Limited Field Images Concrete Crack Identification Framework Using PCA and Optimized Deep Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of Dataset
2.2. Original Image Pre-Processing
2.2.1. Histogram Equalization
2.2.2. Image Augmentation
2.2.3. Image Data Fusion
3. Deep Learning Network Framework
3.1. Backbone Network
3.2. Semantic Segmentation Models
3.3. Attention Mechanism
4. Feature-Level-Based Crack Using Segmentation Model
4.1. Selection of Hyperparameters
4.2. Attention Mechanism Network
4.3. Predicted Images of Two Segmentation Models
5. Results and Discussion
5.1. Precision Evaluation Indicators
5.2. Scores of Two Segmentation Models
5.3. Predicted Images of Two Segmentation Models
5.4. Experimental Comparison Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Ye, X.W.; Zhang, H.; Zhang, X.S. Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application. Steel Compos. Struct. 2024, 50, 363–374. [Google Scholar]
- Ding, Y.; Ye, X.W.; Su, Y.H.; Zheng, X.L. A framework of cable wire failure mode deduction based on Bayesian network. Structures 2023, 57, 104996. [Google Scholar] [CrossRef]
- Yu, Y.; Rashidi, M.; Samali, B.; Yousefi, A.M.; Wang, W. Multi-image-feature-based hierarchical concrete crack identification framework using optimized SVM multi-classifiers and D–S fusion algorithm for bridge structures. Remote Sens. 2021, 13, 240. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Ziehl, P. Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning. Constr. Build. Mater. 2023, 370, 130709. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X. A performance improvement strategy for concrete damage detection using stacking ensemble learning of multiple semantic segmentation networks. Sensors 2022, 22, 3341. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Kim, J.; Cho, G.C.; Lee, S.W. Stereo-vision-based 3D concrete crack detection using adversarial learning with balanced ensemble discriminator networks. Struct. Health Monit. 2023, 22, 1353–1375. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.H.; Lee, S.J.; Ryu, S.K.; Joo, B.C. Improvement of Concrete Crack Segmentation Performance Using Stacking Ensemble Learning. Appl. Sci. 2023, 13, 2367. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Al Jassmi, H.; Gocho, M.; Khan, W.; Serhani, M.A. Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors 2021, 21, 1688. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Meng, D.; Li, W.; Wang, Y. Bridge crack semantic segmentation based on improved Deeplabv3+. J. Mar. Sci. Eng. 2021, 9, 671. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Wahyuni, I.; Wang, W.J.; Liang, D.; Chang, C.C. Rice Semantic Segmentation Using Unet-VGG16: A Case Study in Yunlin, Taiwan. In Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien, Taiwan, 16–19 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–2. [Google Scholar]
- Zhu, X.; Cheng, Z.; Wang, S.; Chen, X.; Lu, G. Coronary angiography image segmentation based on PSPNet. Comput. Methods Programs Biomed. 2021, 200, 105897. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.L.; Zhou, Y.Y.; Wang, H.Y.; Li, J.R.; Zhao, J.Q. Dam surface crack detection method based on improved DeepLabV3+ network. J. Tsinghua Univ. Sci. Technol. 2023, 63, 1153–1163. [Google Scholar]
- He, H.; Xu, H.; Zhang, Y.; Gao, K.; Li, H.; Ma, L.; Li, J. Mask R-CNN based automated identification and extraction of oil well sites. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102875. [Google Scholar] [CrossRef]
- Cao, X.; Pan, J.S.; Wang, Z.; Sun, Z.; Haq, A.U.; Deng, W.; Yang, S. Application of generated mask method based on Mask R-CNN in classification and detection of melanoma. Comput. Methods Programs Biomed. 2021, 207, 106174. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Du, J.; Li, M.; Li, Y.; Li, W. An improved U-Net model for concrete crack detection. Mach. Learn. Appl. 2022, 10, 100436. [Google Scholar]
- Rao, A.S.; Nguyen, T.; Le, S.T.; Palaniswami, M.; Ngo, T. Attention recurrent residual U-Net for predicting pixel-level crack widths in concrete surfaces. Struct. Health Monit. 2022, 21, 2732–2749. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Xu, W. Shift pooling PSPNet: Rethinking pspnet for building extraction in remote sensing images from entire local feature pooling. Remote Sens. 2022, 14, 4889. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Guo, Y. Copula-based JPDF of wind speed, wind direction, wind angle, and temperature with SHM data. Probab. Eng. Mech. 2023, 73, 103483. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Guo, Y.; Zhang, R.; Ma, Z. Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven. Probab. Eng. Mech. 2023, 73, 103475. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, Y.J.; Xi, P.S.; Ang, P.P.; Han, Z. A long-term tunnel settlement prediction model based on BO-GPBE with SHM data. Smart Struct. Syst. 2024, 33, 17–26. [Google Scholar]
- Hou, Y.; Liu, S.; Cao, D.; Peng, B.; Liu, Z.; Sun, W.; Chen, N. A deep learning method for pavement crack identification based on limited field images. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22156–22165. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Jiang, H.; Fan, X. CNN training with twenty samples for crack detection via data augmentation. Sensors 2020, 20, 4849. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, C. Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples. Measurement 2022, 196, 111219. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- De Siqueira, F.R.; Schwartz, W.R.; Pedrini, H. Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 2013, 120, 336–345. [Google Scholar] [CrossRef]
- Acharya, K.; Ghoshal, D. Modified von Neumann neighborhood and taxicab geometry-based edge detection technique for infrared images. Int. J. Wavelets Multiresolut. Inf. Process. 2023, 21, 2350027. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. Deep Crack: A deep hierarchical feature learning architecture for crack segmentation. Neuro Comput. 2019, 338, 139–153. [Google Scholar]
- Rahman, H.; Paul, G.C. Tripartite sub-image histogram equalization for slightly low contrast gray-tone image enhancement. Pattern Recognit. 2023, 134, 109043. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Nijaguna, G.S.; Babu, J.A.; Parameshachari, B.D.; de Prado, R.P.; Frnda, J. Quantum Fruit Fly algorithm and ResNet50-VGG16 for medical diagnosis. Appl. Soft Comput. 2023, 136, 110055. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
PC | Eigenvalue | Percent | PC | Eigenvalue | Percent |
---|---|---|---|---|---|
1 | 22,966.3229 | 18.10% | 13 | 4057.7283 | 89.90% |
2 | 22,543.8473 | 35.88% | 14 | 4034.6898 | 93.08% |
3 | 11,251.2018 | 44.75% | 15 | 3423.6056 | 95.78% |
4 | 11,025.9367 | 53.44% | 16 | 2469.8018 | 97.73% |
5 | 9314.8470 | 60.78% | 17 | 1285.1394 | 98.74% |
6 | 5549.7150 | 65.16% | 18 | 1240.3846 | 99.72% |
7 | 5287.4921 | 69.32% | 19 | 188.9968 | 99.87% |
8 | 5259.7388 | 73.47% | 20 | 166.0394 | 100.00% |
9 | 4388.7498 | 76.93% | 21 | 0.0000 | 100.00% |
10 | 4197.7833 | 80.24% | 22 | 0.0000 | 100.00% |
11 | 4124.0324 | 83.49% | 23 | 0.0000 | 100.00% |
12 | 4077.8208 | 86.70% | 24 | 0.0000 | 100.00% |
Methods | Precision/% | Recall/% | IoU/% | Training Time (min) | Epoch |
---|---|---|---|---|---|
Att-Unet-deepcrack100 | 74 | 87 | 83 | 319 | 100 |
Att-Unet-deepcrack100-PC15 | 85 | 91 | 92 | 773 | 100 |
Att-Unet-SMC | 94.42 | 88.7 | 84.29 | 210 | 100 |
Att-Unet-SMC-PC15 | 96.14 | 94.32 | 91 | 409 | 100 |
Att-Mask-deepcrack100 | 72 | 85 | 81 | 1424 | 100 |
Att-Mask-deepcrack100-PC15 | 81 | 86 | 88 | 1851 | 100 |
Att-Mask-SMC | 92.48 | 87.64 | 83.32 | 808 | 100 |
Att-Mask-SMC-PC15 | 93.56 | 91.31 | 88.15 | 1214 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhou, S.; Guan, J.; Wang, Q.; Ding, Y. Limited Field Images Concrete Crack Identification Framework Using PCA and Optimized Deep Learning Model. Buildings 2024, 14, 2054. https://doi.org/10.3390/buildings14072054
Pan Y, Zhou S, Guan J, Wang Q, Ding Y. Limited Field Images Concrete Crack Identification Framework Using PCA and Optimized Deep Learning Model. Buildings. 2024; 14(7):2054. https://doi.org/10.3390/buildings14072054
Chicago/Turabian StylePan, Yuan, Shuangxi Zhou, Jingyuan Guan, Qing Wang, and Yang Ding. 2024. "Limited Field Images Concrete Crack Identification Framework Using PCA and Optimized Deep Learning Model" Buildings 14, no. 7: 2054. https://doi.org/10.3390/buildings14072054
APA StylePan, Y., Zhou, S., Guan, J., Wang, Q., & Ding, Y. (2024). Limited Field Images Concrete Crack Identification Framework Using PCA and Optimized Deep Learning Model. Buildings, 14(7), 2054. https://doi.org/10.3390/buildings14072054