Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China
Abstract
:1. Introduction
2. Literature Review
2.1. Recycling of CDW
2.2. Research Boundary Based on LCA
2.3. Representative Meltable Materials
3. Carbon Emission Accounting Model
3.1. Quality of MW
3.2. On-Site Disposal Stage
3.3. Transportation Stage
3.4. Reprocessing Stage
3.5. Reproduction Stage
3.5.1. Mass of RMBM
3.5.2. Carbon Emission Factor of RMBM
3.6. Model Validation
3.7. Sensitivity Analysis
4. Carbon Emission Assessment
4.1. Case Selection
4.2. Result Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LCA | Life cycle assessment |
CDW | Construction and demolition waste |
CEAM | Carbon emission accounting model |
MW | Meltable waste |
NMW | Non-meltable waste |
LW | Landfill waste |
OMBM | Ordinary meltable building material produced from mineral raw materials |
RMBM | Recycled meltable building material produced from recycled waste |
EC | Energy consumption |
CD | Carbonate decomposition |
References
- Yu, K. Climate Design for One Planet. Landsc. Archit. Front. 2024, 12, 4–9. [Google Scholar]
- Jafary Nasab, T.; Monavari, S.M.; Jozi, S.A.; Majedi, H. Assessment of carbon footprint in the construction phase of high-rise constructions in Tehran. Int. J. Environ. Sci. Technol. 2019, 17, 3153–3164. [Google Scholar] [CrossRef]
- China Association of Building Energy Efficiency, Urban-Rural Construction and Development Research Institute of Chongqing University. China Building Energy Consumption and Carbon Emission Research Report (2022). Architecture 2023, 2, 57–69. [Google Scholar]
- Meng, X.; Yue, Z.; Yu, Y. Towards Digitalized Urban Planning and Design of Low-Carbon Cities: Evolution and Application Review of Assessment Tools. Landsc. Archit. Front. 2024, 12, 9–21. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. Statistical Bulletin of National Economic and Social Development of the People’s Republic of China, 2023; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2024. [Google Scholar]
- Lyu, W.; Guo, W.; Fang, B.; Zhang, Y. Urban Regeneration with Community Building: Dashilanr Micro-Regeneration Handbook. Landsc. Archit. Front. 2020, 8, 166–179. [Google Scholar]
- Lu, W.; Yuan, H.; Li, J.; Hao, J.; Mi, X.; Ding, Z. An empirical investigation of construction and demolition waste generate rates in Shenzhen city, South China. Waste Manag. 2011, 31, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, H.; Tam, V.W.Y.; Zuo, J. Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. J. Clean. Prod. 2019, 206, 1004–1014. [Google Scholar] [CrossRef]
- Nawaz, A.; Chen, J.; Su, X. Exploring the trends in construction and demolition waste (C&DW) research: A scientometric analysis approach. Sustain. Energy Technol. Assess 2023, 55, 102953. [Google Scholar]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.L.; Yu, S.; Tang, X.; Wu, W. Determinants of workers’ pro-environmental behaviour towards enhancing construction waste management: Contributing to China’s circular economy. J. Clean. Prod. 2022, 369, 133265. [Google Scholar] [CrossRef]
- Liu, T.; Wang, P.; Zhang, Q.; Cao, J.; Wu, Y. Changes in the environmental impacts of the waste management system after implementing the waste-sorting policy: A Beijing case study. J. Ind. Ecol. 2024, 28, 828–839. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, H.; Zhang, H.; Duan, H.; Wang, J.; Jiang, W.; Dong, B.; Liu, G.; Zuo, J.; Song, Q. Characterizing the generation and flows of construction and demolition waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef]
- CJJ/T 134-2019; Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Standards for Construction Waste Disposal. China Standards Press: Beijing, China, 2019.
- Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J. Environmental management of construction and demolition waste in Kuwait. Waste Manag. 2004, 29, 1049–1059. [Google Scholar] [CrossRef]
- Xu, R.; Tong, D.; Davis, S.J.; Qin, X.; Cheng, J.; Shi, Q.; Liu, Y.; Chen, C.; Yan, L.; Yan, X.; et al. Plant-by-plant decarbonization strategies for the global steel industry. Nat. Clim. Chang. 2023, 13, 1067–1074. [Google Scholar] [CrossRef]
- Shen, A.; Zhang, J. Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review. Renew. Sustain. Energy Rev. 2024, 189, 113965. [Google Scholar] [CrossRef]
- Watari, T.; Northey, S.; Giurco, D.; Hata, S.; Yokoi, R.; Nansai, K.; Nakajima, K. Global copper cycles and greenhouse gas emissions in a 1.5 °C world. Resour. Conserv. Recycl. 2022, 179, 106118. [Google Scholar] [CrossRef]
- Caudle, B.; Taniguchi, S.; Nguyen, T.T.H.; Kataoka, S. Integrating carbon capture and utilization into the glass industry: Economic analysis of emissions reduction through CO2 mineralization. J. Clean. Prod. 2023, 416, 137846. [Google Scholar] [CrossRef]
- Ibrahim, M.I.M. Estimating the sustainability returns of recycling construction waste from building projects. Sustain. Cities Soc. 2016, 23, 78–93. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wu, P.; Wang, J.; He, Q.; Wang, X. Estimating the environmental costs and benefits of demolition waste using life cycle assessment and willingness-to-pay: A case study in Shenzhen. J. Clean. Prod. 2018, 172, 14–26. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Simplified GHG Emissions Calculator. Climate Leadership. Available online: https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator (accessed on 21 January 2025).
- Meng, Q.; Hu, L.; Li, M.; Qi, X. Carbon Emissions and Carbon Compensation Analysis of the Demolition Phase of Construction and Demolition Waste. Environ. Eng. 2023, 41, 45–52. [Google Scholar]
- Hao, L.; Mei, Y.; He, J.; Wang, C. Analysis of Carbon Emission Reduction from Construction Waste Management. Constr. Technol. 2023, 52, 62–66. [Google Scholar]
- Peng, C.-L.; Scorpio, D.E.; Kibert, C.J. Strategies for successful construction and demolition waste recycling operations. Constr. Manag. Econ. 2010, 15, 49–58. [Google Scholar] [CrossRef]
- Fujita, M.; Fujita, T.; Iwata, M.; Iwata, Y.; Kanemitsu, T.; Kimura, U.; Koiwa, K.; Midorikawa, M.; Okazaki, T.; Takahashi, S.; et al. Japanese Efforts to Promote Steel Reuse in Building Construction. J. Struct. Eng. 2023, 149, 04022225. [Google Scholar] [CrossRef]
- He, L.; Yuan, H. Investigation of construction waste recycling decisions by considering consumers’ quality perceptions. J. Clean. Prod. 2020, 259, 120928. [Google Scholar] [CrossRef]
- Baldo, G.; Cesarei, G.; Minestrini, S.; Sordi, L. The EU Ecolabel scheme and its application to construction and building materials. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Cambridge, UK, 2014; pp. 98–124. [Google Scholar]
- Ma, W.; Hao, J. Enhancing a circular economy for construction and demolition waste management in China: A stakeholder engagement and key strategy approach. J. Clean. Prod. 2024, 450, 141763. [Google Scholar] [CrossRef]
- European Commission—JRC. LEVEL (S): A Guide to Europe’s New Reporting Framework for Sustainable Buildings; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Decarbonisation of Cement. Publications Office of the European Union. 2023. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC131246 (accessed on 10 June 2024).
- Yi, Y.; Liu, J.; Lavagnolo, M.C.; Manzardo, A. Evaluating the carbon emission reduction in construction and demolition waste management in China. Energy Build. 2024, 324, 114932. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Wang, Z. The potential for carbon reduction in construction waste sorting: A dynamic simulation. Energy 2023, 275, 127477. [Google Scholar] [CrossRef]
- Belkadi, A.A.; Kessal, O.; Berkouche, A.; Noui, A.; Daguiani, S.E.; Dridi, M.; Benaniba, S.; Tayebi, T. Experimental investigation into the potential of recycled concrete and waste glass powders for improving the sustainability and performance of cement mortars properties. Sustain. Energy Technol. Assess. 2024, 64, 103710. [Google Scholar]
- Ma, M.; Tam, V.W.Y.; Le, K.N.; Zhu, Y.; Li, W. Comparative Analysis of National Policies on Construction and Demolition Waste Management in China and Japan. In Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate, CRIOCM 2019; Ye, G., Yuan, H., Zuo, J., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Ma, M.; Tam, V.W.; Le, K.N.; Butera, A.; Li, W.; Wang, X. Comparative analysis on international construction and demolition waste management policies and laws for policy makers in China. J. Civ. Eng. Manag. 2023, 29, 107–130. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Guidelines on Promoting the Reduction of Construction Waste; Document No. 46; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- General Office of the State Council. Opinions of the General Office of the State Council on Accelerating the Construction of a Waste Recycling System; Circular No. 7. State Council Gazette, (6); General Office of the State Council: Beijing, China, 2024. [Google Scholar]
- Yu, S.; Awasthi, A.K.; Ma, W.; Wen, M.; Di Sarno, L.; Wen, C.; Hao, J.L. In support of circular economy to evaluate the effects of policies of construction and demolition waste management in three key cities in Yangtze river delta. Sustain. Chem. Pharm. 2022, 26, 100625. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.; Zou, P.X. Barriers and countermeasures of construction and demolition waste recycling enterprises under circular economy. J. Clean. Prod. 2023, 420, 138235. [Google Scholar] [CrossRef]
- National Development Reform Commission of China. Strat the Revision of the Legislation on Circular Economy; National Development Reform Commission of China: Beijing, China, 2022. [Google Scholar]
- Ma, W.; Hao, J.L.; Zhang, C.; Guo, F.; Di Sarno, L. System dynamics-life cycle assessment causal loop model for evaluating the carbon emissions of building refurbishment construction and demolition waste. Waste Biomass Valorization 2022, 13, 4099–4113. [Google Scholar] [CrossRef]
- Ma, M.; Tam, V.W.Y.; Le, K.N.; Li, W. Challenges in current construction and demolition waste recycling: A China study. Waste Manag. 2020, 118, 610–625. [Google Scholar] [CrossRef]
- Qing, X.; Zhang, J.; Tan, R.; Yu, M. Incentive Regulation of Construction Waste Resource Recycling: Subsidy and Tax Incentive. Math. Probl. Eng. 2022, 2022, 8333438. [Google Scholar]
- Hao, J.L.; Ma, W. Evaluating carbon emissions of construction and demolition waste in building energy retrofit projects. Energy 2023, 281, 128201. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, Z.; Feng, Y. Analysis of Carbon Emission Reduction Benefits of the Technical Process in a Typical Construction Waste Resource Utilization Project in Hangzhou. Environ. Pollut. Control. 2022, 44, 506–509+514. [Google Scholar]
- Wang, T.; Li, K.; Liu, D.; Yang, Y.; Wu, D. Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai. Environ. Res. Public Health 2022, 19, 8507. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, R.; Tian, J.; Sun, H.; Wang, Y.; Li, H.; Yao, L. Quantifying the Carbon Reduction Potential of Recycling Construction Waste Based on Life Cycle Assessment: A Case of Jiangsu Province. Int. J. Environ. Res. Public Health 2022, 19, 12628. [Google Scholar] [CrossRef]
- Yi, Y.; Wu, J.; Zuliani, F.; Lavagnolo, M.C.; Manzardo, A. Integration of life cycle assessment and system dynamics modeling for environmental scenario analysis: A systematic review. Sci. Total Environ. 2023, 903, 166545. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Kong, L. Evaluation of carbon and economic benefits of producing recycled aggregates from construction and demolition waste. J. Clean. Prod. 2023, 425, 138946. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; Cabarcas-Reyes, J.; Ishizaka, A.; Barbati, M.; Jaramillo-Rueda, N.; de Jesús Carrascal-Zambrano, G. A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Ann. Oper. Res. 2021, 307, 443–481. [Google Scholar] [CrossRef]
- Çalik, A. A novel pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the industry 4.0 era. Soft Comput. 2021, 25, 2253–2265. [Google Scholar] [CrossRef]
- GB/T 51366-2019; Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for Calculation of Carbon Emissions in Buildings. China Standards Press: Beijing, China, 2019.
- Arslan, D.; Sharples, S.; Mohammadpourkarbasi, H.; Khan-Fitzgerald, R. Carbon Analysis, Life Cycle Assessment, and Prefabrication: A Case Study of a High-Rise Residential Built-to-Rent Development in the UK. Energies 2023, 16, 973. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, Y.; Zhang, J.; Wang, H.; Zhu, H. The Sustainability Study and Exploration in the Building Commercial Complex System Based on Life Cycle Assessment (LCA)–Energy–Carbon Emission Analysis. Processes 2023, 11, 1989. [Google Scholar] [CrossRef]
- Su, X.; Huang, Y.; Chen, C.; Xu, Z.; Tian, S.; Peng, L. A dynamic life cycle assessment model for long-term carbon emissions prediction of buildings: A passive building as case study. Sustain. Cities Soc. 2023, 96, 104636. [Google Scholar] [CrossRef]
- An, R.; Guo, Y. Estimating construction and demolition waste in the building sector in China: Towards the end of the century. Waste Manag. 2024, 190, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Rosado, L.P.; Vitale, P.; Penteado, C.S.G.; Arena, U. Life cycle assessment of construction and demolition waste management in a large area of São Paulo State, Brazil. Waste Manag. 2019, 85, 477–489. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. J. Clean. Prod. 2020, 244, 118710. [Google Scholar] [CrossRef]
- Wang, X.; Yu, B.; An, R.; Sun, F.; Xu, S. An integrated analysis of China’s iron and steel industry towards carbon neutrality. Appl. Energy 2022, 322, 119453. [Google Scholar] [CrossRef]
- Guo, X.; Tian, Q.; Liu, Y.; Yan, H.; Li, D.; Wang, Q.; Zhang, J. Progress in research and application of non-ferrous metal resources recycling. Chin. J. Nonferrous Met. 2019, 29, 1859–1901. [Google Scholar]
- Varanasi, S.S.; Rao, M.V.M.; Santanu, D.; Alli, S.R.; Kumar, D.S.V.S.; Tangudu, A.K.; Gollapalli, V.; Pathak, R.K.; Santhamma, C.S. Effect of recycling ladle furnace slag as flux on steel desulphurization during secondary steel making. Ironmak. Steelmak. 2022, 49, 813–820. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Z.; Hiraki, T.; Takeda, O.; Zhu, H.; Matsubae, K.; Nagasaka, T. A solid-state electrolysis process for upcycling aluminium scrap. Nature 2022, 606, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Barbato, P.M.; Olsson, E.; Rigamonti, L. Quality degradation in glass recycling: Substitutability model proposal. Waste Manag. 2024, 182, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liang, Y.; Xue, F. Investigating the bulk density of construction waste: A big data-driven approach. Resour. Conserv. Recycl. 2021, 169, 105480. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Lin, Z.; Liu, Q.; Han, Z. Historical Changes in Aluminum Material Flow and Research on the Utilization of Regenerated Aluminum Resources in China. Acta Geosci. Sin. 2023, 44, 333–340. [Google Scholar]
- Lin, S. China’s Average Electricity Carbon Emission Factor Gradually Declines. China Energy News, 6 January 2025; 14. [Google Scholar]
- Xiao, J.; Xiao, Y.; Liu, Y.; Ding, T. Carbon emission analyses of concretes made with recycled materials considering CO2 uptake through carbonation absorption. Struct. Concr. 2021, 22, E58–E73. [Google Scholar] [CrossRef]
- Anasstasia, T.T.; Lestianingrum, E.; Cahyono, R.B.; Azis, M.M. Life Cycle Assessment of Refuse Derived Fuel (RDF) for Municipal Solid Waste (MSW) Management: Case Study Area Around Cement Industry, Cirebon, Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012146. [Google Scholar] [CrossRef]
- Luo, X.; Ren, M.; Zhao, J.; Wang, Z.; Ge, J.; Gao, W. Life cycle assessment for carbon emission impact analysis for the renovation of old residential areas. J. Clean. Prod. 2022, 367, 132930. [Google Scholar] [CrossRef]
- Eheliyagoda, D.; Li, J.; Geng, Y.; Zeng, X. The role of China’s aluminum recycling on sustainable resource and emission pathways. Resour. Policy 2022, 76, 102552. [Google Scholar] [CrossRef]
- “Building Renewable”. All About Recycled Building Materials: The Key Facts to Know. Available online: https://buildingrenewable.com/recycled-building-materials-key-facts/ (accessed on 29 August 2024).
- da Rosa, S.C.F.; Kipper, L.M.; Moraes, J.A.R.; Silva, A.L.E. Aluminum recycling, innovations and future perspectives: A systematic literature review. Int. J. Dev. Res. 2022, 12, 54035–54039. [Google Scholar]
- Beerkens, R.; Kers, G.; van Santen, E. Recycling of post-consumer glass: Energy saving, CO2 emission reduction, effects on glass quality and glass melting. In 71st Conference on Glass Problems; Drummond, C.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 167–194. [Google Scholar]
- Shangguan, F.; Li, X.; Zhou, J.; Wang, F.; Bo, Q.; Zhang, C. Strategic Research on Development of Steel Scrap Resources in China. Iron Steel 2020, 55, 8–14. [Google Scholar]
- Li, M.; Gao, F.; Sun, B.; Nie, Z. Analysis of Carbon Emission Reduction and Carbon Peak in Aluminum Production in China Based on Target Scenarios. Chin. J. Nonferrous Met. 2022, 32, 148–158. [Google Scholar]
- Lu, H.; Wang, W.; Dai, M.; Shi, L. Scenario Analysis of Energy Consumption and Carbon Emissions in the Chinese Aluminum Life Cycle and Emission Reduction Measures. China Environ. Sci. 2021, 41, 451–462. [Google Scholar]
- GB 11614-2022; State Administration for Market Regulation of the People’s Republic of China, Standardization Administration of China. Flat Glass. China Standards Press: Beijing, China, 2022.
- Peng, T.; Ren, L.; Du, E.; Ou, X.; Yan, X. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Primary and Recycled Aluminum in China. Processes 2022, 10, 2299. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Y.; Liu, X.; Zeng, H.; Yang, Q.; Wang, C.; Guan, M. Research Progress on Decarbonization Technologies in the Flat Glass Industry. Bull. Chin. Ceram. Soc. 2023, 42, 1875–1885. [Google Scholar]
- Liu, Z.; Li, C. Float Glass Process Manual; Chemical Industry Press: Beijing, China, 2013. [Google Scholar]
- Atzori, D.; Tiozzo, S.; Vellini, M.; Gambini, M.; Mazzoni, S. Industrial Technologies for CO2 Reduction Applicable to Glass Furnaces. Thermo 2023, 3, 682–710. [Google Scholar] [CrossRef]
- Janová, J.; Bödeker, K.; Bingham, L.; Kindu, M.; Knoke, T. The role of validation in optimization models for forest management. Ann. For. Sci. 2024, 81, 19. [Google Scholar] [CrossRef]
- Lopez, E.; Etxebarria-Elezgarai, J.; Amigo, J.M.; Seifert, A. The importance of choosing a proper validation strategy in predictive models. A tutorial with real examples. Anal. Chim. Acta 2023, 1275, 341532. [Google Scholar] [CrossRef]
- Jiangsu Province Building Materials and Construction Carbon Emission Accounting and Monitoring Technology Public Service Platform. 2025. Available online: https://www.carboncraft.cn/#/product/chanpinyun (accessed on 28 January 2025).
- Liu, Z.; Huai, H.; Yao, Y.; Ye, M. Static Voltage Optimization of Active Distribution Networks Based on the Sobol’ Method. J. Electr. Power Sci. Technol. 2025, 40, 1–9. [Google Scholar]
- Ma, M.; Ma, X.; Cai, W.; Cai, W. Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak. Appl. Energy 2020, 273, 115247. [Google Scholar] [CrossRef]
- Li, W.; Li, Q.; Liu, Y. Sunmeng Wang. Lixin Jia. Decision-making factors for renovation of old residential areas in Chinese cities under the concept of sustainable development. Environ. Sci. Pollut. Res. 2023, 30, 39695–39707. [Google Scholar] [CrossRef]
- Hai, M.; Zhou, B.; Fan, Y.; Li, Z. Application of Open Building Theory in the Regeneration of Old Residential Building. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 042027. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef]
- Hyndman, R.J. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2020. [Google Scholar]
- de Barros Martins, M.A.; Crispim, A.; Ferreira, M.L.; Santos, I.F.D.; de Lourdes Noronha Motta Melo, M.; Barros, R.M.; Filho, G.L.T. Evaluating the energy consumption and greenhouse gas emissions from managing municipal, construction, and demolition solid waste. Clean. Waste Syst. 2023, 4, 100070. [Google Scholar] [CrossRef]
- Soltani, A.; Hewage, K.; Reza, B.; Sadiq, R. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review. Waste Manag. 2015, 35, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Al-Sari, M.I.; Al-Khatib, I.A.; Avraamides, M.; Fatta-Kassinos, D. A study on the attitudes and behavioural influence of construction waste management in occupied Palestinian territory. Waste Manag. Res. 2012, 30, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Y.; Hu, M.M.; He, Q. Analysis of contractors’ behavior in waste resource utilization based on market characteristics. Jiangsu Agric. Sci. 2013, 41, 317–321. [Google Scholar]
- State Council of China. Action Plan for Energy Conservation and Carbon Reduction (2024–2025); State Council Document No. 12; State Council of China: Beijing, China, 2024. [Google Scholar]
- National Development and Reform Commission; Ministry of Industry and Information Technology; Ministry of Ecology and Environment; National Energy Administration. Implementation Guide for Energy Conservation and Carbon Reduction Retrofit and Upgrade in Key Energy-Intensive Industries (2022 Edition): Implementation Guide for Energy Conservation and Carbon Reduction Retrofit and Upgrade in the Flat Glass Industry; NDRC Industrial Development. No. 200; National Development and Reform Commission: Beijing, China, 2022. [Google Scholar]
Waste | Production Cardinality | Proportion |
---|---|---|
Engineering spoil, engineering mud | Determine comprehensively based on the site topography, design data, and construction techniques | — |
Construction waste | 300–800 t/104 m2 | 2.3–9.1% |
Renovation waste | 0.5–1.0 t/household annually | 3.6% × 10−5–12% × 10−5 |
Demolition waste | 8000–13,000 t/104 m2 | 90.9–97.7% |
Step1. Combine Equations (5) and (6) to Form a System of Simultaneous Equations. | Step2. Solve the System of Equations. | Step3. Substitute the Values. |
---|---|---|
0.057–0.077% |
Steel Waste | Glass Waste | Aluminum Waste | |
---|---|---|---|
RMW,i | 7% | 4% | 0.057–0.077% |
Machinery Name | Specifications | EC | |
---|---|---|---|
Diesel Oil (kg/Machinery Team) | Electricity (kWh/Machinery Team) | ||
Crane | Lifting mass (5–60 t) | 18.42–47.17 | — |
Reinforcing steel cutting machine | Diameter (40 mm) | — | 32.10 |
Semi-automatic cutting machine | Thickness (100 mm) | — | 98.00 |
Pipe cutting machine | Pipe diameter (150–200 mm) | — | 12.90–22.50 |
Section steel shearing machine | Cutting width (500 mm) | — | 53.20 |
Type of Energy | Carbon Emission FACTOR |
---|---|
Electricity | 0.54 kg/kW·h [67] |
Crude oil | 72.23 t/TJ [53] |
Fuel oil | 75.82 t/TJ [53] |
Diesel oil | 72,59 t/TJ or 3.11 kg/kg [53] |
Petrol | 67.91 t/TJ [53] |
Anthracite coal | 94.44 t/TJ [53] |
Bituminous coal | 89.00 t/TJ [53] |
Natural gas | 55.54 t/TJ [53] |
Reprocessing Machines | EC (kWh/t) | Carbon Emission Factor (kg/kWh) | |
---|---|---|---|
Selection machine | Electricity | 12.62 [46,69] | 0.54 [67] |
Dust removal machine | Electricity | 28.46 [46,69] | 0.54 [67] |
Representative Meltable Materials Waste | Steel | Aluminum | Glass |
---|---|---|---|
Recovery rate (%) | 75% [70,72] | 60–76% [66,71,73] | 50% [70] |
Meltable Materials Category | Steel | Aluminum | Glass |
---|---|---|---|
j RMBM | Steel and iron building materials such as steel reinforcement bars | Aluminum products | Plate glass and flat glass |
i reprocessed MW | Steel and iron scrap | Aluminum scrap | Cullet |
Meltable Materials Waste | Steel | Aluminum | Glass |
---|---|---|---|
Reprocessed waste proportion (%) | 100% [75] | 100% [76] | 20–30% [74] |
Representative Meltable Materials Waste | Steel | Aluminum | Glass |
---|---|---|---|
Equation | (13) [75] | (14) [71,77] | (13) [74] |
Material output ratio (%) | 90.9% | 93% | 83.3–90.9% |
Recycled Representative Meltable Materials | Recycled Steel | Recycled Aluminum | Recycled Glass |
---|---|---|---|
Carbon emission factor (kg/t) | 500–700 [75] | 680–850 [76,79] | 990–1040 |
P Cullet | FCD, Recycled flat glass | FEC, Recycled flat glass | F Recycled flat glass |
---|---|---|---|
20% (min) | 0.23 × (1–20%) | 0.90 × [1–20% × (2.5%/10%)] | 1040 kg/t |
30% (max) | 0.23 × (1–30%) | 0.90 × [1–30% × (2.5%/10%)] | 900 kg/t |
On-Site | Transportation | Reprocessing | Reproduction | Total | |
---|---|---|---|---|---|
Steel scrap | 0.19 | 21.73 | 31.09 | 409.05 | 462.07 |
Cullet | 0.18 | 14.96 | 31.10 | 1768.13 | 1814.37 |
Aluminum scrap | 0.17 | 19.82 | 31.11 | 483.76 | 534.87 |
On-Site | Transportation | Recycling | Reproduction | Total | |
---|---|---|---|---|---|
Recycled steel | 0.28 | 31.88 | 45.61 | 599.99 | 677.77 |
Recycled flat glass | 0.10 | 8.59 | 17.85 | 1014.99 | 1041.54 |
Recycled aluminum | 0.27 | 31.33 | 49.18 | 764.62 | 845.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Huang, H.; Ge, F.; Huang, B.; Ullah, H. Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China. Buildings 2025, 15, 456. https://doi.org/10.3390/buildings15030456
Jiang B, Huang H, Ge F, Huang B, Ullah H. Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China. Buildings. 2025; 15(3):456. https://doi.org/10.3390/buildings15030456
Chicago/Turabian StyleJiang, Boya, Hao Huang, Feng Ge, Baolin Huang, and Habib Ullah. 2025. "Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China" Buildings 15, no. 3: 456. https://doi.org/10.3390/buildings15030456
APA StyleJiang, B., Huang, H., Ge, F., Huang, B., & Ullah, H. (2025). Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China. Buildings, 15(3), 456. https://doi.org/10.3390/buildings15030456