Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction
Abstract
:1. Introduction
2. Methods
2.1. Problem Statement
2.2. Monitoring Data Fusion Model
2.3. Feature Extraction Module of MDF Model
2.4. Feature Fusion Module
2.5. Residual Module
2.6. Attention Mechanism of the Model
2.7. Prediction Procedure of the Dynamic Training–Testing Method
2.8. SHAP
3. Experimental Example
3.1. Project Overview
3.2. Experimental Details
3.3. Model Performance Criteria
3.4. Results
4. Discussion
4.1. Error Analysis
4.2. SHAP Analysis of Feature Importance in the MDF Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, Y.; Tian, G.; Bai, M.; Song, L. Study on Construction Deformation Prediction and Disaster Warning of Karst Slopes Based on Grey Theory. Bull. Eng. Geol. Environ. 2023, 82, 62. [Google Scholar] [CrossRef]
- Cui, J.; Yang, Z.; Azzam, R. Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on Ultra-Deep Foundation Pit in Coastal Area. J. Mar. Sci. Eng. 2023, 11, 219. [Google Scholar] [CrossRef]
- Yin, J.H.; Chen, Z.J.; Feng, W.Q. A General Simple Method for Calculating Consolidation Settlements of Layered Clayey Soils with Vertical Drains under Staged Loadings. Acta Geotech. 2022, 17, 3647–3674. [Google Scholar] [CrossRef]
- Li, P.L.; Yin, Z.Y.; Song, D.B.; Yin, J.H.; Pan, Y. Axisymmetric Finite Strain Consolidation Model for Soft Soil Consolidation with Vertical Drains under Combined Loading Considering Creep and Non-Darcy Flow. Geotext. Geomembr. 2024, 52, 241–259. [Google Scholar] [CrossRef]
- Lei, M.; Luo, S.; Chang, J.; Zhang, R.; Kuang, X.; Jiang, J. The Influences of Vacuum-Surcharge Preloading on Pore Water Pressure and the Settlement of a Soft Foundation. Sustainability 2023, 15, 7669. [Google Scholar] [CrossRef]
- Yin, J.H.; Feng, W.Q. A New Simplified Method and Its Verification for Calculation of Consolidation Settlement of a Clayey Soil with Creep. Can. Geotech. J. 2017, 54, 333–347. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, C.; Goh, A.T.C.; Böhlke, T.; Zhang, W. Estimation of Diaphragm Wall Deflections for Deep Braced Excavation in Anisotropic Clays Using Ensemble Learning. Geosci. Front. 2021, 12, 365–373. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, W.; Zhang, W.; Zhou, H.; Yang, P. Neural Network and Support Vector Machine Models for the Prediction of the Liquefaction-Induced Uplift Displacement of Tunnels. Undergr. Space 2021, 6, 126–133. [Google Scholar] [CrossRef]
- Park, H.I.; Kim, K.S.; Kim, H.Y. Field Performance of a Genetic Algorithm in the Settlement Prediction of a Thick Soft Clay Deposit in the Southern Part of the Korean Peninsula. Eng. Geol. 2015, 196, 150–157. [Google Scholar] [CrossRef]
- Kong, F.; Lu, D.; Ma, Y.; Li, J.; Tian, T. Analysis and Intelligent Prediction for Displacement of Stratum and Tunnel Lining by Shield Tunnel Excavation in Complex Geological Conditions: A Case Study. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22206–22216. [Google Scholar] [CrossRef]
- Chen, J.H.; Cui, D.W. A multi-step prediction model of ROA-ELM dam deformation based on wavelet packet transform. J. Three Gorges Univ. (Nat. Sci. Ed.) 2022, 44, 21–27. [Google Scholar] [CrossRef]
- Ray, R.; Kumar, D.; Samui, P.; Roy, L.B.; Goh, A.T.C.; Zhang, W. Application of Soft Computing Techniques for Shallow Foundation Reliability in Geotechnical Engineering. Geosci. Front. 2021, 12, 375–383. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.N.; Chen, R.P.; Chan, T.H.T. Hybrid Meta-Heuristic and Machine Learning Algorithms for Tunneling-Induced Settlement Prediction: A Comparative Study. Tunn. Undergr. Space Technol. 2020, 99, 103383. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, S.L.; Zhou, A.; Jin, Y.F. Application of LSTM Approach for Modelling Stress–Strain Behaviour of Soil. Appl. Soft Comput. 2021, 100, 106959. [Google Scholar] [CrossRef]
- Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides. IEEE Access 2019, 7, 54305–54311. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Zhang, S.J.; Tan, Y. Prediction of pit deformation based on LSTM algorithm. Tunn. Constr. 2022, 42, 113–120. [Google Scholar] [CrossRef]
- Lv, Q.F.; Li, Y.; Niu, R.; Xui, H.X.; Mao, N.; Kang, Q.Y. Deep learning-based prediction of surrounding rock deformation in tunnels with special geotechnical conditions. J. Appl. Basic Eng. Sci. 2023, 31, 1590–1600. [Google Scholar] [CrossRef]
- Hong, Y.C.; Qian, J.G.; Ye, Y.X.; Cheng, L. Application of spatio-temporal correlation feature-based CNN-LSTM model in deformation prediction of foundation pit engineering. J. Geotech. Eng. 2021, 43, 108–111. [Google Scholar] [CrossRef]
- Song, F.; Zhong, H.; Li, J.; Zhang, H. Multi-Point RCNN for Predicting Deformation in Deep Excavation Pit Surrounding Soil Mass. IEEE Access 2023, 11, 124808–124818. [Google Scholar] [CrossRef]
- Zhang, J.; Phoon, K.K.; Zhang, D.; Huang, H.; Tang, C. Deep Learning-Based Evaluation of Factor of Safety with Confidence Interval for Tunnel Deformation in Spatially Variable Soil. Journal of Rock Mechanics and Geotechnical Engineering 2021, 13, 1358–1367. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J.; Li, J.H.; Ng, C.W.W. An Integrated High-Capacity Tensiometer for Measuring Water Retention Curves Continuously. Soil Sci. Soc. Am. J. 2015, 79, 943–947. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. AAAI 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Chen, X.X.; Yang, J.; He, G.F.; Huang, L.C. Development of an LSTM-Based Model for Predicting the Long-Term Settlement of Land Reclamation and a GUI-Based Tool. Acta Geotech. 2023, 18, 3849–3862. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Feng, J.; Yan, L.; Hang, T. Stream-Flow Forecasting Based on Dynamic Spatio-Temporal Attention. IEEE Access 2019, 7, 134754–134762. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Baptista, M.L.; Goebel, K.; Henriques, E.M.P. Relation between Prognostics Predictor Evaluation Metrics Andlocal Interpretability SHAP Values. Artif. Intell. 2022, 306, 103667. [Google Scholar] [CrossRef]
Model | MDF | Single-Feature LSTM | Multi-Feature LSTM |
---|---|---|---|
Epoch | 200 | 200 | 200 |
Batch size | 32 | 32 | 32 |
Learning rate | 0.01 | 0.01 | 0.01 |
Activation function | Tanh | Tanh | Tanh |
Drop out | 0.5 | 0.5 | 0.5 |
Optimizer | Adam | Adam | Adam |
Metric | MAPE (%) | RMSE (mm) | Probability of Error within 10% (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Models | MDF | Single-Feature LSTM | Multi-Feature LSTM | MDF | Single-Feature LSTM | Multi-Feature LSTM | MDF | Single-Feature LSTM | Multi-Feature LSTM |
CJ1 | 1.81 | 2.52 | 5.49 | 17.63 | 26.98 | 81.11 | 98 | 86 | 78 |
CJ2 | 1.81 | 2.68 | 5.76 | 14.30 | 23.49 | 68.34 | 96 | 84 | 76 |
CJ3 | 2.08 | 3.16 | 5.73 | 13.88 | 22.03 | 60.88 | 90 | 77 | 75 |
CJ4 | 2.17 | 3.27 | 5.99 | 11.07 | 18.13 | 49.83 | 87 | 76 | 72 |
CJ5 | 2.35 | 3.31 | 6.38 | 9.65 | 14.49 | 43.61 | 82 | 75 | 69 |
CJ6 | 2.51 | 3.28 | 5.36 | 8.39 | 12.19 | 26.83 | 82 | 76 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wu, Y.; Liu, J.; Zhang, L.; Zhu, Y.; Liang, C. Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction. Buildings 2024, 14, 2055. https://doi.org/10.3390/buildings14072055
Wu H, Wu Y, Liu J, Zhang L, Zhu Y, Liang C. Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction. Buildings. 2024; 14(7):2055. https://doi.org/10.3390/buildings14072055
Chicago/Turabian StyleWu, Huiguo, Yuedong Wu, Jian Liu, Lei Zhang, Yongyang Zhu, and Chuanyang Liang. 2024. "Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction" Buildings 14, no. 7: 2055. https://doi.org/10.3390/buildings14072055
APA StyleWu, H., Wu, Y., Liu, J., Zhang, L., Zhu, Y., & Liang, C. (2024). Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction. Buildings, 14(7), 2055. https://doi.org/10.3390/buildings14072055