The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery
Abstract
:1. Introduction
S. No. | Weather Factors | References |
---|---|---|
1 | Heavy rain | [24] |
2 | Snowstorms | [24] |
3 | High winds | [25] |
4 | Flooding | [25,26,27] |
5 | Extreme heat | [27] |
6 | Lightning strikes | [28,29] |
7 | Freezing conditions | [28] |
8 | Hailstorms | [29] |
9 | Fog | [29,30] |
10 | Hurricanes | [30] |
11 | Sandstorms | [31] |
12 | Humidity variations | [30,31,32] |
13 | Landslides caused by weather conditions | [33] |
14 | Thunderstorms | [33,34] |
15 | Erosion caused by wind and rain | [34] |
16 | Changes in barometric pressure | [35] |
17 | Ice accumulation on materials | [36] |
18 | Soil saturation due to prolonged rainfall | [35,36,37] |
19 | Flash flooding | [37] |
20 | Delayed drying of construction materials | [37,38,39] |
2. Literature Review
2.1. Weather Conditions in Construction
2.2. Impact on Project Time
2.3. Impact on Project Cost
2.4. Impact on Project Quality
2.5. Mitigation Strategies
2.6. Theoretical Frameworks and Models
2.7. Gaps in Existing Research
3. Research Methodology
4. Results and Discussion
4.1. Study Sample
4.2. Descriptive Statistics
4.3. The t-Test Analysis
4.4. One-Sample t-Test
4.5. Reliability Analysis
4.6. Correlation Analysis
4.7. ANOVA for Cost, Quality, and Time Variables
4.8. Regression Analysis
5. Conclusions
6. Limitations and Directions for Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masoetsa, T.G.; Ogunbayo, B.F.; Aigbavboa, C.O.; Awuzie, B.O. Assessing construction constraint factors on project performance in the construction industry. Buildings 2022, 12, 1183. [Google Scholar] [CrossRef]
- Oyekunle, D.; Inoma-Abbey, T.; Ibeh, F. Project Management Dynamics: Shaping Success in UK Construction Projects. Open J. Bus. Manag. 2024, 12, 2099–2117. [Google Scholar] [CrossRef]
- Hassan, A.M.; Renuka, S.M.; Monika, T. Analysis of factors causing rework and their mitigation strategies in construction projects. Mater. Today Proc. 2023; in press. [Google Scholar]
- Nuako, F.; Ghansah, F.; Adusei, T. Critical success factors for cost overrun minimization in public construction projects in developing countries: The case of Ghana. Constr. Innov. 2024; ahead-of-print. [Google Scholar]
- Iqbal, S.; Nawaz, M. Investigating the Impact of Project Planning on Construction Project Success through the Mediating Role of Risk Management and Safety Climate. Int. J. Organ. Leadersh. 2024, 13, 119–139. [Google Scholar] [CrossRef]
- Bahlei, R.; Sokhatskyi, O. Risks in the International Project Management System. Innov. Econ. 2022, 127–133. [Google Scholar] [CrossRef]
- Ushie, E.; Muoka, A.; Mogbo, O.; Bamgbade, A.; Obianyo, I.; Mambo, A. The Impact of Site Management on the Success of Construction Project in Abuja. Nile J. Eng. Appl. Sci. 2024, 2, 1. [Google Scholar] [CrossRef]
- Obondi, K. The utilization of project risk monitoring and control practices and their relationship with project success in construction projects. J. Proj. Manag. 2021, 7, 35–52. [Google Scholar] [CrossRef]
- Ghimire, S.; Awasthi, K.; Bohara, N. Causes and Impacts of Variation Order in Building Construction Projects: A Case Study of Three Projects at Bharatpur Metro. J. UTEC Eng. Manag. 2023, 1, 105–114. [Google Scholar] [CrossRef]
- Revathi, M.; Lakshmi, D.; Jaiswal, S. Enhancing Operational Excellence Through Quality Management. Int. Res. J. Adv. Eng. Manag. (IRJAEM) 2024, 2, 1816–1818. [Google Scholar] [CrossRef]
- Alwaly, K.; Alawi, N. Factors Affecting the Application of Project Management Knowledge Guide in Construction Projects in Yemen. Int. J. Constr. Eng. Manag. 2020, 9, 81–91. [Google Scholar]
- Wu, S.-W.; Yan, Y.; Pan, J.; Wu, K.-S. Linking Sustainable Project Management with Construction Project Success: Moderating Influence of Stakeholder Engagement. Buildings 2023, 13, 2634. [Google Scholar] [CrossRef]
- Amarkhil, Q.; Elwakil, E. Enhanced planning and scheduling in building construction projects: An innovative approach to overcome scheduling challenges. Int. J. Constr. Manag. 2024, 24, 1719–1729. [Google Scholar] [CrossRef]
- Nabil, Y.; Ibrahim, A.H.; Hosny, S. Practices improvement of building information modeling in the Egyptian construction projects. Sci. Rep. 2024, 14, 13536. [Google Scholar] [CrossRef] [PubMed]
- Sheikhalishahi, M.; Amani, M.A.; Behdinian, A. Evaluating Factors Affecting Project Success: An Agile Approach. J. Ind. Eng. Int. 2022, 18, 79. [Google Scholar]
- Zid, C.; Kasim, N.; Soomro, A.R. Effective project management approach to attain project success, based on cost-time-quality. Int. J. Proj. Organ. Manag. 2020, 12, 149–163. [Google Scholar] [CrossRef]
- Uvarova, S.; Orlov, A.; Kankhva, V. Ensuring Efficient Implementation of Lean Construction Projects Using Building Information Modeling. Buildings 2023, 13, 770. [Google Scholar] [CrossRef]
- Wuni, I.Y. Developing a multidimensional risk assessment model for sustainable construction projects. Eng. Constr. Archit. Manag. 2024; Ahead-of-print. [Google Scholar]
- Araújo, L.; Lucko, G. Best Practices for Case Studies in Construction Engineering and Management Research. J. Constr. Eng. Manag. 2022, 148, 04022062. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jain, M.; Pathak, K. Pareto Analysis of Causes of Delay and Recommendations for Training Needs. Int. J. Constr. Proj. Manag. 2021, 13, 215–225. [Google Scholar]
- Shin, M.-H.; Jung, J.-H.; Kim, H.-Y. Quantitative and Qualitative Analysis of Applying Building Information Modeling (BIM) for Infrastructure Design Process. Buildings 2022, 12, 1476. [Google Scholar] [CrossRef]
- Omran, A.; Saleh, M.; Gebril, A. Factors Causing Time and Cost Overruns of Construction Projects in Malaysia. Des. Constr. Maint. 2023, 3, 179–186. [Google Scholar] [CrossRef]
- Jin, X.-H.; Senaratne, S.; Fu, Y.; Tijani, B. Tackling stress of project management practitioners in the Australian construction industry: The causes, effects and alleviation. Eng. Constr. Archit. Manag. 2024, 31, 4016–4041. [Google Scholar] [CrossRef]
- Schweikert, A.; Espinet, X.; Chinowsky, P. The triple bottom line: Bringing a sustainability framework to prioritize climate change investments for infrastructure planning. Sustain. Sci. 2018, 13, 377–391. [Google Scholar] [CrossRef]
- Jenkins, S.C.; Putra, A.W.; Ayuliana, S.; Novikarany, R.; Khalid, N.M.; Mamat, C.S.N.C.; Moron, L.A.; Monteverde, M.C.A.; Cayanan, E.O.; Beckett, R. Investigating the decision thresholds for impact-based warnings in South East Asia. Int. J. Disaster Risk Reduct. 2022, 76, 103021. [Google Scholar] [CrossRef]
- Mahesh Babu, P.; Pedro, L.; GhaffarianHoseini, A. Construction projects: Interactions of the causes of delays. Smart Sustain. Built Environ. 2024; ahead-of-print. [Google Scholar]
- Tariq, S.; Ahmad, N.; Ashraf, M.U.; Alghamdi, A.M.; Alfakeeh, A.S. Measuring the impact of scope changes on project plan using EVM. IEEE Access 2020, 8, 154589–154613. [Google Scholar] [CrossRef]
- Purnomo, J.; Anantanyu, S.; Saptaningtyas, H.; Mangunjaya, F. Prophetic Approach in Environmental Education and Community Empowerment: A Case Study of Sustainable Pesantren Development. Rev. Gestão Soc. Ambient. 2024, 18, e06259. [Google Scholar] [CrossRef]
- Farkhondehpay, R. Beyond Shelter: A Multi-Stakeholder Approach to Canada’s Housing Crisis. Urban Reg. Plan. 2024, 9, 58–70. [Google Scholar] [CrossRef]
- Akinsulire, A.; Idemudia, C.; Okwandu, A.; Iwuanyanwu, O. Strategic planning and investment analysis for affordable housing: Enhancing viability and growth. Magna Sci. Adv. Res. Rev. 2024, 11, 119–131. [Google Scholar] [CrossRef]
- Oruc, S.; Dikbas, H.A.; Gumus, B.; Yucel, I. The Impact of Climate Change on Construction Activity Performance. Buildings 2024, 14, 372. [Google Scholar] [CrossRef]
- Valdivieso, P.; Neudorfer, P.; Andersson, K.P. Causes and consequences of local government efforts to reduce risk and adapt to extreme weather events: Municipal organizational robustness. Sustainability 2021, 13, 7980. [Google Scholar] [CrossRef]
- Islip, D.; Wei, J.; Kwon, R. Managing construction risk with weather derivatives. Eng. Econ. 2020, 66, 150–184. [Google Scholar] [CrossRef]
- López-Morales, J.; Salazar-Núñez, H.; Zarrabal-Gutiérrez, C. The impact of qualitative methods on article citation: An international business research perspective. Scientometrics 2022, 127, 3225–3236. [Google Scholar] [CrossRef]
- Zavari, M.; Afshar, M.R. The role of site manager transformational leadership in the construction project success. Int. J. Build. Pathol. Adapt. 2023, 41, 1067–1085. [Google Scholar] [CrossRef]
- Zozulya, P.; Zozulya, A.; Mezina, T. Strategic plan formation of a construction organization for sustainable project management. Vestn. Univ. 2023, 48–56. [Google Scholar] [CrossRef]
- Groenewald, T. A phenomenological research design illustrated. Int. J. Qual. Methods 2004, 3, 42–55. [Google Scholar] [CrossRef]
- Kazaz, A.; Ulubeyli, S.; Er, B.; Acıkara, T. Construction Materials-based Methodology for Time-Cost-quality Trade-off Problems. Procedia Eng. 2016, 164, 35–41. [Google Scholar] [CrossRef]
- Badran, S.; Abdallah, A. Lean vs agile project management in construction: Impacts on project performance outcomes. Eng. Constr. Archit. Manag. 2024, 1–26. [Google Scholar] [CrossRef]
- Alshehhi, H.; Sidek, R.; Rozali, E. The Impact of Risk Management on the Performance of Construction Projects. Impact Risk Manag. Perform. Constr. Proj. 2024, 30, 5994–6003. [Google Scholar]
- Yang, F.; Akanbi, T.; Chong, O.W.; Zhang, J.; Debs, L.; Chen, Y.; Hubbard, B.J. Project-Based Introduction to Computing in Construction Management Curriculum: A Case Study. J. Civ. Eng. Educ. 2024, 150, 05023008. [Google Scholar] [CrossRef]
- Schuldt, S.; Nicholson, M.; Adams, Y.; Delorit, J. Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review. Sustainability 2021, 13, 2861. [Google Scholar] [CrossRef]
Variables | t | df | Significance (Two-Tailed) | Mean Difference | 95% Confidence Interval of the Difference | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Project Success | 46.139 | 242 | <0.001 | 3.75455 | 3.2968 | 3.6123 |
Cost | 32.477 | 242 | <0.001 | 3.20248 | 3.0082 | 3.3967 |
Quality | 27.967 | 242 | <0.001 | 2.85537 | 2.6543 | 3.0565 |
Time | 36.961 | 242 | <0.001 | 3.05785 | 2.8949 | 3.2208 |
Weather Conditions | 43.829 | 242 | <0.001 | 3.40248 | 3.5467 | 3.8582 |
Cases | Valid | 242 | 100.0 |
Excluded | 0 | 0 | |
Total | 242 | 100.0 |
Cronbach’s Alpha | No. of Items |
---|---|
0.519 | 5 |
Variables | Cost | Quality | Time | Weather Conditions | Project Success |
---|---|---|---|---|---|
Cost | 1 | ||||
Quality | −0.252 ** | 1 | |||
Time | 0.250 ** | 0.057 ** | 1 | ||
Weather Conditions | 0.325 ** | 0.260 ** | 0.488 ** | 1 | |
Project Success | 0.373 ** | −0.133 ** | 0.336 ** | 0.322 ** | 1 |
Sum of Squares | Df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Cost | Between Groups | 211.700 | 4 | 52.925 | 35.295 | <0.001 |
Within Groups | 355.379 | 238 | 1.499 | |||
Total | 567.079 | 242 | ||||
Quality | Between Groups | 96.683 | 4 | 24.171 | 11.205 | <0.001 |
Within Groups | 511.255 | 238 | 2.157 | |||
Total | 607.938 | 242 | ||||
Time | Between Groups | 139.959 | 4 | 34.990 | 31.989 | <0.001 |
Within Groups | 259.231 | 238 | 1.094 | |||
Total | 399.190 | 242 |
Model | Under Standardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | ||||
1 | (Constant) | 2.031 | 0.267 | 7.606 | <0.001 | 1.505 | 2.557 | |
Cost | 0.238 | 0.050 | 0.293 | 4.710 | <0.001 | 0.138 | 0.337 | |
Quality | 0.143 | 0.047 | 0.055 | 0.910 | <0.001 | 0.136 | 0.050 | |
Time | 0.257 | 0.058 | 0.265 | 4.406 | <0.001 | 0.142 | 0.372 |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin–Watson |
---|---|---|---|---|---|
1 | 0.452a | 0.204 | 0.194 | 1.11817 | 1.714 |
Prediction | Minimum | Maximum | Mean | Std. Deviation | N |
---|---|---|---|---|---|
Predicted Value | 2.4394 | 4.4603 | 3.4545 | 0.56315 | 242 |
Residual | −2.31854 | 1.87611 | 0.00000 | 1.11118 | 242 |
Std. Predicted Value | −1.803 | 1.786 | 0.000 | 1.000 | 242 |
Std. Residual | −2.074 | 1.678 | 0.000 | 0.994 | 242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Muhammad, A.; Nauman, U. The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery. Buildings 2025, 15, 474. https://doi.org/10.3390/buildings15030474
Dong R, Muhammad A, Nauman U. The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery. Buildings. 2025; 15(3):474. https://doi.org/10.3390/buildings15030474
Chicago/Turabian StyleDong, RunRun, Ali Muhammad, and Umer Nauman. 2025. "The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery" Buildings 15, no. 3: 474. https://doi.org/10.3390/buildings15030474
APA StyleDong, R., Muhammad, A., & Nauman, U. (2025). The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery. Buildings, 15(3), 474. https://doi.org/10.3390/buildings15030474