.; Wang, F. Inspection equipment study for subway tunnel defects by grey-scale image processing. Adv. Eng. Inform. 2017, 32, 188–201. [Google Scholar] [CrossRef]
- Huang, Z.; Fu, H.L.; Fan, X.D.; Meng, J.H.; Chen, W.; Zheng, X.J.; Wang, W.; Zhang, J.B. Rapid surface damage detection equipment for subway tunnels based on machine vision system. J. Infrastruct. Syst. 2021, 27, 04020047. [Google Scholar] [CrossRef]
- Loy-Benitez, J.; Li, Q.; Ifaei, P.; Nam, K.; Heo, S.; Yoo, C. A dynamic gain-scheduled ventilation control system for a subway station based on outdoor air quality conditions. Build. Environ. 2018, 144, 159–170. [Google Scholar] [CrossRef]
- Vargas-Robles, D.; Gonzalez-Cedillo, C.; Hernandez, A.M.; Alcaraz, L.D.; Peimbert, M. Passenger-surface microbiome interactions in the subway of Mexico City. PLoS ONE 2020, 15, e0237272. [Google Scholar] [CrossRef]
- Peimbert, M.; Alcaraz, L.D. Where environmental microbiome meets its host: Subway and passenger microbiome relationships. Mol. Ecol. 2023, 32, 2602–2618. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhong, M.Y.; Shi, C.L.; Shi, J.H.; Chen, H.C.; Xu, Q.X. Experimental research on investigation of metro passenger evacuation behaviors in case of emergency. In Pedestrian and Evacuation Dynamics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 173–184. [Google Scholar] [CrossRef]
- Rong, G.; Sainan, W.; Mengshi, H. Underground railway safety analysis and planning strategy: A case of Harbin metro line 1, China. Procedia Eng. 2016, 165, 575–582. [Google Scholar] [CrossRef]
- Potseluyko, L.; Rahimian, F.P.; Dawood, N.; Elghaish, F.; Hajirasouli, A. Game-like interactive environment using BIM-based virtual reality for the timber frame self-build housing sector. Autom. Constr. 2022, 142, 104496. [Google Scholar] [CrossRef]
- Murre, J.M.; Dros, J. Replication and analysis of Ebbinghaus’ forgetting curve. PLoS ONE 2015, 10, e0120644. [Google Scholar] [CrossRef]
- Heo, S.; Nam, K.; Loy-Benitez, J.; Li, Q.; Lee, S.; Yoo, C. A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station. Energy Build. 2019, 202, 109440. [Google Scholar] [CrossRef]
- Son, Y.S.; Oh, Y.H.; Choi, I.Y.; Dinh, T.V.; Chung, S.G.; Lee, J.H.; Park, D.; Kim, J.C. Development of a magnetic hybrid filter to reduce PM10 in a subway platform. J. Hazard. Mater. 2019, 368, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Omer, M.M.; Mohd-Ezazee, N.M.A.; Lee, Y.S.; Rajabi, M.S.; Rahman, R.A. Constructive and Destructive Leadership Behaviors, Skills, Styles and Traits in BIM-Based Construction Projects. Buildings 2022, 12, 2068. [Google Scholar] [CrossRef]
- Cui, P.; Ju, X.; Liu, Y.; Li, D. Predicting and improving the waterlogging resilience of urban communities in China—A case study of Nanjing. Buildings 2022, 12, 901. [Google Scholar] [CrossRef]
- Ourang, S.; Ourang, A. Optimizing Power Balance and Communication links in Microgrids: A Clustering Approach Using Particle Swarm Optimization. Asian J. Soc. Sci. Manag. Technol. 2023, 5, 275–281. [Google Scholar]
- Ma, W.; Almasifar, N.; Amini, R.; Ourang, A.; Mahariq, I.; Alhoee, J. Crashworthiness evaluation and optimization of full polypropylene sandwich tubes under low-velocity impact based on machine learning algorithms. Structures 2024, 60, 105901. [Google Scholar] [CrossRef]
- Taheri, S.; Morteza, A.; Sadeghi, S. Deep Learning Hyperparameter Optimization: Application to Electricity and Heat Demand Prediction for Buildings. Energy Build. 2023, 289, 113036. [Google Scholar] [CrossRef]
- Morteza, A.; Ilbeigi, M.; Schwed, J. A blockchain information management framework for construction safety. In Proceedings of the Computing in Civil Engineering, Orlando, FL, USA, 12–14 September 2021; pp. 342–349. [Google Scholar] [CrossRef]
- Zhang, Z.; Wong, M.O.; Pan, W. Virtual reality enhanced multi-role collaboration in crane-lift training for modular construction. Autom. Constr. 2023, 150, 104848. [Google Scholar] [CrossRef]
- Borkowski, A.S. Evolution of BIM: Epistemology, genesis and division into periods. J. Inf. Technol. Constr. 2023, 28, 646–661. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q. The Application of BIM Technology in Budget Control of Port Construction Cost. J. Coast. Res. 2020, 103, 644–648. [Google Scholar] [CrossRef]
- Luo, S.; Yao, J.; Wang, S.; Wang, Y.; Lu, G. A sustainable BIM-based multidisciplinary framework for underground pipeline clash detection and analysis. J. Clean. Prod. 2022, 374, 133900. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, R.; Zou, P.; Yao, X.; Cui, P.; Zhang, F.; Yang, Y. Occupational health risk assessment of PC production-caused pollution based on damage assessment and cyclic mitigation model. Eng. Constr. Archit. Manag. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Hu, P.; Feng, L. The risk of water quality deterioration with urban flood control—A case in Wuxi. Sustainability 2023, 16, 185. [Google Scholar] [CrossRef]
- Lan, F.; Haisen, W.; Yan, Y. Spatial–Temporal Variations of Water Quality in Urban Rivers after Small Sluices Construction: A Case in Typical Regions of the Taihu Lake Basin. Int. J. Environ. Res. Public Health 2022, 19, 12453. [Google Scholar] [CrossRef]
- Feng, L.; Hu, P.; Wang, H.; Chen, M.M.; Han, J. Improving City Water Quality through Pollution Reduction with Urban Floodgate Infrastructure and Design Solutions: A Case Study in Wuxi, China. Int. J. Environ. Res. Public Health 2022, 19, 10976. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, Y.C.; Kim, T.; Choi, J.S.; Park, D. Sources and characteristics of particulate matter in subway tunnels in Seoul, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2534. [Google Scholar] [CrossRef]
- Wu, J.; Chang, I.-S.; Bina, O.; Lam, K.-C.; Xu, H. Strategic environmental assessment implementation in China—Five-year review and prospects. Environ. Impact Assess. Rev. 2011, 31, 77–84. [Google Scholar] [CrossRef]
- Nie, L. Visual Design of Marine Architecture in Coastal Cities Based on “BIM+VR”. J. Coast. Res. 2020, 112, 421–424. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Taghaddos, H.; Zahrai, S.M. Improving emergency training for earthquakes through immersive virtual environments and anxiety tests: A case study. Buildings 2022, 12, 1850. [Google Scholar] [CrossRef]
- Van Wyk, E.; De Villiers, R. Virtual reality training applications for the mining industry. In Proceedings of the 6th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, Pretoria, South Africa, 4–6 February 2009; pp. 53–63. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Wang, J.; Chi, H.L.; Wang, X. A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [Google Scholar] [CrossRef]
- Shi, Y.; Du, J.; Ahn, C.R.; Ragan, E. Impact assessment of reinforced learning methods on construction workers’ fall risk behavior using virtual reality. Autom. Constr. 2019, 104, 197–214. [Google Scholar] [CrossRef]
- De-Juan-Ripoll, C.; Soler-Domínguez, J.L.; Guixeres, J.; Contero, M.; Álvarez Gutiérrez, N.; Alcañiz, M. Virtual reality as a new approach for risk taking assessment. Front. Psychol. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Ourang, S. Evaluation of Inter-Organizational Coordination of Housing Services in Rural Alaska through Social Network Analysis. 2022. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/105396 (accessed on 1 January 2024).
- Mudiyanselage, S.E.; Nguyen, P.H.D.; Rajabi, M.S.; Akhavian, R. Automated workers’ ergonomic risk assessment in manual material handling using sEMG wearable sensors and machine learning. Electronics 2021, 10, 2558. [Google Scholar] [CrossRef]
- Ballesteros, L.M.S.; Ourang, S.; Pazdon, J.; Kuffel, K. Increasing safety in residential construction through a simplified earthquake- and typhoon-resistant guidelines. J. Future Sustain. 2023, 3, 119–124. [Google Scholar] [CrossRef]
Software | Software | Function | |
---|---|---|---|
BIM | Revit 2021 | build a 3D model of the urban subway | |
Navisworks 2020 | classify and optimize the model | ||
VR | Unity 2019 | provide an immersive experience for systems | |
MYSQL 8.0 | import and export of simulation data | ||
Visual Studio 2019 | function as the C# script editor |
First-Level Indicators | Second-Level Indicators | References |
---|---|---|
Internal environment | Illumination (A1) | [13,61,62] |
temperature (A2) | [55] | |
humidity (A3) | [56,57] | |
wind (A4) | [18,63] | |
noise (A5) | [64,65] | |
PM10 (A6) | [66] | |
PM2.5 (A7) | [66,67] | |
CO2 (A8) | [68] | |
CO (A9) | [27] | |
TVOC (A10) | [68,69] | |
bacterium (A11) | [56] | |
flow density (A12) | [18] | |
External environment | natural environment (A13) | [70,71] |
social environment (A14) | [61,63] | |
Personnel | educational level (B1) | [72,73] |
technology level (B2) | [74,75,76] | |
emergency skills (B3) | [72,77] | |
Equipment | infrastructure location pass rate (C1) | [77] |
emergency location pass rate (C2) | [77] | |
infrastructure integrity (C3) | [78] | |
emergency integrity (C4) | [74,79] | |
maintenance pass rate (C5) | [75,78] | |
emergency effectiveness (C6) | [78,80] | |
Management | safety knowledge pass rate (D1) | [81] |
emergency drill effect (D2) | [82,83] | |
supervision system integrity (D3) | [76,84] | |
emergency plan integrity (D4) | [82,83] | |
supervision strength (D5) | [85,86] | |
risk investigation strength (D6) | [86,87] | |
organizational coordination (D7) | [82,88] |
Coping Behaviors | References | Coping Behaviors | References |
---|---|---|---|
Choose reasonable travel time | [36] | Wear headphones or earplugs | [36] |
Wear a mask | [36] | Give suggestions to operating companies | [36] |
Maintain a safe body distance | [59,60] | Avoid touching escalator, seat, handrail, and other | [89,90] |
Stay calm and follow the instructions of the staff | [91] | Evacuate according to safety evacuation signs | [91] |
Sound the emergency alarm | [92] |
Employer | Years of Employment | Educational Qualification | Count |
---|---|---|---|
round1 | |||
subway department | 5–10 | master | 3 |
subway department | 5–10 | bachelor | 1 |
subway department | Over 10 | master | 2 |
subway department | Over 10 | bachelor | 3 |
university | Over 10 | doctor | 5 |
center for disease control | Over 10 | doctor | 6 |
round2 | |||
subway department | 5–10 | master | 2 |
subway department | 5–10 | bachelor | 1 |
subway department | Over 10 | master | 2 |
university | Over 10 | doctor | 2 |
center for disease control | Over 10 | doctor | 3 |
Question | Average Scores of Experts | Average Scores of Passengers |
---|---|---|
1. The simulation system is helpful. | 3.75 | 3.65 |
2. The virtual environment is in line with reality. | 4.15 | 3.8 |
3. The logistic of actions in VR is in line with reality. | 3.75 | 4.15 |
4. The instructions for roaming and collecting indicator are easy to follow. | 3.5 | 3.75 |
5. I can get a better understanding of subway microenvironmental health risks. | 3.55 | 3.95 |
6. I feel fairly comfortable when using the system, e.g., no dizziness. | 3.25 | 3.1 |
7. The system provides better visualization for better understanding. | 3.7 | 3.9 |
8. I am more confident to copy with risks easily and correctly through repeated training. (only for passengers) | - | 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Li, C.; Xu, X.; Mao, P.; Xiong, L. Intelligent Systems Integrating BIM and VR for Urban Subway Microenvironmental Health Risks Management. Buildings 2024, 14, 1912. https://doi.org/10.3390/buildings14071912
Chen Q, Li C, Xu X, Mao P, Xiong L. Intelligent Systems Integrating BIM and VR for Urban Subway Microenvironmental Health Risks Management. Buildings. 2024; 14(7):1912. https://doi.org/10.3390/buildings14071912
Chicago/Turabian StyleChen, Qiwen, Chenhui Li, Xiaoxiao Xu, Peng Mao, and Lilin Xiong. 2024. "Intelligent Systems Integrating BIM and VR for Urban Subway Microenvironmental Health Risks Management" Buildings 14, no. 7: 1912. https://doi.org/10.3390/buildings14071912
APA StyleChen, Q., Li, C., Xu, X., Mao, P., & Xiong, L. (2024). Intelligent Systems Integrating BIM and VR for Urban Subway Microenvironmental Health Risks Management. Buildings, 14(7), 1912. https://doi.org/10.3390/buildings14071912