Drilling Process Monitoring for Predicting Mechanical Properties of Jointed Rock Mass: A Review
Abstract
:1. Introduction
2. Drilling Equipment
2.1. The Limitation of Q-System, RQD, RMR
- (1)
- The influence of high in-situ stress on rock strength has not been taken into account.
- (2)
- The influence of different combinations of joint sets has been overlooked. The impact of intersecting joint sets on rock mass quality remains significant, although the RMR method currently incorporates joint sets as evaluation criteria.
- (3)
- The influence of deep-seated, high-temperature effects has been overlooked. The strength of rocks undergoes changes in high-temperature environments.
- (4)
- The influence of deep-seated high pore pressure has been overlooked. The strength of rocks has been diminished by the high permeability pressure.
2.2. The Advantages of RQDd
2.3. Drilling Process Monitoring Apparatus
3. Calculation for Intact Rock Mechanical Parameters Using DPMA
3.1. Intact Rock Strength Characteristics
3.1.1. Digital Penetration into Response Mechanisms
3.1.2. Determination of Rock Strength Parameters
- (1)
- According to the ratio H of Ft to Fn at low-thrust conditions (Fn > Ft at the cutting point), substitute H into Equation (2) to calculate the value of a + θ′.
- (2)
- Substitute H under high-thrust conditions to obtain a and θ′. The cutting debris generated as the thrust increases accordingly. Thus, the friction angle φ′ between the zone and the intact rock is calculated as [44]:
- (3)
- Gerbaud [41] found that φ′ has the following relationship with the intact rock friction angle φ:
- (4)
- The four DPMA parameters can be substituted into Equation (5) to obtain the C as [40]:
- (5)
- C and φ substituting the UCS of rock can be calculated as [44], according to the M-C criterion:
3.1.3. Strength Determination Considering Different Failure Criteria
- (1)
- The model parameters are simple and clear with an easily obtained physical meaning;
- (2)
- The rock residual strength envelope has an obvious nonlinearity;
- (3)
- The residual strength curve should pass through the coordinate origin of the principal stress space, for brittle rocks.
3.2. Applications for AI-Based Rock Strength Parameter Determination
4. Prediction of Jointed Rock Mass Quality Using DPMA
4.1. Relationship between Drilling Specific Energy and Discontinuity
4.2. Proposal of New Indicator RQDd
5. Determination of Mechanical Parameters of Jointed Rock Mass Based on RQDd
6. Conclusions and Prospect
6.1. Advantages
- (1)
- Accurate prediction of rock mass quality: The rock mass quality is predicted through drilling data of the rock, and the technique of rotary cutting penetration is used. This technique is practical and easy to measure. The speed, pressure, and direction can be precisely controlled, suitable for various types and hardness of rocks. Precise geological data are obtained.
- (2)
- New quality indicator (RQDd): The classification of rock mass RQDd is established, based on the correlation between standard deviation and the RQDd. The rock quality index RQDd is redefined based on the DPMA. The safety of rock engineering is enhanced, compared to the traditional RQD.
- (3)
- Improved prediction with DCNN: Rotary cutting penetration tests and standard testing are combined, improving the prediction of rock residual strength through the DCNN framework. The prediction error for rock strength decreased from 15% to 10%. The prediction error for UCS decreased to 3.2%. The primary limitations of traditional methods have been overcome.
- (4)
- Advanced experimental technique: rotary cutting penetration and a DCNN are combined. Comprehensive data acquisition and efficient feature extraction are achieved. The predictive accuracy of rock mechanical parameters is enhanced.
6.2. Limitations
- (1)
- Structural identification issue: The variations in the rock mass structural features cannot be accurately identified through the drilling signals. The effectiveness of the rotary cutting monitoring technology is diminished.
- (2)
- Data processing challenges: The volume and complexity of data during drilling are significant. The precise inversion of rock mass parameters presents a formidable challenge. Solutions are established through artificial intelligence and machine learning techniques.
- (3)
- Calibration errors: The calibration process of rotary penetration technology may introduce errors. The prediction of mechanical parameters in the model is affected.
- (4)
- Environmental influences: The mechanical parameters of rocks are influenced by environmental factors. The decrease in prediction accuracy will be caused by the disparity between model training conditions and the actual application environment.
6.3. Outlook
- (1)
- Real-time monitoring of rock mass quality: A field measurement method will be developed based on rotary cutting penetration tests. Rock mass quality will be monitored in real time. Engineering safety and integrity will be enhanced.
- (2)
- Optimization of parameter calculation models: The calculation method for parameter mi will be improved, and its validity will be verified. The Hoek–Brown and C-L models will be integrated to refine the method of estimating rock strength.
- (3)
- Integrating multiple technologies: Drilling monitoring, digital imaging, and acoustic wave detection technologies will be utilized to enhance the accuracy of rock classification and evaluation. This will enhance understanding of complex geological conditions.
- (4)
- Introducing automated and intelligent technologies: Artificial intelligence will be employed, such as deep convolutional neural networks (DCNNs). Methods for evaluating rock mass quality will be enhanced. Automation and intelligence will be realized.
- (5)
- Development of a multifunctional drilling monitoring device: The XCY-1 drilling monitoring apparatus is slated for enhancement, aimed at improving its adaptability and data acquisition capabilities. This will provide reliable technical support for underground engineering.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.Y.; Park, H.D. Variation of Rock Quality Designation (RQD) with Scanline Orientation and Length: A Case Study in Korea. Int. J. Rock Mech. Min. Sci. 2004, 41, 207–221. [Google Scholar] [CrossRef]
- Sugawara, J.; Yue, Z.Q.; Tham, L.G.; Law, K.T.; Lee, C.F. Weathered Rock Characterization Using Drilling Parameters. Can. Geotech. J. 2003, 40, 661–668. [Google Scholar] [CrossRef]
- Richard, T.; Dagrain, F.; Poyol, E.; Detournay, E. Rock Strength Determination from Scratch Tests. Eng. Geol. 2012, 147, 91–100. [Google Scholar] [CrossRef]
- Liu, Y.; He, S.; Wang, D.; Li, D. RQD Prediction Method of Engineering Rock Mass Based on Spatial Interpolation. Rock Soil Mech. 2015, 36, 3329–3336. [Google Scholar]
- Su, C.; Hu, Q.; Yang, Z.; Huo, R. A Review of Deep Learning Applications in Tunneling and Underground Engineering in China. Appl. Sci. 2024, 14, 1720. [Google Scholar] [CrossRef]
- Palassi, M.; Emami, V. A New Nail Penetration Test for Estimation of Rock Strength. Int. J. Rock Mech. Min. Sci. 2014, 66, 124–127. [Google Scholar] [CrossRef]
- Guo, H.-S.; Feng, X.-T.; Li, S.-J.; Yang, C.-X.; Yao, Z.-B. Evaluation of the Integrity of Deep Rock Masses Using Results of Digital Borehole Televiewers. Rock Mech. Rock Eng. 2017, 50, 1371–1382. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Yi, X.; Shao, P.; Meng, H. Determination of Rock Quality Designation (RQD) Using a Novel Geophysical Approach: A Case Study. Bull. Eng. Geol. Environ. 2023, 82, 86. [Google Scholar] [CrossRef]
- Guo, J.-C.; Zhao, Z.-H.; He, S.-G.; Liang, H.; Liu, Y.-X. A New Method for Shale Brittleness Evaluation. Environ. Earth Sci. 2015, 73, 5855–5865. [Google Scholar] [CrossRef]
- Shen, W.; Ni, W.; Yong, R.; Huang, L.; Ye, J.; Luo, Z.; Du, S. Estimating RQD for Rock Masses Based on a Comprehensive Approach. Appl. Sci. 2023, 13, 12855. [Google Scholar] [CrossRef]
- Kaga, N.; Matsuki, K.; Sakaguchi, K. The in Situ Stress States Associated with Core Discing Estimated by Analysis of Principal Tensile Stress. Int. J. Rock Mech. Min. Sci. 2003, 40, 653–665. [Google Scholar] [CrossRef]
- He, M.; Ding, M.; Yuan, Z.; Zhao, J.; Luo, B.; Ma, X. Numerical Simulation of Rock Bursts Triggered by Blasting Disturbance for Deep-Buried Tunnels in Jointed Rock Masses. Comput. Geotech. 2023, 161, 105609. [Google Scholar] [CrossRef]
- Wang, J.; He, M.; Yuan, Z.; Luo, B.; Ma, X. Ductile-Brittle Failure Transition of Rocks in Process of Drilling with High Confining Pressure: Model and Experiment. Geoenergy Sci. Eng. 2023, 223, 211505. [Google Scholar] [CrossRef]
- Wu, K.; He, M.; Yuan, Z.; Liu, X.; Luo, B.; Ma, X.; Ma, C. Characterizing Rock Transverse Anisotropic Spatial Variations Using Digital Drilling. Geoenergy Sci. Eng. 2024, 232, 212451. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Zhao, J.; Zhang, Y.; Yang, B. Cutting Energy Characteristics for Brittleness Evaluation of Rock Using Digital Drilling Method. Eng. Geol. 2023, 319, 107099. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Q.; Jiang, B.; Yu, H.C.; Pan, R.; Li, S.C. Study and Engineering Application on the Bolt-Grouting Reinforcement Effect in Underground Engineering with Fractured Surrounding Rock. Tunn. Undergr. Space Technol. 2019, 84, 237–247. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, H.; Jiang, B.; Yang, J.; Lv, Z. Relationship Model for the Drilling Parameters from a Digital Drilling Rig versus the Rock Mechanical Parameters and Its Application. Arab. J. Geosci. 2018, 11, 357. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Li, S.; He, M.; Gao, H.; Jiang, B.; Jiang, Y. Upper Bound Analytic Mechanics Model for Rock Cutting and Its Application in Field Testing. Tunn. Undergr. Space Technol. 2018, 73, 287–294. [Google Scholar] [CrossRef]
- He, M.; Yang, B.; Zhang, Z.; Liu, X.; Li, N. Rock Burst Proneness Prediction of Rock Materials Based on Rock Digital Drilling. J. Cent. South Univ. Sci. Technol. 2021, 52, 2736–2747. [Google Scholar]
- Wang, Q.; Gao, H.; Yu, H.; Jiang, B.; Liu, B. Method for Measuring Rock Mass Characteristics and Evaluating the Grouting-Reinforced Effect Based on Digital Drilling. Rock Mech. Rock Eng. 2019, 52, 841–851. [Google Scholar] [CrossRef]
- Yi, S.; Zhang, Y.; Yi, H.; Li, X.; Wang, X.; Wang, Y.; Chu, T. Study on the Instability Activation Mechanism and Deformation Law of Surrounding Rock Affected by Water Immersion in Goafs. Water 2022, 14, 3250. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Wang, L.; Qu, F.; Shao, A.; Zhao, L.; Wang, H.; Yue, X.; Li, Y.; Yan, W.; et al. Research Progress and Prospects of Intelligent Technology in Underground Mining of Hard Rock Mines. Green Smart Min. Eng. 2024, 1, 12–26. [Google Scholar] [CrossRef]
- Vavro, M.; Soucek, K.; Stas, L.; Waclawik, P.; Vavro, L.; Konicek, P.; Ptacek, J. Application of Alternative Methods for Determination of Rock Quality Designation (RQD) Index: A Case Study from the Rozna I Uranium Mine, Strazek Moldanubicum, Bohemian Massif, Czech Republic. Can. Geotech. J. 2015, 52, 1466–1476. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, T.; Jia, H. Selection of Optimal Threshold of Generalised Rock Quality Designation Based on Modified Blockiness Index. Adv. Civ. Eng. 2019, 2019, 1340549. [Google Scholar] [CrossRef]
- He, M.; Li, N.; Zhang, Z.; Yao, X.; Chen, Y.; Zhu, C. An Empirical Method for Determining the Mechanical Properties of Jointed Rock Mass Using Drilling Energy. Int. J. Rock Mech. Min. Sci. 2019, 116, 64–74. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, X.; Yang, L.; Li, P.; Shahani, N.M.; Wang, C.; Guo, X. Automatic Identification of Rock Formation Interface Based on Borehole Imaging. Energy Sources Part-Recovery Util. Environ. Eff. 2024, 46, 493–504. [Google Scholar] [CrossRef]
- Hashemi, M.; Moghaddas, S.; Ajalloeian, R. Application of Rock Mass Characterization for Determining the Mechanical Properties of Rock Mass: A Comparative Study. Rock Mech. Rock Eng. 2010, 43, 305–320. [Google Scholar] [CrossRef]
- He, M.M.; Li, N.; Yao, X.C.; Chen, Y.S. A New Method for Prediction of Rock Quality Designation in Borehole Using Energy of Rotary Drilling. Rock Mech. Rock Eng. 2020, 53, 3383–3394. [Google Scholar] [CrossRef]
- Yasrebi, A.B.; Wetherelt, A.; Foster, P.J.; Afzal, P.; Coggan, J.; Ahangaran, D.K. Application of RQD-Number and rqd-volume multifractal modelling to delineate rock mass characterisation in kahang CU-MO porphyry deposit, central iran. Arch. Min. Sci. 2013, 58, 1023–1035. [Google Scholar] [CrossRef]
- Lin, J.; Sha, P.; Gao, S.; Ni, J. Characteristics Analysis of Generalized Rock Quality Designation (RQD) Based on Degree of Joint Development. Adv. Civ. Eng. 2021, 2021, 4702348. [Google Scholar] [CrossRef]
- Tong, Y.; Yue, Y.; Huang, Z.; Zhu, L.; Li, Z.; Zhang, W. Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering. Sustainability 2022, 14, 15596. [Google Scholar] [CrossRef]
- Azimian, A. A New Method for Improving the RQD Determination of Rock Corein Borehole. Rock Mech. Rock Eng. 2016, 49, 1559–1566. [Google Scholar] [CrossRef]
- Hu, Q.; Liang, H.; Yang, T.; Cheng, X.; Chen, H.; Zhang, L. A New Method for Rock Brittleness Evaluation Based on Statistical Damage Constitutive Relation. J. Harbin Inst. Technol. 2020, 52, 147–156. [Google Scholar]
- Hu, W.; Wu, A.; Chen, S.; Liu, Y.; Li, Y. Characteristics of Rock Core Discing under High Geostress. J. Yangtze River Sci. Res. Inst. 2018, 35, 13. [Google Scholar]
- Tang, H.; Liang, D.; Wu, Z.; Zhang, Y.; Cheng, X. Preliminary Study on the Phenomenon and Mechanism of Granite Core Discing in Laboratory Drilling Test. Appl. Sci. 2022, 13, 291. [Google Scholar] [CrossRef]
- Yan, B.; Wang, P.; Ren, F.; Guo, Q.; Cai, M. A Review of Mechanical Properties and Constitutive Theory of Rock Mass Anisotropy. Arab. J. Geosci. 2020, 13, 487. [Google Scholar] [CrossRef]
- He, M.; Li, N.; Chen, Y.; Zhu, C. An Experimental Study of Dynamic Behaviors of Rock under Stepwise Cyclic Loading. Rock Soil Mech. 2015, 36, 2907–2913. [Google Scholar]
- Kalantari, S.; Baghbanan, A.; Hashemalhosseini, H. An Analytical Model for Estimating Rock Strength Parameters from Small-Scale Drilling Data. J. Rock Mech. Geotech. Eng. 2019, 11, 135–145. [Google Scholar] [CrossRef]
- Rostamsowlat, I. Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study. Rock Mech. Rock Eng. 2018, 51, 1715–1728. [Google Scholar] [CrossRef]
- Joseph, T.G. Estimation of the Post-Failure Stiffness of Rock. Ph.D. Thesis, University of Alberta, Alberta, AB, Canada, 2000. [Google Scholar]
- Gerbaud, L.; Menand, S.; Sellami, H. PDC Bits: All Comes from the Cutter/Rock Interaction. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, Miami, FL, USA, 21–23 February 2006; p. SPE-98988. [Google Scholar]
- He, M.; Zhang, Z.; Li, N. Prediction of Fracture Frequency and RQD for the Fractured Rock Mass Using Drilling Logging Data. Bull. Eng. Geol. Environ. 2021, 80, 4547–4557. [Google Scholar] [CrossRef]
- He, N.; Zhang, X. Excavation and Construction Technology of Diversion Tunnel under Complex Geological Conditions. Appl. Sci. 2023, 13, 1538. [Google Scholar] [CrossRef]
- Dagrain, F.; Detournay, E.; Richard, T. Influence of the Cutter Geometry in Rock Cutting: An Experimental Approach. In Proceedings of the DC Rocks 2001, the 38th U.S. Rock Mechanics Symposium, Washington, DC, USA, 7–10 July 2001. [Google Scholar]
- He, M.; Li, N.; Zhu, J.; Chen, Y. Advanced Prediction for Field Strength Parameters of Rock Using Drilling Operational Data from Impregnated Diamond Bit. J. Pet. Sci. Eng. 2020, 187, 106847. [Google Scholar] [CrossRef]
- Xie, H.; Li, L.; Ju, Y.; Peng, R.; Yang, Y. Energy Analysis for Damage and Catastrophic Failure of Rocks. Sci. China Technol. Sci. 2011, 54, 199–209. [Google Scholar] [CrossRef]
- Sari, M. An Improved Method of Fitting Experimental Data to the Hoek–Brown Failure Criterion. Eng. Geol. 2012, 127, 27–35. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, H.; Li, H. A Theoretical Derivation of the Hoek–Brown Failure Criterion for Rock Materials. J. Rock Mech. Geotech. Eng. 2015, 7, 361–366. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Zheng, J.; Chen, F.; Li, N. A New Perspective on the Constant Mi of the Hoek–Brown Failure Criterion and a New Model for Determining the Residual Strength of Rock. Rock Mech. Rock Eng. 2020, 53, 3953–3967. [Google Scholar] [CrossRef]
- Zuo, J.; Li, H.; Xie, H.; Ju, Y.; Peng, S. A Nonlinear Strength Criterion for Rock-like Materials Based on Fracture Mechanics. Int. J. Rock Mech. Min. Sci. 2008, 45, 594–599. [Google Scholar] [CrossRef]
- Hajiabdolmajid, V. Modeling Brittle Failure of Rock. In Rock Mechanics and Engineering Volume 1; CRC Press: Boca Raton, FL, USA, 2017; pp. 593–621. [Google Scholar]
- Gholami, R.; Rasouli, V.; Alimoradi, A. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms. Rock Mech. Rock Eng. 2013, 46, 1199–1209. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Kumar, B.R.; Vardhan, H.; Govindaraj, M. Sound Level Produced during Rock Drilling Vis-à-Vis Rock Properties. Eng. Geol. 2011, 123, 333–337. [Google Scholar] [CrossRef]
- Adoko, A.C.; Gokceoglu, C.; Wu, L.; Zuo, Q.J. Knowledge-Based and Data-Driven Fuzzy Modeling for Rockburst Prediction. Int. J. Rock Mech. Min. Sci. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Ren, J.; Huan, J.; Li, G.; Chen, Y.; Li, N. Deep Convolutional Neural Network for Fast Determination of the Rock Strength Parameters Using Drilling Data. Int. J. ROCK Mech. Min. Sci. 2019, 123, 104084. [Google Scholar] [CrossRef]
- Van Eldert, J.; Schunnesson, H.; Johansson, D.; Saiang, D. Application of Measurement While Drilling Technology to Predict Rock Mass Quality and Rock Support for Tunnelling. Rock Mech. Rock Eng. 2020, 53, 1349–1358. [Google Scholar] [CrossRef]
- Munoz, H.; Taheri, A.; Chanda, E.K. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index. Rock Mech. Rock Eng. 2016, 49, 3343–3355. [Google Scholar] [CrossRef]
- Palmstrom, A. Measurements of and Correlations between Block Size and Rock Quality Designation (RQD). Tunn. Undergr. Space Technol. 2005, 20, 362–377. [Google Scholar] [CrossRef]
- Li, J.; Zuo, S. Spatial Variation of Rock Quality Designation (RQD) in Fractured Rock Masses. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 946–953. [Google Scholar]
- Li, C. A Method for Graphically Presenting the Deformation Modulus of Jointed Rock Masses. Rock Mech. Rock Eng. 2001, 34, 67–75. [Google Scholar] [CrossRef]
- Alemdag, S.; Sari, M.; Seren, A. Determination of Rock Quality Designation (RQD) in Metamorphic Rocks: A Case Study (Bayburt-Kirklartepe Dam). Bull. Eng. Geol. Environ. 2022, 81, 214. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, A.; Zhang, Z.; Liu, H.; Zheng, J. Estimation of the Lengths of Intact Rock Core Pieces and the Corresponding RQD Considering the Influence of Joint Roughness. KSCE J. Civ. Eng. 2023, 27, 2689–2703. [Google Scholar] [CrossRef]
- Esfahani, N.M.; Asghari, O. Fault Detection in 3D by Sequential Gaussian Simulation of Rock Quality Designation (RQD) Case Study: Gazestan Phosphate Ore Deposit, Central Iran. Arab. J. Geosci. 2013, 6, 3737–3747. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Yuan, S.; Zhou, X. Study of broken rock mass strength based on V.RQD value and Hoek-Brown cri-terion. Chin. J. Rock Mech. Eng. 2010, 29, 1670–1676. [Google Scholar]
- Zhang, L.; Einstein, H.H. Using RQD to Estimate the Deformation Modulus of Rock Masses. Int. J. Rock Mech. Min. Sci. 2004, 41, 337–341. [Google Scholar] [CrossRef]
- Araghi, M.S.; Samani, F.B.; Goudarzi, M.T. A Proposal for the Modification of RQD (MRQD). In Proceedings of the Rock Mechanics in Underground Construction: ISRM International Symposium 2006: 4th Asian Rock Mechanics Symposium, Singapore, 8–10 November 2006; World Scientific: Singapore, 2006; p. 269. [Google Scholar]
- Arzúa, J.; Alejano, L.R.; Walton, G. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. Int. J. Rock Mech. Min. Sci. 2014, 69, 93–104. [Google Scholar] [CrossRef]
- Abbas, S.M.; Konietzky, H. Rock Mass Classification Systems. Introd. Geomech. 2017, 9, 1–48. [Google Scholar]
- Agan, C. Prediction of Squeezing Potential of Rock Masses around the Suruç Water Tunnel. Bull. Eng. Geol. Environ. 2016, 75, 451–468. [Google Scholar] [CrossRef]
- Fathipour-Azar, H. Data-Oriented Prediction of Rocks’ Mohr-Coulomb Parameters. Arch. Appl. Mech. 2022, 92, 2483–2494. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, S.; Li, S.; Guo, W.; Zhang, T.; Li, X.; Lu, J. Deep Learning for Intelligent Prediction of Rock Strength by Adopting Measurement While Drilling Data. Int. J. Geomech. 2023, 23, 04023028. [Google Scholar] [CrossRef]
- Wu, S.; Wu, Z.; Zhang, C. Rock Burst Prediction Probability Model Based on Case Analysis. Tunn. Undergr. SPACE Technol. 2019, 93, 103069. [Google Scholar] [CrossRef]
- Zhang, L. Prediction of End-Bearing Capacity of Rock-Socketed Shafts Considering Rock Quality Designation (RQD). Can. Geotech. J. 2010, 47, 1071–1084. [Google Scholar] [CrossRef]
- Zhao, W.; Feng, X.; Wang, T. Study on Fracture Distribution and Local Brittleness Characteristics Based on Stepwise Regression Method. Geofluids 2021, 2021, 5527967. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, W.; Zhang, Y.; Fu, X. A Detailed Study of the CHN-BQ Rock Mass Classification Method and Its Correlations with RMR and Q System and Hoek-Brown Criterion. Int. J. Rock Mech. Min. Sci. 2023, 162, 105290. [Google Scholar] [CrossRef]
- Aydan, Ö.; Ulusay, R.; Tokashiki, N. A New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses. Rock Mech. Rock Eng. 2014, 47, 1255–1276. [Google Scholar] [CrossRef]
- Lu, H.; Gutierrez, M.; Kim, E. Empirical Approach for Reliability Evaluation of Tunnel Excavation Stability Using the Q Rock Mass Classification System. Undergr. Space 2022, 7, 862–881. [Google Scholar] [CrossRef]
- Rong, F. Study of spatial distributing of rock mass quality using generalized rqd_t. J. Eng. Geol. 2016, 24, 246–251. [Google Scholar]
- Gokceoglu, C.; Sonmez, H.; Kayabasi, A. Predicting the Deformation Moduli of Rock Masses. Int. J. Rock Mech. Min. Sci. 2003, 40, 701–710. [Google Scholar] [CrossRef]
- American Association of State Highway Officials. Standard Specifications for Highway Bridges; American Association of State Highway Officials: Washington, DC, USA, 1973; Volume 11. [Google Scholar]
- Kulhawy, F.H.; Goodman, R.E. Foundations in Rock. In Ground Engineer’s Reference Book; Butterworths: London, UK, 1987; Volume 55. [Google Scholar]
- Zhang, L. Estimating the Strength of Jointed Rock Masses. Rock Mech. Rock Eng. 2010, 43, 391–402. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Determining Rock Mass Deformability: Experience from Case Histories. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 237–247. [Google Scholar] [CrossRef]
- Nicholson, G.A.; Bieniawski, Z.T. A Nonlinear Deformation Modulus Based on Rock Mass Classification. Int. J. Min. Geol. Eng. 1990, 8, 181–202. [Google Scholar] [CrossRef]
- Read, S.A.L.; Perrin, N.D.; Richards, L.R. Applicability of the Hoek-Brown Failure Criterion to New Zealand Greywacke Rocks. In Proceedings of the ISRM Congress, ISRM, Paris, France, 25–28 August 1999; p. ISRM-9CONGRESS-1999-133. [Google Scholar]
- Barton, N. Some New Q-Value Correlations to Assist in Site Characterization and Tunnel Design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- Sonmez, H.; Gokceoglu, C.; Ulusay, R. Indirect Determination of the Modulus of Deformation of Rock Masses Based on the GSI System. Int. J. Rock Mech. Min. Sci. 2004, 41, 849–857. [Google Scholar] [CrossRef]
- Hoek, E.; Diederichs, M.S. Empirical Estimation of Rock Mass Modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- Serafim, J.L.; Pereira, J.P. Constructions of the Geomechanics Classification of Bieniawski. In Proceedings of the International Symposium on Engineering Geology and Underground Openings, LNEC, Lisob, Portugal, 12–15 September 1983; Available online: https://www.scirp.org/reference/referencespapers?referenceid=2364768 (accessed on 2 May 2024).
- Mitri, H.S.; Edrissi, R.; Henning, J. Finite Element Modeling of Cable-Bolted Stopes in Hard Rock Underground Mines. In Proceedings of the SME Annual Conference, Albuquerque, NM, USA, 14–17 February 1994. [Google Scholar]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown Failure Criterion-2002 Edition. In Proceedings of NARMS-Tac; University of Toronto Press: Toronto, ON, Canada, 2002; Volume 1, pp. 267–273. Available online: https://www.rocscience.com/assets/resources/learning/hoek/Hoek-Brown-Failure-Criterion-2002.pdf (accessed on 2 May 2024).
- Hoek, E.; Marinos, P.; Benissi, M. Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses. The Case of the Athens Schist Formation. Bull. Eng. Geol. Environ. 1998, 57, 151–160. [Google Scholar] [CrossRef]
- Yudhbir, Y.; Lemanza, W.; Prinzl, F. An Empirical Failure Criterion for Rock Masses. In Proceedings of the Fifth International Congress on Rock Mechanics, Melbourne, Australia, 10–15 April 1983; p. ISRM-5CONGRESS-1983-042. Available online: https://trid.trb.org/view/204918 (accessed on 2 May 2024).
- Trueman, R. An Evaluation of Strata Support Techniques in Dual Life Gateroads. Doctoral dissertation, University College, London, UK, 1988. [Google Scholar]
- Asef, M.R.; Reddish, D.J.; Lloyd, P.W. Rock–Support Interaction Analysis Based on Numerical Modelling. Geotech. Geol. Eng. 2000, 18, 23–37. [Google Scholar] [CrossRef]
- Sheory, P.R. Empirical Rock Failure Criterion; Oxford IBH Publishing co. and AA Balkema: Rotterdam, The Netherlands, 1997. [Google Scholar]
- Singh, B.; Villadkar, M.N.; Samadhiya, N.K.; Mehrotra, V.K. Rock Mass Strength Parameters Mobilised in Tunnels. Tunn. Undergr. Space Technol. 1997, 12, 47–54. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Rao, G.V.; Rao, K.S. A Strength Criterion for Rocks. In Proceedings of the Indian Geotechnical Conference, Roorkee, India, 17–19 December 1985; Volume 1, pp. 59–64. [Google Scholar]
- Ramamurthy, T. Stability of Rock Mass. Indian Geotech. J. 1986, 16, 1–74. [Google Scholar]
- Kalamaras, G.S.; Bieniawski, Z.T. A Rock Mass Strength Concept for Coal Seams. In Proceedings of the 12th conference ground control in mining, Morgantown, WV, USA, 3–5 August 1993; pp. 274–283. [Google Scholar]
- Bhasin, R.; Grimstad, E. The Use of Stress-Strength Relationships in the Assessment of Tunnel Stability. Tunn. Undergr. Space Technol. 1996, 11, 93–98. [Google Scholar] [CrossRef]
- Singh, B.; Goel, R.K. Rock Mass Classification: A Practical Approach in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 1999; Volume 46, ISBN 0-08-054065-1. [Google Scholar]
- Dalgiç, S. Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey. Eng. Geol. 2002, 67, 73–96. [Google Scholar] [CrossRef]
Technical Parameters | |||
---|---|---|---|
Maximum stroke of power head (mm) [20] | 1700 | Drilling depth (m) [20] | 50 |
Rated lifting power (kN) [20] | 40 | Drill diameter (mm) [20] | 42/50 |
Maximum pressure (kN) [20] | 18 | Motor power (kW) [20] | 90 |
Drilling speed (m/min) [20] | 0~28 | Maximum torque (N·m) [20] | 2458 |
Drilling angle (°) [20] | 0~90 | Rotating speed (r/min) [20] | 0~1000 |
Gear | Neutral | First | Second | Third |
---|---|---|---|---|
Rotating speed (r/mm) | 0 | 0~300 | 300~600 | 600~1000 |
Surrounding rock type | - | IV, V | II, III | I, II |
Rock Type | ρ | φ′ (°) | θ (°) | φ (°) | C (MPa) | qc (MPa) | ||
---|---|---|---|---|---|---|---|---|
Drilling Value | Standard Value | Drilling Value | Standard Value | |||||
Sandstone | 2.31 | 49.6 | 11.31 | 38.7 | 5.16 | 5.46 | 22.39 | 21.58 |
Limestone | 2.52 | 71.5 | 16.7 | 60.7 | 10.08 | 10.84 | 72.28 | 63.89 |
Marble | 2.47 | 70.3 | 14.04 | 62.3 | 8.79 | 9.54 | 71.26 | 65.42 |
Granite | 2.78 | 75.02 | 14.6 | 67.2 | 15.82 | 17.56 | 157.04 | 172.27 |
R2 | Variance | ||||
---|---|---|---|---|---|
M-C | DCNN~M-C | DCNN | M-C | DCNN~M-C | DCNN |
0.988 | 0.991 | 0.998 | 17.35 | 13.89 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; He, M.; Hao, W.; Wang, H. Drilling Process Monitoring for Predicting Mechanical Properties of Jointed Rock Mass: A Review. Buildings 2024, 14, 1992. https://doi.org/10.3390/buildings14071992
Yu X, He M, Hao W, Wang H. Drilling Process Monitoring for Predicting Mechanical Properties of Jointed Rock Mass: A Review. Buildings. 2024; 14(7):1992. https://doi.org/10.3390/buildings14071992
Chicago/Turabian StyleYu, Xiaoyue, Mingming He, Wei Hao, and Haoteng Wang. 2024. "Drilling Process Monitoring for Predicting Mechanical Properties of Jointed Rock Mass: A Review" Buildings 14, no. 7: 1992. https://doi.org/10.3390/buildings14071992
APA StyleYu, X., He, M., Hao, W., & Wang, H. (2024). Drilling Process Monitoring for Predicting Mechanical Properties of Jointed Rock Mass: A Review. Buildings, 14(7), 1992. https://doi.org/10.3390/buildings14071992