Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis
Abstract
:1. Introduction
2. Background
2.1. Industrial Symbiosis as a Circular Business Model
2.2. Existing Industrial Symbiosis in Cement Industry
2.3. Agricultural Biomass Ash in AAM Technology
3. Materials and Methods
3.1. Experimental Research
3.1.1. Materials and Mix Design
3.1.2. Mixing, Sample Casting and Curing
3.1.3. Testing Methods
3.2. Development of Circular Business Model
4. Results
4.1. Experimental Research Results
4.2. Proposed CBM
- An edible oil production company (Victoria Oil, Šid) and Heat and electric plant, and Sremska Mitrovica town (TE-TO Sremska Mitrovica),
- Steel, cement and concrete production companies.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020.
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal; European Commission: Brussels, Belgium, 2020.
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Business Models for Industrial Symbiosis: A Taxonomy Focused on the Form of Governance. Resour. Conserv. Recycl. 2019, 146, 114–126. [Google Scholar] [CrossRef]
- Yu, Y.; Yazan, D.M.; Bhochhibhoya, S.; Volker, L. Towards Circular Economy through Industrial Symbiosis in the Dutch Construction Industry: A Case of Recycled Concrete Aggregates. J. Clean. Prod. 2021, 293, 126083. [Google Scholar] [CrossRef]
- Sgambaro, L.; Chiaroni, D.; Lettieri, E.; Paolone, F. Exploring Industrial Symbiosis for Circular Economy: Investigating and Comparing the Anatomy and Development Strategies in Italy. Manag. Decis. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Ramsheva, Y.; Remmen, A. Industrial Symbiosis in the Cement Industry—Exploring the Linkages to Circular Economy. In Proceedings of the Technologies & Business Models for Circular Economy, Portoroz, Slovenia, 5–7 September 2018; University of Maribor Press: Maribor, Slovenia, 2018; pp. 35–53. [Google Scholar]
- Building Materials and the Climate: Constructing a New Future; United Nations Environment Programme: Paris, France, 2023; ISBN 978-92-807-4064-6.
- Ramagiri, K.K.; Kar, A. Environmental Impact Assessment of Alkali-Activated Mortar with Waste Precursors and Activators. J. Build. Eng. 2021, 44, 103391. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers and Other Alkali-Activated Materials. In Lea’s Chemistry of Cement and Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 779–805. ISBN 978-0-08-100773-0. [Google Scholar]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- EN 197-1: 2011; Cement—Part 1: Composition Specification and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Amer, I.; Kohail, M.; El-Feky, M.S.; Rashad, A.; Khalaf, M.A. A Review on Alkali-Activated Slag Concrete. Ain Shams Eng. J. 2021, 12, 1475–1499. [Google Scholar] [CrossRef]
- Komkova, A.; Habert, G. Environmental Impact Assessment of Alkali-Activated Materials: Examining Impacts of Variability in Constituent Production Processes and Transportation. Constr. Build. Mater. 2023, 363, 129032. [Google Scholar] [CrossRef]
- Alkali Activated Materials—State of the Art Report TC 224-AAM; Provis, J.L., van Deventer, J.S.J., Eds.; RILEM State-of-the-Art Reports; Springer: Dordrecht, The Netherlands, 2014; Volume 13, ISBN 978-94-007-7671-5. [Google Scholar]
- Rathod, N.; Chippagiri, R.; Ralegaonkar, R.V. Cleaner Production of Geopolymer Materials: A Critical Review of Waste-Derived Activators. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Adesanya, E.; Perumal, P.; Luukkonen, T.; Yliniemi, J.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Opportunities to Improve Sustainability of Alkali-Activated Materials: A Review of Side-Stream Based Activators. J. Clean. Prod. 2021, 286, 125558. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejia De Gutiérrez, R.; Provis, J.L.; Delvasto, S. Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste Biomass Valorization 2012, 3, 99–108. [Google Scholar] [CrossRef]
- Hills, C.D.; Tripathi, N.; Singh, R.S.; Carey, P.J.; Lowry, F. Valorisation of Agricultural Biomass-Ash with CO2. Sci. Rep. 2020, 10, 13801. [Google Scholar] [CrossRef] [PubMed]
- Tosti, L.; van Zomeren, A.; Pels, J.R.; Comans, R.N.J. Evaluating Biomass Ash Properties as Influenced by Feedstock and Thermal Conversion Technology towards Cement Clinker Production with a Lower Carbon Footprint. Waste Biomass Valorization 2021, 12, 4703–4719. [Google Scholar] [CrossRef]
- Sourmelis, S.; Pontikes, Y.; Myers, R.J.; Tennant, M. Business Models for Symbiosis between the Alumina and Cement Industries. Resour. Conserv. Recycl. 2024, 205, 107560. [Google Scholar] [CrossRef]
- OECD. Business Models for the Circular Economy: Opportunities and Challenges for Policy; OECD: Paris, France, 2019; ISBN 978-92-64-31141-1. [Google Scholar]
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O. A Comprehensive Review of Industrial Symbiosis. J. Clean. Prod. 2020, 247, 119113. [Google Scholar] [CrossRef]
- Patrício, J.; Costa, I.; Niza, S. Urban Material Cycle Closing—Assessment of Industrial Waste Management in Lisbon Region. J. Clean. Prod. 2015, 106, 389–399. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Morales, E.M.; Diemer, A.; Cervantes, G.; Carrillo-González, G. “By-Product Synergy” Changes in the Industrial Symbiosis Dynamics at the Altamira-Tampico Industrial Corridor: 20 Years of Industrial Ecology in Mexico. Resour. Conserv. Recycl. 2019, 140, 235–245. [Google Scholar] [CrossRef]
- Domenech, T.; Bleischwitz, R.; Doranova, A.; Panayotopoulos, D.; Roman, L. Mapping Industrial Symbiosis Development in Europe_Typologies of Networks, Characteristics, Performance and Contribution to the Circular Economy. Resour. Conserv. Recycl. 2019, 141, 76–98. [Google Scholar] [CrossRef]
- Sommer, K.H. Study and Portfolio Review of the Projects on Industrial Symbiosis in DG Research and Innovation: Findings and Recommendations.; European Commission, Publications Office of the European Union: Luxembourg, 2020.
- Rentería Núñez, G.; Perez-Castillo, D. Business Models for Industrial Symbiosis: A Literature Review. Sustainability 2023, 15, 9142. [Google Scholar] [CrossRef]
- Ammenberg, J.; Baas, L.; Eklund, M.; Feiz, R.; Helgstrand, A.; Marshall, R. Improving the CO2 Performance of Cement, Part III: The Relevance of Industrial Symbiosis and How to Measure Its Impact. J. Clean. Prod. 2015, 98, 145–155. [Google Scholar] [CrossRef]
- Kuznetsova, E.; Louhichi, R.; Zio, E.; Farel, R. Input-Output Inoperability Model for the Risk Analysis of Eco-Industrial Parks. J. Clean. Prod. 2017, 164, 779–792. [Google Scholar] [CrossRef]
- Baas, L.; Boons, F. The Introduction and Dissemination of the Industrial Symbiosis Projects in the Rotterdam Harbour and Industry Complex. Int. J. Environ. Technol. Manag. 2007, 7, 551. [Google Scholar] [CrossRef]
- Baas, L.W.; Korevaar, G. Eco-Industrial Parks in The Netherlands: The Rotterdam Harbor and Industry Complex. In Sustainable Development in the Process Industries; Harmsen, J., Powell, J.B., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 59–79. ISBN 978-0-470-18779-1. [Google Scholar]
- Morales, M.E.; Diemer, A. Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study. Sustainability 2019, 11, 1971. [Google Scholar] [CrossRef]
- Afonso, S.M. Murakami Fabio Kazuhiro Industrial Symbiosis: A Case Study Involving a Steelmaking, a Cement Manufacturing, and a Zinc Smelting Plant. Chem. Eng. Trans. 2018, 70, 211–216. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase–Mineral and Chemical Composition and Classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Barbosa, V.F.F.; MacKenzie, K.J.D.; Thaumaturgo, C. Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Tanu, H.M.; Unnikrishnan, S. Review on Durability of Geopolymer Concrete Developed with Industrial and Agricultural Byproducts. Mater. Today Proc. 2023, S2214785323013810. [Google Scholar] [CrossRef]
- Soriano, L.; Font, A.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Bonifácio, T.; Payá, J. Almond-Shell Biomass Ash (ABA): A Greener Alternative to the Use of Commercial Alkaline Reagents in Alkali-Activated Cement. Constr. Build. Mater. 2021, 290, 123251. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; de Gutiérrez, R.M.; Provis, J.L. Performance at High Temperature of Alkali-Activated Slag Pastes Produced with Silica Fume and Rice Husk Ash Based Activators. Mater. Construcción 2015, 65, e049. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; de Moraes Pinheiro, S.M.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. Design and Properties of 100% Waste-Based Ternary Alkali-Activated Mortars: Blast Furnace Slag, Olive-Stone Biomass Ash and Rice Husk Ash. J. Clean. Prod. 2020, 243, 118568. [Google Scholar] [CrossRef]
- Peys, A.; Rahier, H.; Pontikes, Y. Potassium-Rich Biomass Ashes as Activators in Metakaolin-Based Inorganic Polymers. Appl. Clay Sci. 2016, 119, 401–409. [Google Scholar] [CrossRef]
- Soriano, L.; Font, A.; Borrachero, M.V.; Monzó, J.M.; Payá, J.; Tashima, M.M. Biomass Ashes to Produce an Alternative Alkaline Activator for Alkali-Activated Cements. Mater. Lett. 2022, 308, 131198. [Google Scholar] [CrossRef]
- Mendes, B.C.; Pedroti, L.G.; Vieira, C.M.F.; Marvila, M.; Azevedo, A.R.G.; Franco De Carvalho, J.M.; Ribeiro, J.C.L. Application of Eco-Friendly Alternative Activators in Alkali-Activated Materials: A Review. J. Build. Eng. 2021, 35, 102010. [Google Scholar] [CrossRef]
- de Moraes Pinheiro, S.M.; Font, A.; Soriano, L.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. Olive-Stone Biomass Ash (OBA): An Alternative Alkaline Source for the Blast Furnace Slag Activation. Constr. Build. Mater. 2018, 178, 327–338. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; Moraes, J.C.B.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. A 100% Waste-Based Alkali-Activated Material by Using Olive-Stone Biomass Ash (OBA) and Blast Furnace Slag (BFS). Mater. Lett. 2017, 203, 46–49. [Google Scholar] [CrossRef]
- Soriano, L.; Font, A.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. One-Part Blast Furnace Slag Mortars Activated with Almond-Shell Biomass Ash: A New 100% Waste-Based Material. Mater. Lett. 2020, 272, 127882. [Google Scholar] [CrossRef]
- Barišić, I.; Netinger Grubeša, I.; Dokšanović, T.; Marković, B. Feasibility of Agricultural Biomass Fly Ash Usage for Soil Stabilisation of Road Works. Materials 2019, 12, 1375. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Radeka, M.; Malešev, M.; Radonjanin, V.; Gojević, A.; Siddique, R. Strength and Microstructural Analysis of Concrete Incorporating Ash from Sunflower Seed Shells Combustion. Struct. Concr. 2019, 20, 396–404. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, X.; Liu, R.; Liu, P.; Tang, H.; Gong, Y.; Zhang, C.; Li, X.; Liu, Y.; Bai, J.; et al. Feasibility Study of Highly Alkaline Biomass Ash to Activate Alkali-Activated Grouts. Constr. Build. Mater. 2023, 393, 132067. [Google Scholar] [CrossRef]
- EN 196-1: 2016; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 1015-3:2000; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). European Committee for Standardization: Brussels, Belgium, 2000.
- EN 1015-11-1999; Methods of Test for Mortar for Masonry. Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization: Brussels, Belgium, 1999.
- Victoriaoil, Victoria Group. Available online: https://www.victoriaoil.rs/en/about (accessed on 19 December 2024).
- Maj, G.; Krzaczek, P.; Kuranc, A.; Piekarski, W. Energy Properties of Sunflower Seed Husk as Industrial Extrusion Residue. Agric. Eng. 2017, 21, 77–84. [Google Scholar] [CrossRef]
- Draganić, S.; Šupić, S.; Laban, M.; Malešev, M.; Bulatović, V.; Lukić, I.; Bukvić, O. Agricultural Biomass Ash as a Circular Building Material: Connecting Agriculture and Construction Industry. In Creating a Roadmap Towards Circularity in the Built Environment; Springer: Cham, Switzerland, 2023; pp. 225–236. ISBN 978-3-031-45979-5. [Google Scholar]
- Šupić, S.; Malešev, M.; Radonjanin, V. Harvest Residues Ash as a Pozzolanic Additive for Engineering Applications: A Review and the Catalogue. Build. Mater. Struct. 2021, 64, 1–18. [Google Scholar] [CrossRef]
- TE-TO Sremska Mitrovica. Available online: https://www.eps.rs/lat/panonske/Stranice/Tehnicke-karakteristike.aspx (accessed on 19 December 2024).
- Agriculture, Forestry and Fishery—Annual Crop Production. Statistical Office of the Republic of Serbia. 2022. Available online: https://www.stat.gov.rs/en-US/vesti/statisticalrelease/?p=8841 (accessed on 10 November 2024).
- Food and Agricultural Organization of United Nations. Crops and Livestock Products—Production/Yield Quantities of Sunflower Seed in World 2023. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 10 November 2024).
- Alonso, M.M.; Gascó, C.; Morales, M.M.; Suárez-Navarro, J.A.; Zamorano, M.; Puertas, F. Olive Biomass Ash as an Alternative Activator in Geopolymer Formation: A Study of Strength, Radiology and Leaching Behaviour. Cem. Concr. Compos. 2019, 104, 103384. [Google Scholar] [CrossRef]
- Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- Marchi, L.; Luo, Z.; Gasparini, N.; Antonini, E.; Gaspari, J. Detecting and Understanding Barriers and Drivers to Advance Systematic Implementation of Resource Circularity in Constructions. Buildings 2024, 14, 3214. [Google Scholar] [CrossRef]
- AlJaber, A.; Martinez-Vazquez, P.; Baniotopoulos, C. Barriers and Enablers to the Adoption of Circular Economy Concept in the Building Sector: A Systematic Literature Review. Buildings 2023, 13, 2778. [Google Scholar] [CrossRef]
- Uusikartano, J.; Saha, P.; Aarikka-Stenroos, L. The Industrial Symbiosis Process as an Interplay of Public and Private Agency: Comparing Two Cases. J. Clean. Prod. 2022, 344, 130996. [Google Scholar] [CrossRef]
- Reciklaza, Portal on Waste Management. Available online: https://reciklaza.biz/aktuelno/privredna-komora-srbije-organizuje-besplatnu-podrsku-kompanijama-u-oblasti-cirkularne-ekonomije/ (accessed on 19 December 2024).
- International Synergies. Available online: https://international-synergies.com/what-we-do/industrial-symbiosis-facilitation/ (accessed on 19 December 2024.).
- Kechichian, E.R.; Demir Duru, S.; Quaranta, D.; Shin, N.Y. Circular Economy in Industrial Parks: Technologies for Competitiveness; Global Markets and Technology Unit (Green Competitiveness Program) of the World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | MnO | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
GGBFS | 38.19 | 10.28 | 0.31 | 37.04 | 9.69 | 0.75 | 0.87 | 0.39 | 0.52 | 0.37 |
SHA | 5.34 | 1.19 | 1.03 | 12.96 | 9.94 | 9.71 | 44.76 | 0.68 | 0.06 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedov, O.; Andabaka, A.; Draganić, S. Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis. Buildings 2025, 15, 273. https://doi.org/10.3390/buildings15020273
Bedov O, Andabaka A, Draganić S. Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis. Buildings. 2025; 15(2):273. https://doi.org/10.3390/buildings15020273
Chicago/Turabian StyleBedov, Olivera, Ana Andabaka, and Suzana Draganić. 2025. "Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis" Buildings 15, no. 2: 273. https://doi.org/10.3390/buildings15020273
APA StyleBedov, O., Andabaka, A., & Draganić, S. (2025). Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis. Buildings, 15(2), 273. https://doi.org/10.3390/buildings15020273