Design and Operation of a Novel Cross Fin in Hot-Water Production System for Buildings
Abstract
:1. Introduction
2. Problem Formulation
2.1. Physical Model
2.2. Mathematical Model
- (1)
- PCMs and copper have fixed parameters of conductivity, specific heat, and others. They are invariant with temperature changes;
- (2)
- All the fluid flow described in this study is incompressible;
- (3)
- A Boussinesq model is utilized to describe the local free convective heat transfer;
- (4)
- The phase transition process does not take into account heat loss and radiation with the outside world.
2.3. Initial and Boundary Conditions
3. Numerical Procedure and Validation
3.1. Meshing and Numerical Procedure
3.2. Independence of Mesh and Time Step
3.3. Model Verification
4. Results and Discussion
4.1. Comparative Analysis of Melting Performance
4.2. Melting Fraction and Temperature Field
4.3. Thermal Storage and Temperature Response
4.4. Dynamic Temperature Study
5. Conclusions
- (1)
- The presence of a refractory zone at the bottom of the terminal unit will significantly reduce the heat transfer rate and extend the time required for complete melting;
- (2)
- The increase in the radius of circular fins and the number of curved fins at the same time is conducive to natural convection. Compared with the initial structure design (four curved fins and 20 mm radius round fins), the structural design Case 9 (eight curved fins and 40 mm radius round fins) can greatly improve the heat storage rate;
- (3)
- The dynamic temperature response analysis shows that the area of the refractory zone can be reduced by increasing the radius and number of annular fins, and the average temperature response of Case 9 is increased by 781.25% compared with the initial structure;
- (4)
- In future research, the radius of the annular fin can be further optimized and the bending degree of the curved fin can be considered under the premise of considering the feasibility of engineering application.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
PCM | Phase change material |
LHTES | Latent heat thermal energy storage |
HTF | Heat transfer fluid |
HWODS | Hot-water oil displacement system |
Symbols | |
Velocity momentum in the paste region | |
Thermal conductivity (W/m·K) | |
Density (kg/m3) | |
Isobaric specific heat (J/kg·K) | |
Melting temperature (K) | |
Latent heat of fusion (J/kg) | |
Volumetric coefficient of thermal expansion (K−1) | |
Solidus temperature (K) | |
Liquidus temperature (K) | |
Liquid fraction | |
Melting rate | |
Total enthalpy (J) | |
Sensible heat energy (J) | |
Latent heat energy (J) | |
Total heat energy (J) | |
Instantaneous heat absorption rate (W) | |
Average heat absorption rate (W) | |
Instantaneous temperature response rate | |
Average temperature response rate | |
Subscripts | |
w | wall |
solid phase | |
liquid phase | |
heat transfer area | |
reference state |
References
- Cho, K.-H.; Chen, C.-Y.; Aguda, A.; Fournier, M.J.; Su, X. Toward sustainable electrochemically mediated separations driven by renewable energy. Joule 2024, 8, 3259–3280. [Google Scholar] [CrossRef]
- Keomeesay, P.; Liu, N.; Nie, Y.; Li, S.; Zhang, W.; Liu, Y.; Souliyathai, D.; Li, X.; Chen, Y.; Zhao, X.; et al. Review of the Lao People’s Democratic Republic energy policies for sustainable development. Energy Convers. Manag. 2025, 324, 119327. [Google Scholar] [CrossRef]
- Amin, M.; Hussain Shah, H.; Azhar Iqbal, M. Barriers to sustainable hydrogen production through renewable energy processes and their environmental impacts. Sustain. Energy Technol. Assess. 2024, 72, 104075. [Google Scholar] [CrossRef]
- Lahoud, C.; Chahwan, A.; Rishmany, J.; Yehia, C.; Daaboul, M. Enhancing Energy Efficiency in Mediterranean Coastal Buildings Through PCM Integration. Buildings 2024, 14, 4023. [Google Scholar] [CrossRef]
- Pinamonti, M.; Baggio, P. Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings. Renew. Energy 2020, 157, 90–99. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, R.; Luo, X.; Yang, X.; Cheng, J.; Yan, J. Experimental research and multi-physical modeling progress of Zinc-Nickel single flow battery: A critical review. Adv. Appl. Energy 2023, 12, 100154. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Y.; Wang, L.; Wang, Q.; Zhu, K.; Yang, S.; Guo, G. Research and Case Application of Zero-Carbon Buildings Based on Multi-System Integration Function. Buildings 2024, 14, 3394. [Google Scholar] [CrossRef]
- Ding, Z.; Sui, Y.; Zhai, C.; Sui, Z.; Lin, H.; Li, F.; Wu, W. Transient supply-demand matching and numerical parametric study of solar absorption thermal battery for space cooling. Energy Convers. Manag. 2023, 288, 117177. [Google Scholar] [CrossRef]
- Rehman, H.U.; Nik, V.M.; Ramesh, R.; Ala-Juusela, M. Quantifying and Rating the Energy Resilience Performance of Buildings Integrated with Renewables in the Nordics under Typical and Extreme Climatic Conditions. Buildings 2024, 14, 2821. [Google Scholar] [CrossRef]
- Sui, Y.; Lin, H.; Ding, Z.; Li, F.; Sui, Z.; Wu, W. Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage. Appl. Energy 2024, 357, 122504. [Google Scholar] [CrossRef]
- Xu, D.; Qu, Z.; An, L.; Xu, H.; Yang, Q.; Luo, Z.; Pan, H. Pore-scale study on the effects of randomly distributed void cavities on the thermal performance of composite phase change materials. J. Energy Storage 2022, 55, 105715. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.; Wang, L.; Zhang, S.; Shen, C.; Gao, R. A real-time controllable pressure-driven smart window with Cu2+ solution. Energy Build. 2025, 329, 115236. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, W. A phase-change-material-assisted absorption thermal battery for space heating under low ambient temperatures. Energy 2024, 299, 131407. [Google Scholar] [CrossRef]
- Elmnefi, M.; Al-Khazraji, W. Numerical and experimental studies of thermal performance enhancement for parabolic trough solar collector using none-circulated CuO/synthetic oil nanofluid. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 3124–3163. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, J.; Yin, S.; Zhang, F.; Zhang, Y.; Liu, Z. Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit. Energy 2024, 294, 130821. [Google Scholar] [CrossRef]
- Li, S.; Cheng, Y.Z.; Shen, Q.W.; Wang, C.Y.; Peng, C.D.; Yang, G.G. Numerical analysis on the thermal management of phase change material with fins for lithium-ion batteries. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 1170–1188. [Google Scholar] [CrossRef]
- Yan, H.; Luo, L.; Zhang, J.F.; Du, W.; Huang, D.; Wang, S.T. Numerical analysis of heat transfer characteristics in a pin fin-dimpled channel with different pin fins and dimple locations. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 3132–3158. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, Y.; Han, X.C. Analytical considerations of thermal storage and interface evolution of a PCM with/without porous media. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 373–400. [Google Scholar] [CrossRef]
- Yang, B.; Guo, J.; Huang, X.; Li, Z.; Yang, X.; Li, M.-J. Evaluation of variable rotation on enhancing thermal performance of phase change heat storage tank. Int. J. Heat Fluid Flow 2024, 106, 109328. [Google Scholar] [CrossRef]
- Park, S.; Jo, B. Novel surfactant-free microencapsulation of molten salt using TiO2 shell for high temperature thermal energy storage: Thermal performance and thermal reliability. J. Energy Storage 2023, 63, 107016. [Google Scholar] [CrossRef]
- Huang, Y.; Stonehouse, A.; Abeykoon, C. Encapsulation methods for phase change materials—A critical review. Int. J. Heat Mass Transf. 2023, 200, 123458. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, Z.; Chen, Z.; Gao, Y. Oleophobic modification of clay minerals to improve encapsulation ratios of shape-stabilized phase change materials: A universal method. Prog. Nat. Sci. Mater. Int. 2021, 31, 904–910. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Liang, H.; Niu, J.; Wu, J.-Y. Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit. Appl. Energy 2022, 308, 118405. [Google Scholar] [CrossRef]
- Ergün, A.; Eyinç, H. Performance assessment of novel photovoltaic thermal system using nanoparticle in phase change material. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1490–1505. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, Z.-J.; Yang, C.; Cai, X. Intelligent optimization of horizontal fins to improve the melting performance of phase change materials in a square cavity with isothermal vertical wall. J. Energy Storage 2021, 44, 103334. [Google Scholar] [CrossRef]
- Chen, D.; Riaz, A.; Aute, V.C.; Radermacher, R. Comprehensive performance analysis and structural improvement of latent heat thermal energy storage (LHTES) unit using a novel parallel enthalpy-based lattice Boltzmann model. J. Energy Storage 2023, 73, 108902. [Google Scholar] [CrossRef]
- Li, Z.-R.; Hu, N.; Fan, L.-W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater. 2023, 55, 727–753. [Google Scholar] [CrossRef]
- Guo, C.; Lan, M.; Li, M.; Tang, S.; Zhang, D.; Song, J.; Li, H. Studying the advantages of equal curvature curved fin to enhance phase change heat storage. J. Energy Storage 2023, 57, 106212. [Google Scholar] [CrossRef]
- Xu, Y.; He, C.; Chen, Y.; Sun, Y.; Yin, H.; Zheng, Z.-J. Experimental and numerical study on the effect of the intelligent memory metal fin on the melting and solidification process of PCM. Renew. Energy 2023, 218, 119366. [Google Scholar] [CrossRef]
- Boujelbene, M.; Mohammed, H.I.; Sultan, H.S.; Eisapour, M.; Chen, Z.; Mahdi, J.M.; Cairns, A.; Talebizadehsardari, P. A comparative study of twisted and straight fins in enhancing the melting and solidifying rates of PCM in horizontal double-tube heat exchangers. Int. Commun. Heat Mass Transf. 2024, 151, 107224. [Google Scholar] [CrossRef]
- Mills, T.; Venkateshwar, K.; Tasnim, S.H.; Mahmud, S. Numerical and experimental investigation of the melting of a PCM in an enclosure having a tree-shaped internal fin. Therm. Sci. Eng. Prog. 2024, 48, 102434. [Google Scholar] [CrossRef]
- Unnikrishnan, K.S.; Santhosh, K.; Rohinikumar, B. Experimental and numerical analysis of PV-PCM integrated with novel shaped corrugated fins. Therm. Sci. Eng. Prog. 2024, 50, 102562. [Google Scholar] [CrossRef]
- Han, X.; Liu, S.; Zeng, C.; Yang, L.; Shukla, A.; Shen, Y. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor. Renew. Energy 2020, 150, 1037–1046. [Google Scholar] [CrossRef]
- Guedri, K.; Singh, P.; Riaz, F.; Inayat, A.; Shah, N.A.; Fadhl, B.M.; Makhdoum, B.M.; Arsalanloo, A. Solidification acceleration of phase change material in a horizontal latent heat thermal energy storage system by using spiral fins. Case Stud. Therm. Eng. 2023, 48, 103157. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.-X.; Zhang, M.; Zhao, X.; Li, T. Enhanced thermal performance of shell and tube phase change heat accumulator with novel biomimetic spider web fins. Appl. Therm. Eng. 2023, 233, 121224. [Google Scholar] [CrossRef]
- Huang, X.; Li, F.; Xiao, T.; Li, Y.; Yang, X.; He, Y.-L. Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism. Energy 2023, 280, 128164. [Google Scholar] [CrossRef]
- Mao, Q.; Li, Y.; Li, G.; Badiei, A. Study on the influence of tank structure and fin configuration on heat transfer performance of phase change thermal storage system. Energy 2021, 235, 121382. [Google Scholar] [CrossRef]
- Kirincic, M.; Trp, A.; Lenic, K. Numerical evaluation of the latent heat thermal energy storage performance enhancement by installing longitudinal fins. J. Energy Storage 2021, 42, 103085. [Google Scholar] [CrossRef]
- Al-Mudhafar, A.H.N.; Nowakowski, A.F.; Nicolleau, F.C.G.A. Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins. Energy Rep. 2021, 7, 120–126. [Google Scholar] [CrossRef]
- Modi, N.; Wang, X.; Negnevitsky, M. Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage. Appl. Therm. Eng. 2022, 214, 118812. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy Build. 2013, 60, 270–279. [Google Scholar] [CrossRef]
- Nie, C.; Deng, S.; Liu, J.; Rao, Z. Nonuniform concentrated nanoparticles enhancing melting of phase change materials in vertical shell-tube storage unit with annular fins. J. Energy Storage 2023, 72, 108254. [Google Scholar] [CrossRef]
- Safari, V.; Kamkari, B.; Hooman, K.; Khodadadi, J.M. Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units. Energy 2022, 255, 124521. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Lu, L.; Gao, X.; Yang, X.; Li, M.-J. Numerical investigations on heat release performance of phase change mixture of paraffin and water. Sol. Energy Mater. Sol. Cells 2025, 280, 113266. [Google Scholar] [CrossRef]
- Xu, H.; Wang, N.; Zhang, C.; Qu, Z.; Cao, M. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit. Appl. Therm. Eng. 2020, 176, 115409. [Google Scholar] [CrossRef]
- Singh, V.K.; Patel, A. Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions. Int. Commun. Heat Mass Transf. 2022, 134, 105993. [Google Scholar] [CrossRef]
- Huang, X.; Hu, R.; Gao, X.; Yang, X.; Li, M.-J. Study on melting process of latent heat energy storage system by nano-enhanced phase change material under rotation condition. Appl. Therm. Eng. 2024, 247, 123040. [Google Scholar] [CrossRef]
- Khan, J.; Nithyanandam, K.; Singh, P. Computational study on transient thermal performance enhancement of phase change materials in triplex tube heat exchanger through novel annular-finned configurations. Numer. Heat Transf. Part A Appl. 2024, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zou, S.; Xu, X.; Tu, Y.; Tian, Y.; Ke, Z. Enhancing the phase change material based shell-tube thermal energy storage units with unique hybrid fins. Int. Commun. Heat Mass Transf. 2024, 157, 107763. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 2014, 68, 33–41. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Gao, X.; Xie, Y.; Gao, J.; Yang, X. Application of actively enhanced solar phase change heat storage system in building heating: A numerical and statistical optimization study. Renew. Energy 2025, 241, 122328. [Google Scholar] [CrossRef]
Inside Diameter of Circular Fin (r2) | Outer Diameter of Circular Fin (r3) | Curvature of the Curved Fin | Number of Curved Fins | |
---|---|---|---|---|
Case 1 | 19.5 mm | 20.5 mm | 30° | 4 |
Case 2 | 29.5 mm | 30.5 mm | 30° | 4 |
Case 3 | 39.5 mm | 40.5 mm | 30° | 4 |
Case 4 | 19.5 mm | 20.5 mm | 30° | 6 |
Case 5 | 29.5 mm | 30.5 mm | 30° | 6 |
Case 6 | 39.5 mm | 40.5 mm | 30° | 6 |
Case 7 | 19.5 mm | 20.5 mm | 30° | 8 |
Case 8 | 29.5 mm | 30.5 mm | 30° | 8 |
Case 9 | 39.5 mm | 40.5 mm | 30° | 8 |
Property | Paraffin RT50 | Paraffin RT82 | Cu | Unit |
---|---|---|---|---|
Thermal conductivity (k) | 0.2 | 0.2 | 387.6 | W/m·K |
Melting temperature (Tm) | 321.15 | 353.15 | K | |
Volumetric coefficient of thermal expansion (β) | 0.0006 | 0.001 | K−1 | |
Solidus temperature (Ts) | 318.15 | 351.15 | K | |
Liquidus temperature (Tl) | 324.15 | 355.15 | K | |
Latent heat of fusion (λ) | 168,000 | 176,000 | J/kg | |
Dynamic viscosity (μ) | 0.0048 | 0.03499 | Pa·s | |
Isobaric specific heat (cp) | 2000 | 2000 | 381 | J/kg·K |
Density (ρ) | 880 (solid) 760 (liquid) | 950 (solid) 770 (liquid) | 8978 | Kg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Q.; Ning, T.; Huang, C.; Wu, C.; Su, J. Design and Operation of a Novel Cross Fin in Hot-Water Production System for Buildings. Buildings 2025, 15, 320. https://doi.org/10.3390/buildings15030320
Cui Q, Ning T, Huang C, Wu C, Su J. Design and Operation of a Novel Cross Fin in Hot-Water Production System for Buildings. Buildings. 2025; 15(3):320. https://doi.org/10.3390/buildings15030320
Chicago/Turabian StyleCui, Qiang, Tao Ning, Chuanqing Huang, Chunyan Wu, and Junwei Su. 2025. "Design and Operation of a Novel Cross Fin in Hot-Water Production System for Buildings" Buildings 15, no. 3: 320. https://doi.org/10.3390/buildings15030320
APA StyleCui, Q., Ning, T., Huang, C., Wu, C., & Su, J. (2025). Design and Operation of a Novel Cross Fin in Hot-Water Production System for Buildings. Buildings, 15(3), 320. https://doi.org/10.3390/buildings15030320