Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. AAB Concrete Formulations
2.2. Fresh State Characterization
2.3. Mechanical Evaluation
2.4. Durability Assessment
3. Results and Discussions
3.1. Fresh State Evaluation
3.2. Dry Density Characterization
3.3. Mechanical Evaluation Results
3.3.1. Compressive Strength
3.3.2. Young’s Modulus Evaluation
3.3.3. Poisson’s Ratio
3.4. Durability Assessment Results
3.4.1. Electrical Resistivity
3.4.2. Rapid Chloride Ions Penetration Test
3.4.3. Water Penetration Under Pressure
3.4.4. Microstructural Analysis
4. Conclusions
- All concretes formulations presented a high passing ability, however, with elevated flow time in comparison with the OPC concretes, higher than the OPC average;
- The thermal curing process increases up to 60% the compressive strength and up to 30% the Young’s modulus at 28 days. Thermal curing resulted in an initial compressive strength of 80% of the 28-day strength;
- The AAB concrete Young’s modulus values were lower than OPC concretes, however with a similar strength;
- Static and Dynamic methodologies show satisfactory accuracy for Young’s modulus estimation. However, to estimate the Young’s modulus from ultrasonic compression waves, the assumed fixed value of 0.2 for the Poisson’s ratio proved to be unsatisfactory;
- The use of BSSF-SS aggregates decreases the compressive strength, and increased the Young’s modulus and flow time of AABs concretes;
- The approaches used to evaluate the durability of OPC concretes resulted in conflicting durability results when applied to AAB concretes, especially when associated with electrical measurements. This should be further investigated, and it seems reasonable to suppose that methods of durability investigation should be adapted for geopolymer concretes;
- AAB concretes presented a reduced transition zone gap compared to Portland cement concretes. Moreover, the thermal curing process is beneficial for the transition zone properties and for the production of AAB concretes with high strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging Energy-Efficiency and CO2 Emission-Reduction Technologies for Cement and Concrete Production: A Technical Review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. (Eds.) Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; RILEM State-of-the-Art Reports; Springer: Dordrecht, The Netherlands, 2014; Volume 13, ISBN 978-94-007-7671-5. [Google Scholar]
- Yang, K.-H.; Song, J.-K.; Song, K.-I. Assessment of CO2 Reduction of Alkali-Activated Concrete. J. Clean. Prod. 2013, 39, 265–272. [Google Scholar] [CrossRef]
- Saini, G.; Vattipalli, U. Assessing Properties of Alkali Activated GGBS Based Self-Compacting Geopolymer Concrete Using Nano-Silica. Case Stud. Constr. Mater. 2020, 12, e00352. [Google Scholar] [CrossRef]
- Lee, W.-H.; Wang, J.-H.; Ding, Y.-C.; Cheng, T.-W. A Study on the Characteristics and Microstructures of GGBS/FA Based Geopolymer Paste and Concrete. Constr. Build. Mater. 2019, 211, 807–813. [Google Scholar] [CrossRef]
- Alonso, M.M.; Gismera, S.; Blanco, M.T.; Lanzón, M.; Puertas, F. Alkali-Activated Mortars: Workability and Rheological Behaviour. Constr. Build. Mater. 2017, 145, 576–587. [Google Scholar] [CrossRef]
- Xie, T.; Visintin, P.; Zhao, X.; Gravina, R. Mix Design and Mechanical Properties of Geopolymer and Alkali Activated Concrete: Review of the State-of-the-Art and the Development of a New Unified Approach. Constr. Build. Mater. 2020, 256, 119380. [Google Scholar] [CrossRef]
- Pradhan, P.; Panda, S.; Kumar Parhi, S.; Kumar Panigrahi, S. Factors Affecting Production and Properties of Self-Compacting Geopolymer Concrete—A Review. Constr. Build. Mater. 2022, 344, 128174. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H. 9—Analysing the Relation between Pore Structure and Permeability of Alkali-Activated Concrete Binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasirt, P., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 235–264. ISBN 978-1-78242-276-1. [Google Scholar]
- Tibbetts, C.M.; Paris, J.M.; Ferraro, C.C.; Riding, K.A.; Townsend, T.G. Relating Water Permeability to Electrical Resistivity and Chloride Penetrability of Concrete Containing Different Supplementary Cementitious Materials. Cem. Concr. Compos. 2020, 107, 103491. [Google Scholar] [CrossRef]
- Aldawsari, S.; Kampmann, R.; Harnisch, J.; Rohde, C. Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Materials 2022, 15, 876. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Peethamparan, S. Stepwise Regression Modeling for Compressive Strength of Alkali-Activated Concrete. Constr. Build. Mater. 2017, 141, 315–324. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. 16—Geopolymers and Other Alkali-Activated Materials. In Lea’s Chemistry of Cement and Concrete, 5th ed.; Hewlett, P.C., Liska, M., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 779–805. ISBN 978-0-08-100773-0. [Google Scholar]
- dos Santos, W.W.; Coelho, L.M.; Monteiro, S.N.; Marques, M.E.S.; Guimarães, A.C.R. Evaluation of Steel Slag as a Sustainable Alternative Aggregate for Railway Ballast: A Shakedown Theory-Based Approach. Buildings 2024, 14, 3546. [Google Scholar] [CrossRef]
- Nunes, V.A.; Borges, P.H.R. Recent Advances in the Reuse of Steel Slags and Future Perspectives as Binder and Aggregate for Alkali-Activated Materials. Constr. Build. Mater. 2021, 281, 122605. [Google Scholar] [CrossRef]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Investigations on Alkali-Activated Slag/Fly Ash Concrete with Steel Slag Coarse Aggregate for Pavement Structures. Int. J. Pavement Eng. 2017, 18, 500–512. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X. Mechanical Properties and Mechanisms of Fiber Reinforced Fly Ash–Steel Slag Based Geopolymer Mortar. Constr. Build. Mater. 2018, 179, 633–641. [Google Scholar] [CrossRef]
- Cristelo, N.; Coelho, J.; Miranda, T.; Palomo, Á.; Fernández-Jiménez, A. Alkali Activated Composites—An Innovative Concept Using Iron and Steel Slag as Both Precursor and Aggregate. Cem. Concr. Compos. 2019, 103, 11–21. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Du, Z.; Zhou, S.; Zhang, Y.; Li, F. Recycling and Utilization Assessment of Steel Slag in Metakaolin Based Geopolymer from Steel Slag By-Product to Green Geopolymer. Constr. Build. Mater. 2021, 305, 124654. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Z.; Liu, H.; Zheng, W.; Tang, X.; Gui, Z. Interfacial Characteristics and Mechanical Behaviors of Geopolymer Binder with Steel Slag Aggregate: Insights from Molecular Dynamics. J. Clean. Prod. 2022, 362, 132385. [Google Scholar] [CrossRef]
- Crude Steel Production and 2021 Global Crude Steel Production Totals. December 2021. Available online: https://worldsteel.org/ (accessed on 1 February 2024).
- Yu, J.; Wang, K. Study on Characteristics of Steel Slag for CO2 Capture. Energy Fuels 2011, 25, 5483–5492. [Google Scholar] [CrossRef]
- Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D. Basic Oxygen Furnace Slag: Review of Current and Potential Uses. Miner. Eng. 2020, 149, 106234. [Google Scholar] [CrossRef]
- Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers. Constr. Build. Mater. 2016, 110, 355–368. [Google Scholar] [CrossRef]
- Campos, S.A.; Rafael, M.F.C.; Cabral, A.E.B. Evaluation of Steel Slag of Companhia Siderúrgica Do Pecém Replacing Fine Aggregate on Mortars. Procedia Struct. Integr. 2018, 11, 145–152. [Google Scholar] [CrossRef]
- Rashad, A.M.; Khafaga, S.A.; Gharieb, M. Valorization of Fly Ash as an Additive for Electric Arc Furnace Slag Geopolymer Cement. Constr. Build. Mater. 2021, 294, 123570. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Huynh, T.-P. Effect of Alkali-Activator and Rice Husk Ash Content on Strength Development of Fly Ash and Residual Rice Husk Ash-Based Geopolymers. Constr. Build. Mater. 2015, 101, 1–9. [Google Scholar] [CrossRef]
- Amancio, F.A. Estudo de Propriedades no Estado Fresco de Argamassas de Revestimento Com Escória de Aciaria BSSF. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, 2019. [Google Scholar]
- ASTM C618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Guidelines for Mix Proportioning of Fly Ash/GGBS Based Alkali Activated Concretes. Constr. Build. Mater. 2017, 147, 130–142. [Google Scholar] [CrossRef]
- Nagaraj, V.K.; Babu, D.L.V. Assessing the Performance of Molarity and Alkaline Activator Ratio on Engineering Properties of Self-Compacting Alkaline Activated Concrete at Ambient Temperature. J. Build. Eng. 2018, 20, 137–155. [Google Scholar] [CrossRef]
- Bondar, D.; Nanukuttan, S.; Provis, J.L.; Soutsos, M. Efficient Mix Design of Alkali Activated Slag Concretes Based on Packing Fraction of Ingredients and Paste Thickness. J. Clean. Prod. 2019, 218, 438–449. [Google Scholar] [CrossRef]
- ASTM C1611; Standard Test Method for Slump Flow of Self-Consolidating Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM C1621; Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [CrossRef]
- European Federation of National Associations Representing for Concrete (EFNARC). European Guidelines for Self-Compacting Concrete: Specification, Production and Use, EFNARC—Publication Index|NBS; European Project Group: Brussels, Belgium, 2005; p. 68. [Google Scholar]
- Talha Junaid, M.; Kayali, O.; Khennane, A.; Black, J. A Mix Design Procedure for Low Calcium Alkali Activated Fly Ash-Based Concretes. Constr. Build. Mater. 2015, 79, 301–310. [Google Scholar] [CrossRef]
- ASTM C39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021. [CrossRef]
- Gjørv, O.E. 7—High-Strength Concrete. In Developments in the Formulation and Reinforcement of Concrete, 2nd ed.; Mindess, S., Ed.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2008; pp. 153–170. ISBN 978-0-08-102616-8. [Google Scholar]
- ASTM C469; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022. [CrossRef]
- ASTM C215; Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
- ASTM C597; Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016. [CrossRef]
- Bezerra, A.K.L.; Monteiro, N.d.C.; Amaral, C.C.d.; Coelho, A.A.d.P.; Silveira, J.A.N.d.; Babadopulos, L.F. de A.L.; Soares, J.B. Desenvolvimento de ensaio de ressonância por impacto para determinação de rigidez de diferentes materiais. Transportes 2022, 30, 2757. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Ahn, N.; Le, T.A.; Lee, K. Theoretical and Experimental Study on Mechanical Properties and Flexural Strength of Fly Ash-Geopolymer Concrete. Constr. Build. Mater. 2016, 106, 65–77. [Google Scholar] [CrossRef]
- Mandel, J. Cours de Mécanique Des Milieux Continus. Tome 2: Mécanique Des Solides; Gauthier-Villars: Paris, France, 1966. [Google Scholar]
- Bezerra, A.K.L. Development of a Non-Destructive Test for Viscoelastic Characterization of Asphalt Mixtures. Master’s Thesis, Universidade Federal do Ceará: Fortaleza, Ceará, Brazil, 2023. [Google Scholar]
- Thomas, R.J.; Peethamparan, S. Alkali-Activated Concrete: Engineering Properties and Stress–Strain Behavior. Constr. Build. Mater. 2015, 93, 49–56. [Google Scholar] [CrossRef]
- Ding, Y.; Dai, J.-G.; Shi, C.-J. Mechanical Properties of Alkali-Activated Concrete: A State-of-the-Art Review. Constr. Build. Mater. 2016, 127, 68–79. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 978-0-07-179787-0. [Google Scholar]
- ASTM C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
- ASTM C1876; Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
- Filho, J.H.; Medeiros, M.H.F.; Pereira, E.; Helene, P.; Isaia, G.C. High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. J. Mater. Civ. Eng. 2013, 25, 411–418. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A. The Effect of Heat-Curing on Transport Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Constr. Build. Mater. 2016, 112, 464–477. [Google Scholar] [CrossRef]
- EN 12390-8; Testing Hardened Concrete—Part 8: Depth of Penetration of Water Under Pressure. European Standard: Pilsen, Czech Republic, 2020.
- ASTM C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021. [CrossRef]
- Demie, S.; Nuruddin, M.F.; Shafiq, N. Effects of Micro-Structure Characteristics of Interfacial Transition Zone on the Compressive Strength of Self-Compacting Geopolymer Concrete. Constr. Build. Mater. 2013, 41, 91–98. [Google Scholar] [CrossRef]
- Kai, M.-F.; Dai, J.-G. Understanding Geopolymer Binder-Aggregate Interfacial Characteristics at Molecular Level. Cem. Concr. Res. 2021, 149, 106582. [Google Scholar] [CrossRef]
- Huseien, G.F.; Sam, A.R.M.; Alyousef, R. Texture, Morphology and Strength Performance of Self-Compacting Alkali-Activated Concrete: Role of Fly Ash as GBFS Replacement. Constr. Build. Mater. 2021, 270, 121368. [Google Scholar] [CrossRef]
- Gupta, N.; Siddique, R.; Belarbi, R. Sustainable and Greener Self-Compacting Concrete Incorporating Industrial By-Products: A Review. J. Clean. Prod. 2021, 284, 124803. [Google Scholar] [CrossRef]
- Mohammedameen, A. Performance of Alkali-Activated Self-Compacting Concrete with Incorporation of Nanosilica and Metakaolin. Sustainability 2022, 14, 6572. [Google Scholar] [CrossRef]
- EN 206:2013+A2:2021; Concrete—Specification, Performance, Production and Conformity. European Standard: Pilsen, Czech Republic, 2021.
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Studies on Eco-Friendly Concrete Incorporating Industrial Waste as Aggregates. Int. J. Sustain. Built Environ. 2015, 4, 378–390. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostofinejad, D. Microstructure of Ultra-High-Performance Concrete (UHPC)—A Review Study. J. Build. Eng. 2022, 50, 104118. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.M.; Palomo, A.; Lopez-Hombrados, C. Engineering Properties of Alkali-Activated Fly Ash Concrete. Mater. J. 2006, 103, 106–112. [Google Scholar] [CrossRef]
- Němeček, J.; Šmilauer, V.; Kopecký, L. Nanoindentation Characteristics of Alkali-Activated Aluminosilicate Materials. Cem. Concr. Compos. 2011, 33, 163–170. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Salem, H.A. Effect of Cement Addition, Solution Resting Time and Curing Characteristics on Fly Ash Based Geopolymer Concrete Performance. Constr. Build. Mater. 2016, 123, 581–593. [Google Scholar] [CrossRef]
- Beushausen, H.; Dittmer, T. The Influence of Aggregate Type on the Strength and Elastic Modulus of High Strength Concrete. Constr. Build. Mater. 2015, 74, 132–139. [Google Scholar] [CrossRef]
- Wang, G.C. 2—Ferrous Metal Production and Ferrous Slags. In The Utilization of Slag in Civil Infrastructure Construction; Wang, G.C., Ed.; Woodhead Publishing: Cambridge, United Kingdom, 2016; pp. 9–33. ISBN 978-0-08-100994-9. [Google Scholar]
- AASHTO PP 84—Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures|GlobalSpec. Available online: https://standards.globalspec.com/std/14221373/AASHTO%20PP%2084 (accessed on 11 December 2023).
- Mazer, W.; Lima, M.G.; Medeiros-Junior, R.A.; Wickzick, L.F.S. Chloride Ingress into Concrete under Different Conditions of Temperature and Marine Zones. Mag. Concr. Res. 2021, 73, 1180–1188. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Kamal, I. Electrical Resistivity and Compressive Strength of Cement Mortar Based on Green Magnetite Nanoparticles and Wastes from Steel Industry. Case Stud. Constr. Mater. 2022, 17, e01712. [Google Scholar] [CrossRef]
- Pontes, C.V.; Réus, G.C.; Araújo, E.C.; Medeiros, M.H.F. Silver Nitrate Colorimetric Method to Detect Chloride Penetration in Carbonated Concrete: How to Prevent False Positives. J. Build. Eng. 2021, 34, 101860. [Google Scholar] [CrossRef]
- Neville, A.; Brooks, J. Concrete Technology: Update, 2nd ed.; London, Longman Group UK Limited: London, UK, 1997; ISBN 0-582-98859-4. [Google Scholar]
- Atabey, İ.İ.; Karahan, O.; Bilim, C.; Atiş, C.D. The Influence of Activator Type and Quantity on the Transport Properties of Class F Fly Ash Geopolymer. Constr. Build. Mater. 2020, 264, 120268. [Google Scholar] [CrossRef]
- Lloyd, R.R.; Provis, J.L.; Smeaton, K.J.; van Deventer, J.S.J. Spatial Distribution of Pores in Fly Ash-Based Inorganic Polymer Gels Visualised by Wood’s Metal Intrusion. Microporous Mesoporous Mater. 2009, 126, 32–39. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Shi, Z.; Zhang, L. Compressive Strength, Pore Structure and Chloride Transport Properties of Alkali-Activated Slag/Fly Ash Mortars. Cem. Concr. Compos. 2019, 104, 103392. [Google Scholar] [CrossRef]
- Luo, Z.; Li, W.; Wang, K.; Castel, A.; Shah, S.P. Comparison on the Properties of ITZs in Fly Ash-Based Geopolymer and Portland Cement Concretes with Equivalent Flowability. Cem. Concr. Res. 2021, 143, 106392. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, H.; Shi, J.; Li, Z.; Yang, S. Influence of Slag Content on the Bond Strength, Chloride Penetration Resistance, and Interface Phase Evolution of Concrete Repaired with Alkali Activated Slag/Fly Ash. Constr. Build. Mater. 2020, 263, 120639. [Google Scholar] [CrossRef]
Material | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | TiO2 | MnO | Fe2O3 |
---|---|---|---|---|---|---|---|---|---|---|
BOF Steel slag precursor (%m.) | 1.94 | 5.64 | 0.84 | 0.83 | 0.04 | 0.14 | 53.14 | - | 2.97 | 34.40 |
BSSF Steel slag aggregate (%m.) | 0.70 | 4.78 | 0.96 | - | 0.01 | 0.05 | 40.46 | 0.42 | 4.13 | 50.14 |
Fly ash (%m.) | 11.14 | 42.17 | 0.53 | 1.08 | 0.06 | 3.97 | 10.25 | 2.74 | 0.27 | 26.98 |
Parameters | Coarse Aggregate | Fine Aggregate | |||
---|---|---|---|---|---|
Granitic (Conv.) | BSSF-SS | Quart Sand (Conv.) | BSSF-SS | ||
PSD (mm) | 4.75–12.5 | 9.5–25 | 9.5–25 | - | - |
Bulk density (kg/m3) | 1406 | 1487 | 1835 | - | - |
Open porosity (%) | 1.5 | 1.6 | 6.0 | - | - |
Specific gravity (-) | 2.62 | 2.63 | 3.60 | 2.57 | 3.58 |
Fineness mod. (-) | - | - | - | 2.66 | 2.58 |
Materials | AAB Concrete—Conv. Aggr. | AAB Concrete—BSSF-SS Aggr. | ||
---|---|---|---|---|
(kg/m3) | % vol. | (kg/m3) | % vol. | |
Fly ash | 382.1 | 16.3 | 382.1 | 16.3 |
BOF Steel slag prec. | 127.4 | 4.1 | 127.4 | 4.1 |
NaOH (solution) | 135.9 | 10.4 | 135.9 | 10.4 |
Na2SiO3 (solution) | 120.1 | 7.6 | 120.1 | 7.6 |
Conv. fine aggr. | 561.6 | 21.8 | - | - |
BSSF Steel slag fine aggr. | - | - | 889.3 | 24.8 |
Conv. coarse aggr. 1 | 417.2 | 16,0 | - | - |
Conv. coarse aggr. 2 | 625.8 | 23.8 | - | - |
BSSF Steel slag coarse aggr. | - | - | 1333.9 | 36.8 |
Fresh State Tests | AAB Concr. Conv. Aggr. | AAB Concr. BSSF-SS Aggr. |
Classification Based: EFNARK and ASTM C1621 | Slump Flow and J-Ring Aspect | |
---|---|---|---|---|---|
T50 (s) | 13.8 | 3.5 | T50 ≤ 2 s → VS1 | T50 ≥ 2 s → VS2 | |
Slump Flow (cm) | 57.5 | 73.7 | 55–65 → SF-1 | 66–75 → SF-2 | |
J-ring (mm) | 27 | 34 | 0–25 → No block | 25–50 → Min. block |
Concrete Type | Young’s Modulus | ||
---|---|---|---|
Static Modulus | Estimated (Equation (4)) | Estimated (Equation (5)) | |
Conv. Aggr.—Ambient cure | 20.2 | 26.6 | 29.8 |
Conv. Aggr.—Thrermal cure | 26.2 | 35.2 | 37.6 |
BSSF-SS Aggr.—Ambient cure | 26.5 | 24.5 | 27.8 |
BSSF-SS Aggr.—Thermal cure | 31.1 | 30.2 | 33.1 |
Poisson’s Ratio Based on Young’s Modulus Type | AAB Concrete—Conv. Aggr. | AAB Concrete—BSSF-SS Aggr. | ||
---|---|---|---|---|
Ambient Cure | Thermal Cure | Ambient Cure | Thermal Cure | |
Resonant modulus | 0.351 | 0.270 | 0.407 | 0.379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, L.B.R.; Targino, D.L.L.; Babadopulos, L.F.A.L.; Fabbri, A.; Cabral, A.E.B.; Chehade, R.; Costa, H.N. Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete. Buildings 2025, 15, 457. https://doi.org/10.3390/buildings15030457
Araújo LBR, Targino DLL, Babadopulos LFAL, Fabbri A, Cabral AEB, Chehade R, Costa HN. Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete. Buildings. 2025; 15(3):457. https://doi.org/10.3390/buildings15030457
Chicago/Turabian StyleAraújo, Lucas B. R., Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Antonin Fabbri, Antonio Eduardo. B. Cabral, Rime Chehade, and Heloina N. Costa. 2025. "Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete" Buildings 15, no. 3: 457. https://doi.org/10.3390/buildings15030457
APA StyleAraújo, L. B. R., Targino, D. L. L., Babadopulos, L. F. A. L., Fabbri, A., Cabral, A. E. B., Chehade, R., & Costa, H. N. (2025). Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete. Buildings, 15(3), 457. https://doi.org/10.3390/buildings15030457