Conservation of Socio-Religious Historic Buildings: A Case Study of Shah Yousuf Gardez Shrine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection—Shah Yousaf Gardez Shrine
2.2. Evolution of the Shrine
2.3. The Shrine of Shah Yousaf Gardez, Multan: From Survey to Conservation Plan (Scan-HBIM)
2.3.1. 3D Laser Scanning and Photogrammetry
2.3.2. The Architectural Representation, Building Archaeology, Digital Preservation, and Scan-to-HBIM Process
3. Results and Discussions
3.1. Identification and Analysis of Defects
3.2. Scheduling Quantities
3.3. HBIM to Support the Conservation Plan and Process
4. Limitations and Future Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vali Yousefi, M. Scan to BIM: Virtual Reconstruction of a Historic Building Using BIM (H-BIM). Master’s Thesis, Metropolia UAS, Helsinki, Finland; HTW Berlin: Berlin, Germany, 2020. [Google Scholar]
- Borrmann, A.; König, M.; Koch, C.; Beetz, J. Building Information Modeling: Why? What? How? Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F. Historic BIM: A new repository for structural health monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 269–274. [Google Scholar] [CrossRef]
- Luksor, N.Ž.; Folić, N.K. Role of Cultural Heritage Interpretation Related to Presentation and Relevant for Architectural Design. In Proceedings of the 5th International Conference on Contemporary Achievements in Civil Engineering, Subotica, Serbia, 21 April 2017. [Google Scholar]
- Rossi, M.; Bournas, D. Structural health monitoring and management of cultural heritage structures: A state-of-the-art review. Appl. Sci. 2023, 13, 6450. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Bagchi, A.; Moselhi, O. Development of a BIM-based data management system for structural health monitoring with application to modular buildings: Case study. J. Comput. Civ. Eng. 2019, 33, 05019003. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Yang, X. An integrated system for building structural health monitoring and early warning based on an Internet of things approach. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147716689101. [Google Scholar] [CrossRef]
- Dasari, K.; Dogra, A.; Adeel, H. An Exploratory Study on the Integration of Digital BIM and IOT in Structural Health Monitoring Practices. In Proceedings of the National Conference on Advances in Construction Materials and Management, Warangal, India, 16–17 December 2022; pp. 161–174. [Google Scholar]
- Sadhu, A.; Peplinski, J.E.; Mohammadkhorasani, A.; Moreu, F. A review of data management and visualization techniques for structural health monitoring using BIM and virtual or augmented reality. J. Struct. Eng. 2023, 149, 03122006. [Google Scholar] [CrossRef]
- O’Shea, M.; Murphy, J. Design of a BIM integrated structural health monitoring system for a historic offshore lighthouse. Buildings 2020, 10, 131. [Google Scholar] [CrossRef]
- Machete, R.; Neves, M.; Ponte, M.; Falcão, A.P.; Bento, R. A BIM-Based Model for Structural Health Monitoring of the Central Body of the Monserrate Palace: A First Approach. Buildings 2023, 13, 1532. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as integrated digital environments for modeling and monitoring of historic buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef]
- Piaia, E.; Maietti, F.; Di Giulio, R.; Schippers-Trifan, O.; Van Delft, A.; Bruinenberg, S.; Olivadese, R. BIM-based cultural heritage asset management tool. Innovative solution to orient the preservation and valorization of historic buildings. Int. J. Archit. Herit. 2021, 15, 897–920. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A scan-to-BIM methodology applied to heritage buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Francisco, C.; Gonçalves, L.; Gaspar, F.; Rodrigues, H.; Carracelas, M.S.; Luna, I.P.; Gonçalves, G.; Providência, P. Data acquisition in cultural heritage buildings using non-destructive techniques, and its gathering with BIM—The case study of the gothic monastery of batalha in Portugal. In Sustainability and Automation in Smart Constructions, Proceedings of the International Conference on Automation Innovation in Construction (CIAC-2019), Leiria, Portugal, 7–8 November 2019; Springer International Publishing: Cham, Switzerland, 2021; pp. 59–68. [Google Scholar]
- Li, X.; Xie, L.; Lu, W.; Xue, S.; Hong, C.; Lan, W.; Shi, Q. Structural health monitoring of a historic building during uplifting process: System design and data analysis. Struct. Health Monit. 2023, 22, 3165–3188. [Google Scholar] [CrossRef]
- Wang, J.; You, H.; Qi, X.; Yang, N. BIM-based structural health monitoring and early warning for heritage timber structures. Autom. Constr. 2022, 144, 104618. [Google Scholar] [CrossRef]
- Boddupalli, C.; Sadhu, A.; Rezazadeh Azar, E.; Pattyson, S. Improved visualization of infrastructure monitoring data using building information modeling. Struct. Infrastruct. Eng. 2019, 15, 1247–1263. [Google Scholar] [CrossRef]
- Bouzas, Ó.; Cabaleiro, M.; Conde, B.; Cruz, Y.; Riveiro, B. Structural health control of historical steel structures using HBIM. Autom. Constr. 2022, 140, 104308. [Google Scholar] [CrossRef]
- Moyano, J.; Gil-Arizón, I.; Nieto-Julián, J.E.; Marín-García, D. Analysis and management of structural deformations through parametric models and HBIM workflow in architectural heritage. J. Build. Eng. 2022, 45, 103274. [Google Scholar] [CrossRef]
- Godinho, M.; Machete, R.; Ponte, M.; Falcao, A.P.; Goncalves, A.B.; Bento, R. BIM as a resource in heritage management: An application for the National Palace of Sintra, Portugal. J. Cult. Herit. 2020, 43, 153–162. [Google Scholar] [CrossRef]
- Quattrini, R.; Pierdicca, R.; Morbidoni, C. Knowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web. J. Cult. Herit. 2017, 28, 129–139. [Google Scholar] [CrossRef]
- Sivasuriyan, A.; Vijayan, D.S.; Górski, W.; Wodzyński, Ł.; Vaverková, M.D.; Koda, E. Practical implementation of structural health monitoring in multi-story buildings. Buildings 2021, 11, 263. [Google Scholar] [CrossRef]
- Panah, R.S.; Kioumarsi, M. Application of building information modelling (BIM) in the health monitoring and maintenance process: A systematic review. Sensors 2021, 21, 837. [Google Scholar] [CrossRef]
- Marzouk, M.; Metawie, M.; ElSharkawy, M.; Eid, A.; Hawas, S. Application of laser scanning technology in energy analysis and structural health monitoring of heritage buildings. In Proceedings of the CSCE Annual Conference—Canadian Society for Civil Engineering, Laval, QC, Canada, 12–15 June 2019; p. 837. [Google Scholar]
- Xu, J.; Shu, X.; Qiao, P.; Li, S.; Xu, J. Developing a digital twin model for monitoring building structural health by combining a building information model and a real-scene 3D model. Measurement 2023, 217, 112955. [Google Scholar] [CrossRef]
- Huston, D.; Burns, D.; Razinger, J. Structural health monitoring and maintenance aided by building information modelling and repair information tools. WIT Trans. Ecol. Environ. 2016, 204, 897–907. [Google Scholar]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Zinno, R.; Guido, G.; Salvo, F.; Artese, S.; De Ruggiero, M.; Vitale, A.; Gentile, A.F. Structural Health Monitoring in Cognitive Buildings. In IoT Edge Solutions for Cognitive Buildings; Springer: Berlin/Heidelberg, Germany, 2022; pp. 245–262. [Google Scholar]
- Cao, Y.; Miraba, S.; Rafiei, S.; Ghabussi, A.; Bokaei, F.; Baharom, S.; Haramipour, P.; Assilzadeh, H. Economic application of structural health monitoring and internet of things in efficiency of building information modeling. Smart Struct. Syst. 2020, 26, 559–573. [Google Scholar]
- Hou, G.; Li, L.; Xu, Z.; Chen, Q.; Liu, Y.; Qiu, B. A BIM-based visual warning management system for structural health monitoring integrated with LSTM network. KSCE J. Civ. Eng. 2021, 25, 2779–2793. [Google Scholar] [CrossRef]
- Colia, G. Structural Health Monitoring (SHM), Heritage Building Information Modelling (HBIM) and Remote Sensing for Existing Bridge. Master’s Thesis, Politecnico di Torino, Turin, Italy, 2021. [Google Scholar]
- Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Dore, C.; Murphy, M.; McCarthy, S.; Brechin, F.; Casidy, C.; Dirix, E. Structural simulations and conservation analysis-historic building information model (HBIM). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 351–357. [Google Scholar] [CrossRef]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Sztwiertnia, D.; Ochałek, A.; Tama, A.; Lewińska, P. HBIM (heritage building information modell) of the Wang stave church in Karpacz—Case study. Int. J. Archit. Herit. 2021, 15, 713–727. [Google Scholar] [CrossRef]
- Lin, G.; Giordano, A.; Sang, K. From site survey to HBIM model for the documentation of historic buildings: The case study of Hexinwu village in China. Conserv. Sci. Cult. Herit. 2020, 20, 111–123. [Google Scholar]
- Abdullah, O.H.; Hatem, W.A. The use of BIM to propose alternative construction methods to reduce the cost of energy for the historic archeological building in Iraq. Arch. Civ. Eng. 2023, 69, 535–549. [Google Scholar]
- Younus, I.; Al-Hinkawi, W.; Lafta, S. The role of historic building information modeling in the cultural resistance of liberated city. Ain Shams Eng. J. 2023, 14, 102191. [Google Scholar] [CrossRef]
- Banfi, F. The integration of a scan-To-HBIM process in bim application: The development of an add-in to guide users in Autodesk revit. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 141–148. [Google Scholar] [CrossRef]
- Khodeir, L.M.; Aly, D.; Tarek, S. Integrating HBIM (Heritage Building Information Modeling) tools in the application of sustainable retrofitting of heritage buildings in Egypt. Procedia Environ. Sci. 2016, 34, 258–270. [Google Scholar] [CrossRef]
- Capone, M.; Lanzara, E. Scan-to-BIM vs 3D ideal model HBIM: Parametric tools to study domes geometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 219–226. [Google Scholar] [CrossRef]
- Moyano, J.; Carreno, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- Youn, H.-C.; Yoon, J.-S.; Ryoo, S.-L. HBIM for the characteristics of Korean traditional wooden architecture: Bracket set modelling based on 3D scanning. Buildings 2021, 11, 506. [Google Scholar] [CrossRef]
- Chiabrando, F.; Sammartano, G.; Spanò, A. Historical buildings models and their handling via 3D survey: From points clouds to user-oriented HBIM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 633–640. [Google Scholar] [CrossRef]
- Heesom, D.; Boden, P.; Hatfield, A.; Rooble, S.; Andrews, K.; Berwari, H. Developing a collaborative HBIM to integrate tangible and intangible cultural heritage. Int. J. Build. Pathol. Adapt. 2021, 39, 72–95. [Google Scholar] [CrossRef]
- Stober, D.; Žarnić, R.; Penava, D.; Podmanicki, M.T.; Virgej-Đurašević, R. Application of HBIM as a research tool for historical building assessment. Civ. Eng. J. 2018, 4, 1565. [Google Scholar] [CrossRef]
- Bastem, S.S.; Cekmis, A. Development of historic building information modelling: A systematic literature review. Build. Res. Inf. 2022, 50, 527–558. [Google Scholar] [CrossRef]
- Escudero, P.A. Scan-to-HBIM: Automated transformation of point clouds into 3D BIM models for the digitization and preservation of historic buildings. VITRUVIO-Int. J. Archit. Technol. Sustain. 2023, 8, 52–63. [Google Scholar] [CrossRef]
- Di Stefano, F.; Gorreja, A.; Malinverni, E.S.; Mariotti, C. Knowledge modeling for heritage conservation process: From survey to HBIM implementation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 19–26. [Google Scholar] [CrossRef]
- Elsaid, M.E.; Ayoub, M.; Hassan, H. Scan-to-Building Information Modelling vs. HBIM in Parametric Heritage Building Documentation. IOP Conf. Ser. Earth Environ. Sci. 2019, 397, 012015. [Google Scholar] [CrossRef]
- Ferro, A.; Lo Brutto, M.; Ventimiglia, G. A scan-to-BIM process for the monitoring and conservation of the architectural heritage: Integration of thematic information in a HBIM model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 549–556. [Google Scholar] [CrossRef]
- Vidovszky, I. Impact-based diagnostic approach for maintenance monitoring of historic buildings. Procedia Eng. 2016, 164, 575–582. [Google Scholar] [CrossRef]
- Cali, A.; De Moraes, P.D.; Do Valle, A. Understanding the structural behavior of historical buildings through its constructive phase evolution using H-BIM workflow. J. Civ. Eng. Manag. 2020, 26, 421–434. [Google Scholar] [CrossRef]
- Kong, X.; Hucks, R.G. Preserving our heritage: A photogrammetry-based digital twin framework for monitoring deteriorations of historic structures. Autom. Constr. 2023, 152, 104928. [Google Scholar] [CrossRef]
- Delgado, J.M.D.; Butler, L.J.; Brilakis, I.; Elshafie, M.Z.; Middleton, C.R. Structural performance monitoring using a dynamic data-driven BIM environment. J. Comput. Civ. Eng. 2018, 32, 1–14. [Google Scholar] [CrossRef]
- Vilutiene, T.; Kalibatiene, D.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Building information modeling (BIM) for structural engineering: A bibliometric analysis of the literature. Adv. Civ. Eng. 2019, 2019, 5290690. [Google Scholar] [CrossRef]
- Charlton, J.; Kelly, K.; Greenwood, D.; Moreton, L. The complexities of managing historic buildings with BIM. Eng. Constr. Archit. Manag. 2021, 28, 570–583. [Google Scholar] [CrossRef]
- Calì, A.; Saisi, A.; Gentile, C. Structural assessment of Cultural Heritage buildings using HBIM and vibration-based system identification. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions-SAHC, Barcelona, Spain, 16–18 September 2020. [Google Scholar]
- Angelosanti, M.; Currà, E.; Sabato, A. BIM oriented applications of structural health monitoring based on magnified digital image correlation point-clouds. Autom. Constr. 2023, 148, 104754. [Google Scholar] [CrossRef]
- Biagini, C.; Capone, P.; Donato, V.; Facchini, N. Towards the BIM implementation for historical building restoration sites. Autom. Constr. 2016, 71, 74–86. [Google Scholar] [CrossRef]
- Khalil, A.; Stravoravdis, S. H-BIM and the domains of data investigations of heritage buildings current state of the art. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 661–667. [Google Scholar] [CrossRef]
- Kwoczynska, B.; Litwin, U.; Piech, I.; Obirek, P.; Sledz, J. The use of terrestrial laser scanning in surveying historic buildings. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2–4 June 2016; pp. 263–268. [Google Scholar]
- Pawłowicz, J.A. Importance of laser scanning resolution in the process of recreating the architectural details of historical buildings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 052038. [Google Scholar] [CrossRef]
- Qureshi, F.H. Multan: A Spiritual Legacy; Sang-e-Meel: Lahore, Pakistan, 2014. [Google Scholar]
- Brown, P. Indian Architecture (The Islamic Period); Read Books Ltd.: Redditch, UK, 2013. [Google Scholar]
- Banfi, F.; Dellù, E.; Stanga, C.; Mandelli, A.; Roncoroni, F.; Sivilli, S.; Pepe, G.; Cacudi, G. Representing Intangible Cultural Heritage of Humanity: From the Deep Abyss of the Past to Digital Twin and XR of the Neanderthal Man and Lamalunga Cave (Altamura, Apulia). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 171–181. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Luso, E.; Almeida, M.G. Defects and moisture problems in buildings from historical city centres: A case study in Portugal. Build. Environ. 2006, 41, 223–234. [Google Scholar] [CrossRef]
- Khalid, M.; Mydin, M.A.O. Building Condition Assessment and Defect Analysis on Heritage Shophouses in Penang, Malaysia: Case Studies. Ann. Fac. Eng. Hunedoara 2012, 10, 441. [Google Scholar]
- Isa, H.M.; Hassan, P.; Mat, M.C.; Isnin, Z.; Sapeciay, Z. Learning from defects in design and build hospital projects in Malaysia. In Proceedings of the International Conference on Social Science and Humanity, Singapore, 26–28 February 2011; pp. 238–242. [Google Scholar]
- Sui Pheng, L.; Wee, D. Improving maintenance and reducing building defects through ISO 9000. J. Qual. Maint. Eng. 2001, 7, 6–24. [Google Scholar] [CrossRef]
- Idrus, A.; Khamidi, F.; Sodangi, M. Maintenance Management Framework for Conservation of Heritage Buildings in Malaysia. Mod. Appl. Sci. 2010, 4, 66–77. [Google Scholar] [CrossRef]
- Mahdavinejad, M.; Javanroodi, K.; Hashemi Rafsanjani, L. Investigating Condensation Role in Defects and Moisture Problems in Historic Buildings—Case Study: Varamin Friday Mosque in Iran. World J. Sci. Technol. Sustain. Dev. 2013, 10, 308–324. [Google Scholar] [CrossRef]
- Woodward, A.; Heesom, D. Implementing HBIM on Conservation Heritage Projects: Lessons from Renovation Case Studies. Int. J. Build. Pathol. Adapt. 2021, 39, 96–114. [Google Scholar] [CrossRef]
Structural Defects in Shrines | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sr. No. | Side Code | EE (Exterior East) | EW (Exterior West) | EN (Exterior North) | ES (Exterior South) | IE (Interior East) | IW (Interior West) | IN (Interior North) | IS (Interior South) |
Shrine | Hazrat Shah Yousaf Gardez | ||||||||
Age (years) | 871 | ||||||||
1. | Foundation Settlement | No | Yes (very minor due to dampness) | Yes (very minor due to dampness) | Yes (very minor due to dampness) | No | Yes (very minor due to dampness) | Yes (very minor due to dampness) | Yes, some extent |
2. | Cracks in walls (Vr./Hz. or any other) | No | No | No | No | No | No | Yes, in left-upper side panel | |
3. | Cracks in roof | No | No | No | No | Yes, on left corner | Yes | Yes | No |
4. | Cracks in floor | No | No | No | No | No | No | No | No |
5. | Cracks in lintels/openings | Yes | No | No | Yes, in window lintel | No | Yes, in arch | Yes, in mihrab arch | No |
Non-Structural Defects in Shrines | |||||||||
6. | Plaster/Wood Cracks | No | No | No | Yes, in wooden lintel of window | No | No | No | Yes, in wooden lintel of window |
7. | Spalling | No | No | No | No | No | No | No | No |
8. | Erosion | Yes, on some kashi tiles | Yes, on some kashi tiles | Yes, on different kashi tiles | Yes, on different kashi tiles | Yes | No | Yes | Yes |
9. | Discoloration | Yes | Yes | Yes | Yes | ||||
10. | Termite Attack | No | No | No | Yes, on window lintel | No | No | No | No |
11. | Salt Attack/Efflorescence | Yes, on some kashi tiles | Yes, on some kashi tiles | Yes | Yes, on some tiles | Yes | Yes | Yes | Yes |
12. | Peeling of Paint/Plaster | Yes | Yes, on some kashi tiles | Yes | Yes, some kashi tiles are peeled off | Yes | Yes, on some mirror panels | Yes | Yes |
13. | Patching | No | No | No | No | Yes, one small mirror panel is patched off | No | No | No |
14. | Dampness/Swelling | No | Yes | No | Yes, dampness | No | Yes, on right side mirror panel | Yes | Yes |
Shrine | Number of Defects on Structural Components | |||||||
---|---|---|---|---|---|---|---|---|
Hazrat Shah Yousaf Gardez | Walls | Roof | Arches | Floor | Parapet Wall | Lintel | Total No. of Defects | |
35 | 5 | 18 | 2 | 5 | 9 | 74 | ||
Number of Defects on Non-Structural Components | ||||||||
Door | Windows | Ventilators | Drains | Pigeon Holes | Oil Lamp Places | Total No. of Defects | ||
1 | 8 | 6 | 1 | 8 | 1 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imtiaz, S.; Arif, S.; Nawaz, A.; Shah, S.A.R. Conservation of Socio-Religious Historic Buildings: A Case Study of Shah Yousuf Gardez Shrine. Buildings 2024, 14, 2116. https://doi.org/10.3390/buildings14072116
Imtiaz S, Arif S, Nawaz A, Shah SAR. Conservation of Socio-Religious Historic Buildings: A Case Study of Shah Yousuf Gardez Shrine. Buildings. 2024; 14(7):2116. https://doi.org/10.3390/buildings14072116
Chicago/Turabian StyleImtiaz, Sunera, Sabahat Arif, Ahsan Nawaz, and Syyed Adnan Raheel Shah. 2024. "Conservation of Socio-Religious Historic Buildings: A Case Study of Shah Yousuf Gardez Shrine" Buildings 14, no. 7: 2116. https://doi.org/10.3390/buildings14072116
APA StyleImtiaz, S., Arif, S., Nawaz, A., & Shah, S. A. R. (2024). Conservation of Socio-Religious Historic Buildings: A Case Study of Shah Yousuf Gardez Shrine. Buildings, 14(7), 2116. https://doi.org/10.3390/buildings14072116