Automatic Generation of Precast Concrete Component Fabrication Drawings Based on BIM and Multi-Agent Reinforcement Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Fabrication Drawing Generation
2.2. Reinforcement Learning
3. BIM-Based Framework for the Fabrication Drawing Generation of PC Components
3.1. Information Extraction of Digital Model
3.2. Automatic Generation of Drawing View
3.2.1. Automatic Generation of OCC Model
3.2.2. Automatic Generation of View
Algorithm 1: Pseudocode of projection algorithm | |
Input: Topological shape A, Projection origin O, Projection direction Dir, X-axis of projection coordinate system X Output: plane_data | |
1 | hlr = HLRBRep_Algo() // Construct an empty framework for the calculation of visible and hidden lines of a shape in a projection |
2 | hlr.Add(A) // Add topological shape to the framework |
3 | ax2 = gp_Ax2(O, Dir, X) // Construct projection coordinate system |
4 | projector = HLRAlgo_ProjectorProjector(ax2) // Create a projector object |
5 | hlr.Projector(projector) // Set the projection direction |
6 | hlr.Update() // Update the outline of shape to be computed |
7 | hlr.Hide() // Hide the visible and hidden line of shape to be computed |
8 | hlr_shapes = HLRBRep_HLRToShape(hlr) // Construct a framework for filtering the results |
9 | visible_edge = [] // visible edge |
10 | sharp_edges = hlr_shapes.VCompound() // Extract the visible sharp edges from the results |
11 | contour_edges = hlr_shapes.OutLineVCompound() // Extract the visible contour edges from the results |
12 | visible_edge.add(sharp_edges) |
13 | visible_edge.add(contour_edges) |
14 | plane_data = visible_edge |
Algorithm 2: Pseudocode of cutting algorithm | |
Input: Topological shape A, Cutting position P, Normal direction Dir Output: plane_data | |
1 | plane = gp_Pln(P, Dir) // Create the cutting plane |
2 | topology_contour = BRepAlgoAPI_Section(A, plane) // Find the contour of the intersection of plane and topological model A and obtain the cut trajectory on A |
3 | contour_edge = TopologyExplorer(topology_contour).edges() // Transform topological edge to geometric edge |
4 | plane_data = contour_edge |
3.3. Automatic Annotation Layout in Each View
- (1)
- Linear dimension
- (2)
- Diameter dimension
- (3)
- Radius dimension
- (4)
- Angle dimension
- (5)
- Arc dimension
- (6)
- Simplify dimension
3.4. Intelligent Generation of Block Layout
3.4.1. Automatic Generation of Layout Region and Structure for Each Functional Category
4. Proposed Multi-Agent Reinforcement Learning Algorithm for Block Layout
4.1. Reward System
4.2. Environment, States and Actions
4.3. Multi-Agent Reinforcement Learning for Block
Algorithm 3: Pseudocode for MADQN-based block layout algorithm | |
Input: Block information; FCB layout structure and region; Drawing space | |
Output: Block position | |
1 | Initialize replay buffer D to capacity P |
2 | for agent = 1 to do |
3 | Initialize action-value function with random weight |
4 | Initialize target action-value function with weight |
5 | end for |
6 | for episode = 1 to M do |
7 | Initialize state for each agent |
8 | for t = 1 to T do |
9 | for agent = 1 to do |
10 | With probability select a random action |
11 | Otherwise select |
12 | end for |
13 | Execute action , observe next state , and receive reward |
14 | Record and |
15 | Store transition in |
16 | Set |
17 | Sample random batch of transitions from |
18 | for agent = 1 to do |
19 | Set |
20 | Perform a gradient descent step on with respect to the network parameter |
21 | After C steps, update = for agent |
22 | end for |
23 | end for |
24 | end for |
25 | Compute the maximum reward, and determine the optimal state |
26 | Update the block position |
5. Illustrative Examples
5.1. Evaluative Metric
5.2. Experimental Config
5.3. Example 1—PC Concrete Stairs
5.3.1. Case Description
5.3.2. Experimental Analysis
5.4. Example 2—PC Doubled-Sided Shear Wall
6. Conclusions
- Three algorithms (MADQN, MAPPO, and MADDPG) can solve the block layout optimization problem and find the layout solution. Compared with the MAPPO and MADDPG algorithms, the proposed method (MADQN) demonstrates superior performance in terms of computational efficiency and solution quality.
- A graph-based representation method is utilized to encode the relationship between blocks. This approach precisely captures inter-block connectivity, relative positioning, and alignment.
- The proposed BIM-based framework rapidly completes fabrication drawings of PC stairs and double-sided shear walls, requiring only approximately 60 s.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-La Rivera, F.; Mora-Serrano, J.; Valero, I.; Oñate, E. Methodological-Technological Framework for Construction 4.0. Arch. Comput. Methods Eng. 2020, 28, 689–711. [Google Scholar] [CrossRef]
- Alwisy, A.; Al-Hussein, M.; Al-Jibouri, S.H. BIM Approach for Automated Drafting and Design for Modular Construction Manufacturing. In Proceedings of the Computing in Civil Engineering: American Society of Civil Engineers, Clearwater Beach, FL, USA, 11 June 2012; pp. 221–228. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Q. Research on Detailed Design Methods of Precast Components in Prefabricated Buildings Based on BIM Technology. Heliyon 2024, 10, e35922. [Google Scholar] [CrossRef] [PubMed]
- OpenCascade. Available online: https://www.opencascade.com/ (accessed on 14 October 2024).
- Nayak, H.B.; Trivedi, R.R.; Araniya, K.K. Drawing automation of reactor nozzle. Int. J. Eng. Res. Appl. 2012, 2, 281–286. Available online: https://api.semanticscholar.org/CorpusID:15714329 (accessed on 18 October 2024).
- Chen, K.-Z.; Feng, X.-A.; Ding, L. Intelligent Approaches for Generating Assembly Drawings from 3-D Computer Models of Mechanical Products. Comput. Aided Des. 2002, 34, 347–355. [Google Scholar] [CrossRef]
- Shah, D.B. Parametric modeling and drawing automation for flange coupling using excel spreadsheet. Int. J. Res. Eng. Technol. 2013, 1, 187–192. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1b1b9f04c52e0c91324ce58462b25fd55382d39d (accessed on 15 October 2024).
- FreeCAD. Available online: https://www.freecad.org/ (accessed on 15 October 2024).
- Solidworks 2019. Available online: https://www.solidworks.com/ (accessed on 14 October 2024).
- Nath, T.; Attarzadeh, M.; Tiong, R.L.K.; Chidambaram, C.; Yu, Z. Productivity Improvement of Precast Shop Drawings Generation through BIM-Based Process Re-Engineering. Autom. Constr. 2015, 54, 54–68. [Google Scholar] [CrossRef]
- Liu, H.; Singh, G.; Lu, M.; Bouferguene, A.; Al-Hussein, M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom. Constr. 2018, 89, 235–249. [Google Scholar] [CrossRef]
- Alwisy, A.; Hamdan, S.B.; Barkokebas, B.; Bouferguene, A.; Al-Hussein, M. A BIM-based automation of design and drafting for manufacturing of wood panels for modular residential buildings. Int. J. Constr. Manag. 2019, 19, 187–205. [Google Scholar] [CrossRef]
- Haghir, S.; Haghnazar, R.; Moghaddam, S.S.; Keramat, D.; Matini, M.R.; Taghizade, K. BIM based decision-support tool for automating design to fabrication process of freeform lattice space structure. Int. J. Space Struct. 2021, 36, 164–179. [Google Scholar] [CrossRef]
- Gankhuyag, U.; Han, J.-H. Automatic 2D Floorplan CAD Generation from 3D Point Clouds. Appl. Sci. 2020, 10, 2817. [Google Scholar] [CrossRef]
- Kong, Q.; Liao, L.; Yuan, C. Rapid Generation of Editable Engineering Drawings from 3D Point Cloud Reconstruction for Large-Scale Buildings. J. Build. Eng. 2023, 63, 105486. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.M.; Lee, G.; Orndorff, D. A Target Benchmark of the Impact of Three-Dimensional Parametric Modeling in Precast Construction. Pcij 2005, 50, 126–139. [Google Scholar] [CrossRef]
- Scheibel, B.; Mangler, J.; Rinderle-Ma, S. Extraction of Dimension Requirements from Engineering Drawings for Supporting Quality Control in Production Processes. Comput. Ind. 2021, 129, 103442. [Google Scholar] [CrossRef]
- Cheng, Y.; Ni, Z.; Liu, T.; Liu, X. An Intelligent Approach for Dimensioning Completeness Inspection in 3D Based on Transient Geometric Elements. Comput. Aided Des. 2014, 53, 14–27. [Google Scholar] [CrossRef]
- Serrano, D. Automatic dimensioning in design for manufacturing. In Proceedings of the First ACM Symposium on Solid Modeling Foundations and CAD/CAM Application, Austin, TX, USA, 5–7 June 1991; pp. 379–386. [Google Scholar] [CrossRef]
- Yu, K.M.; Tan, S.T.; Yuen, M.F. A Review of Automatic Dimensioning and Tolerancing Schemes. Eng. Comput. 1994, 10, 63–80. [Google Scholar] [CrossRef]
- Hua, F.; Kui, Z.Q. Study on Visual Expression of CAD Interior Design Drawing. In Proceedings of the 6th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Guiyang, China, 18–19 August 2015; pp. 782–785. [Google Scholar] [CrossRef]
- Yuen, M.M.F.; Tan, S.T.; Yu, K.M. Scheme for Automatic Dimensioning of CSG Defined Parts. Comput. Aided Des. 1988, 20, 151–159. [Google Scholar] [CrossRef]
- Deng, M.; Gan, V.J.L.; Tan, Y.; Joneja, A.; Cheng, J.C.P. Automatic generation of fabrication drawings for façade mullions and transoms through BIM models. Adv. Eng. Inf. 2019, 42, 100964. [Google Scholar] [CrossRef]
- Deng, M.; Tan, Y.; Singh, J.; Joneja, A.; Cheng, J.C.P. A BIM-Based Framework for Automated Generation of Fabrication Drawings for Façade Panels. Comput. Ind. 2021, 126, 103395. [Google Scholar] [CrossRef]
- Littman, M.L. Reinforcement Learning Improves Behaviour from Evaluative Feedback. Nature 2015, 521, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, B.B.; Costa, V.D. Motivational Neural Circuits Underlying Reinforcement Learning. Nat. Neurosci. 2017, 20, 505–512. [Google Scholar] [CrossRef]
- Soman, R.K.; Molina-Solana, M. Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning. Autom. Constr. 2022, 134, 104069. [Google Scholar] [CrossRef]
- Yao, Y.; Tam, V.W.Y.; Wang, J.; Le, K.N.; Butera, A. Automated construction scheduling using deep reinforcement learning with valid action sampling. Autom. Constr. 2024, 166, 105622. [Google Scholar] [CrossRef]
- Jeong, J.; Jo, H. Deep Reinforcement Learning for Automated Design of Reinforced Concrete Structures. Comput. Aided Civ. Infrastruct. Eng. 2021, 36, 1508–1529. [Google Scholar] [CrossRef]
- Fu, B.; Gao, Y.; Wang, W. A Physics-informed Deep Reinforcement Learning Framework for Autonomous Steel Frame Structure Design. Comput. Aided Civ. Infrastruct. Eng. 2024, 39, 3125–3144. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Qin, J.; Zhang, L. Deep reinforcement learning for multi-objective optimization in BIM-based green building design. Autom. Constr. 2024, 166, 105598. [Google Scholar] [CrossRef]
- Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Long Beach, CA, USA, 4–9 December 2017; pp. 6382–6393. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Z.; Zheng, H.; Li, Z.; Yuan, P.F. Automated architectural spatial composition via multi-agent deep reinforcement learning for building renovation. Autom. Constr. 2024, 167, 105702. [Google Scholar] [CrossRef]
- Fujita, T. Superhypergraph neural networks and plithogenic graph neural networks: Theoretical foundations. arXiv 2024, arXiv:2412.01176. [Google Scholar] [CrossRef]
- Albrecht, S.V.; Christianos, F.; Schäfer, L. Multi-Agent Reinforcement Learning: Foundations and Modern Approaches; MIT Press: Cambridge, MA, USA, 2024; Available online: https://www.marl-book.com (accessed on 15 December 2024).
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Liu, P.; Qi, H.; Liu, J.; Feng, L.; Li, D.; Guo, J. Automated clash resolution for reinforcement steel design in precast concrete wall panels via generative adversarial network and reinforcement learning. Adv. Eng. Inf. 2023, 58, 102131. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2019, arXiv:1509.02971. [Google Scholar] [CrossRef]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar] [CrossRef]
- Tibury, C.R.; Christianos, F.; Albrecht, S.V. Revisiting the Gumbel-Softmax in MADDPG. arXiv 2023, arXiv:2302.11793. [Google Scholar] [CrossRef]
Definition | Formula | Coefficient Value |
---|---|---|
Reward for block collision | # (1) | |
Reward for reaching the goal region | # (2) | |
Reward for the overall fullness | # (3) | |
Reward for the alignment of edges | # (4) | |
Reward for the uniformity of edge distances | # (5) | |
Reward for exceeding drawing boundary | # (6) | |
Reward for guiding learning | # (7) |
Algorithm | Hyperparameter |
---|---|
MADQN | Exploration rate linearly reduces from 0.8 to 0.01; The batch size is 512. |
MADDPG | Soft target update coefficient is 0.001, The batch size is 512; The Gaussian noise standard deviation is 0.1. |
MAPPO | GAE parameter is 0.95; The minimum batch size is 128; The maximum Batch size is 2048; The clipping parameter is 0.2; The No. epochs is 10. |
5420 | 1280 | 3000 | 500 | 500 | 200 | 200 | 210 | 18 |
Name | ) | Type | Name | ) | Type | Name | ) | Type |
---|---|---|---|---|---|---|---|---|
m1 | 6848 1979 | m | m2 | 6334 1979 | m | m3 | 6298 3779 | m |
m4 | 1564 907 | m | m5 | 1588 893 | m | r1 | 6389 3636 | r |
r2 | 1733 808 | r | r3 | 1741 802 | r | r4 | 1767 803 | r |
t1 | 2300 3355 | t | t2 | 2350 750 | t | t3 | 1500 1000 | t |
t4 | 1000 600 | t | d1 | 1440 1110 | d | d2 | 1500 1114 | d |
d3 | 906 1121 | d | d4 | 1065 1130 | d | d5 | 509 1000 | d |
d6 | 672 1002 | d | d7 | 1130 1081 | d | d8 | 737 1050 | d |
d9 | 481 582 | d | d10 | 399 519 | d | d11 | 532 589 | d |
1200 | 1200 | 2590 | 2590 | 250 | 50 | 50 |
Name | Size (wh) | Type | Name | Size (wh) | Type | Name | Size (wh) | Type |
---|---|---|---|---|---|---|---|---|
m1 | 1720 3404 | m | m2 | 1568 695 | m | m3 | 535 3098 | m |
r1 | 1752 3404 | r | r2 | 1466 862 | r | r3 | 671 3253 | r |
d1 | 560 1033 | d | d2 | 847 674 | d | d3 | 817 636 | d |
t1 | 2537 1025 | t | t2 | 2253 750 | t | t3 | 1154 280 | t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhou, X.; Xu, C.; Wu, Z.; Liu, J.; Qi, H. Automatic Generation of Precast Concrete Component Fabrication Drawings Based on BIM and Multi-Agent Reinforcement Learning. Buildings 2025, 15, 284. https://doi.org/10.3390/buildings15020284
Zhang C, Zhou X, Xu C, Wu Z, Liu J, Qi H. Automatic Generation of Precast Concrete Component Fabrication Drawings Based on BIM and Multi-Agent Reinforcement Learning. Buildings. 2025; 15(2):284. https://doi.org/10.3390/buildings15020284
Chicago/Turabian StyleZhang, Chao, Xuhong Zhou, Chengran Xu, Zhou Wu, Jiepeng Liu, and Hongtuo Qi. 2025. "Automatic Generation of Precast Concrete Component Fabrication Drawings Based on BIM and Multi-Agent Reinforcement Learning" Buildings 15, no. 2: 284. https://doi.org/10.3390/buildings15020284
APA StyleZhang, C., Zhou, X., Xu, C., Wu, Z., Liu, J., & Qi, H. (2025). Automatic Generation of Precast Concrete Component Fabrication Drawings Based on BIM and Multi-Agent Reinforcement Learning. Buildings, 15(2), 284. https://doi.org/10.3390/buildings15020284