Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges
Abstract
:1. Introduction
2. Textiles and Fabrics with Traditional Buildings Materials
3. Textile Architectures and Innovative Solutions for Glass Facades
3.1. Glass Facades
3.2. Properties of Textiles and Fabrics for Glass Facades
4. Summary of Recent Research Efforts and Trends
4.1. Tensile Membrane Structures
- (1)
- strength values should be mainly taken from experimental tests;
- (2)
- tensile strength values should be determined according to EN ISO 1421: 2016 (Rubber or plastics coated fabrics–Determination of tensile strength and elongation at break [58]) and the characteristic value should be determined according to EN 1990-Annex D: 2002 (Eurocode 0–Basis of Design–Annex D: Design Assisted by Testing [59]);
- (3)
- tear strength values should be determined in accordance with EN 1875-3: 1997 (Rubber or plastics coated fabrics–Determination of tear strength–Part 3: Trapezoidal method [60]);
- (4)
- adhesion values should be calculated as specified in the EN ISO 2411: 2017 (Rubber or plastics coated fabrics–Determination of coating adhesion [61]);
- (5)
- in order to limit or avoid testing, finally, conservative strength values for conventional material products may be directly taken from the respective tables given by standards (when available).
4.2. Textiles for Shading Systems in Glass Facades
4.3. Textiles Embedded in Load-Bearing Glass Elements
4.4. Textiles forProtective Claddings and Blast Proof Curtains
4.5. Textiles for Acoustic and UV-Absorption Comfort and of Glass Facades
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fangueiro, R.; Soutinho, F. Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications; Woodhead Publishing: Sawston, CA, USA, 2011; Chapter 3; pp. 62–91. [Google Scholar]
- Monjo-Carrió, J.; Tejera, J. The use of textile materials for architectural membranes. In Fibrous and Composite Materials for Civil Engineering Applications; Woodhead Publishing: Sawston, CA, USA, 2011; Chapter 12; pp. 325–387. [Google Scholar]
- Milwich, M. Types and production of textiles used for building and construction. In Fibrous and Composite Materials for Civil Engineering Applications; Woodhead Publishing: Sawston, CA, USA, 2011; Chapter 2; pp. 13–48. [Google Scholar]
- Hsie, M.; Tu, C.; Song, P. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Rico, S.; Farshidpour, R.; Tehrani, F.M. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry. Adv. Civ. Eng. 2017, 2017, 8078346. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Chai, J. Damage performance and compressive behavior of early-age green concrete with recycled nylon fiber fabric under an axial load. Constr. Build. Mater. 2019, 209, 105–114. [Google Scholar] [CrossRef]
- Böttger, H.M.; Ostertag, C.P. Fabric Reinforcement for Improved Toughness of Adobe Block Wall Systems. Key Eng. Mater. 2014, 600, 156–165. [Google Scholar] [CrossRef]
- Maity, S.; Singha, K. Textiles in Earth-Quake Resistant Constructions. J. Text. Sci. Eng. 2012, 2, 17–25. [Google Scholar] [CrossRef]
- Gkournelos, D.C.; Bournas, D.A.; Triantafillou, T.C. Combined Seismic and Energy Upgrading of Existing Buildings Using Advanced Materials; Report EUR 29172 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-81824-0. [Google Scholar]
- Koprivec, L.; Zbasnik-Senegacnik, M.; Kusar, J. Use of technical textiles in building engineering. Gradevinar 2006, 58, 899–907. [Google Scholar]
- Heyse, P.; Buyle, G.; Walendy, B.; Beccarelli, P.; Loriga, G.; Zangani, D.; Tempesti, A. MULTITEXCO—High Performance Smart Multifunctional Technical Textiles for the Construction Sector. Procedia Eng. 2015, 114, 11–17. [Google Scholar] [CrossRef]
- Annis, P.A. Understanding and Improving the Durability of Textiles; Woodhead Publishing: Sawston, CA, USA, 2012; ISBN 978-0-85709-087-4. [Google Scholar]
- João, L.S.; Carvalho, R.; Fangueiro, R. A Study on the Durability Properties of Textile Membranes for Architectural Purposes. Procedia Eng. 2016, 155, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Bedon, C.; Zhang, X.; Santos, F.; Honfi, D.; Kozłowski, M.; Arrigoni, M.; Figuli, L.; Lange, D. Performance of structural glass facades under extreme loads—Design methods, existing research, current issues and trends. Constr. Build. Mater. 2018, 163, 921–937. [Google Scholar] [CrossRef]
- Haldimann, M.; Luible, A.; Overend, M. Structural Use of Glass; IABSE: Zurich, Switzerland, 2008; ISBN 978-3-85748-119-2. [Google Scholar]
- Feldmann, M.; Kasper, R.; Abeln, B.; Cruz, P.; Belis, J.; Beyer, J.; Colvin, J.; Ensslen, F.; Eliasova, M.; Galuppi, L.; et al. Guidance for European Structural design of glass components: Support to the implementation, harmonization and further development of the Eurocodes, Report EUR 26439. In Joint Research Centre–Institute for the Protection and Security of the Citizen; Pinto, D., Denton, F., Eds.; European Union: Luxembourg, 2014. [Google Scholar]
- Flocker, F.; Dharani, L. Stresses in laminated glass subject to low velocity impact. Eng. Struct. 1997, 19, 851–856. [Google Scholar] [CrossRef]
- Mohagheghian, I.; Wang, Y.; Zhou, J.; Yu, L.; Guo, X.; Yan, Y.; Charalambides, M.; Dear, J. Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. Int. J. Solids Struct. 2017, 109, 46–62. [Google Scholar] [CrossRef]
- Bermbach, T.; Teich, M.; Gebbeken, N. Experimental investigation of energy dissipation mechanisms in laminated safety glass for combined blast-temperature loading scenarios. Glass Struct. Eng. 2016, 1, 331–350. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Wang, Y.; Chen, H.; Jiang, L.; Duan, Q.; Li, M.; Wang, Q.; Sun, J. Investigation of the thermal response and breakage mechanism of point-supported glass facade under wind load. Constr. Build. Mater. 2018, 186, 635–643. [Google Scholar] [CrossRef]
- Alvarez, G.; Flores, J.J.; Estrada, C.A. The thermal response of laminated glass with solar control coating. J. Phys. D Appl. Phys. 1998, 31, 3057–3065. [Google Scholar] [CrossRef]
- Bucak, Ö.; Albrecht, G.; Sackmann, V.; Schuler, C.; Gräf, H. Time and Temperature Dependent Mechanical Behaviour and Durability of Laminated Safety Glass. Struct. Eng. Int. 2004, 14, 80–83. [Google Scholar] [CrossRef]
- Bedon, C.; Kozlowski, M.; Honfi, D. Thermal assessment of glass façade panels under radiant heating—Experimental and preliminary numerical studies. J. Façade Des. Eng. 2018, 6, 49–64. [Google Scholar]
- Takeuchi, T.; Yasuda, K.; Iwata, M. Studies on Integrated Building Facade Engineering with High-Performance Structural Elements. IABSE Symp. Rep. 2006, 92, 33–40. [Google Scholar] [CrossRef]
- Tensaform Booklet. Architectural Effects and Benefits of Textile Façade Coverings. Available online: https://www.tensaform.com (accessed on 27 June 2019).
- Fabric Architecture Booklet. Available online: https://www.fabricarchitecture.com (accessed on 27 June 2019).
- Nya Nordiska Innovation GMBH. Textiles Glas. 2012. Available online: https://www.architonic.com/en/story/nya-nordiska-tex-glass-textiles-glas/7000710 (accessed on 27 June 2019).
- CSI. Breaking the glass roof: Building with ETFE architecture. The Construction Specifier. 2016. Available online: https://www.constructionspecifier.com/breaking-the-glass-roof-building-with-etfe-architecture/2/ (accessed on 27 June 2019).
- COST CA17107. Memorandum of Understanding for the Implementation of the COST Action “European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles”—CONTEXT. 2018. Available online: https://www.context-cost.eu (accessed on 27 June 2019).
- Raoof, S.M.; Koutas, L.N.; Bournas, D.A. Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Constr. Build. Mater. 2017, 151, 279–291. [Google Scholar] [CrossRef]
- Tetta, Z.C.; Koutas, L.N.; Bournas, D.A. Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Compos. Part B Eng. 2015, 77, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Shams, A.; Horstmann, M.; Hegger, J. Experimental investigations on Textile-Reinforced Concrete (TRC) sandwich sections. Compos. Struct. 2014, 118, 643–653. [Google Scholar] [CrossRef]
- Raupach, M.; Cruz, C.M. Textile-reinforced concrete: Selected case studies. In Textile Fibre Composites in Civil Engineering; Woodhead Publishing: Sawston, CA, USA, 2016; Chapter 12; pp. 275–299. [Google Scholar]
- Kimm, M.; Gerstein, N.; Schmitz, P.; Simons, M.; Gries, T. On the separation and recycling behaviour of textile reinforced concrete: An experimental study. Mater. Struct. 2018, 51, 122. [Google Scholar] [CrossRef]
- Ehlig, D.; Jesse, F.; Curbach, M. High temperature tests on textile reinforce concrete (TRC) strain specimens. In ICTRC, Proceedings of the International RILEM Conference on Material Science, Aachen, Germany, 2010; Brameshuber, W., Ed.; RILEM Publications S.A.R.L.: Paris, France, 2010; pp. 141–151. ISBN 978-2-35158-106-3. [Google Scholar]
- Kapsalis, P.; El Kadi, M.; De Vervloet, J.; Munck, M.; Wastiels, J.; Triantafillou, T.; Tysmans, T. Thermomechanical behavior of textile reinforced cementitious composites subjected to fire. Appl. Sci. 2009, 9, 747. [Google Scholar] [CrossRef]
- Colombo, I.G.; Colombo, M.; Di Prisco, M.; Pouyaei, F. Analytical and numerical prediction of the bending behaviour of textile reinforced concrete sandwich beams. J. Build. Eng. 2018, 17, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Krüger, M.; Reinhardt, H.-W.; Ožbolt, J. Bond Characteristics of Carbon, Alkali Resistant Glass, and Aramid Textiles in Mortar. J. Mater. Civ. Eng. 2004, 16, 356–364. [Google Scholar] [CrossRef]
- Williams Portal, N. Usability of Textile Reinforced Concrete: Structural Performance, Durability and Sustainability. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Swede, 2015. Available online: https://research.chalmers.se/en/publication/?id=220895 (accessed on 27 June 2019).
- Holčapek, O.; Vogel, F.; Reiterman, P. Using of Textile Reinforced Concrete Wrapping for Strengthening of Masonry Columns with Modified Cross-section Shape. Procedia Eng. 2017, 195, 62–66. [Google Scholar] [CrossRef]
- Heller, P.; Birk, T. Tailor made textile reinforcements in wood connections. In Proceedings of the 8th WCTE, Lahti, Finland, 14–17 June 2004; Volume 1, pp. 365–370. [Google Scholar]
- Haller, P. Concepts for textile reinforcements for timber structures. Mater. Struct. 2007, 40, 107–118. [Google Scholar] [CrossRef]
- Kouris, L.A.S.; Triantafillou, T.C. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 188, 1221–1233. [Google Scholar] [CrossRef]
- Lignola, G.P.; Caggegi, C.; Ceroni, F.; De Santis, S.; Krajewski, P.; Lourenço, P.B.; Morganti, M.; Papanicolaou, C.; Pellegrino, C.; Prota, A.; et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part B Eng. 2017, 128, 1–18. [Google Scholar] [CrossRef]
- Carozzi, F.G.; Bellini, A.; D’Antino, T.; De Felice, G.; Focacci, F.; Hojdys, Ł.; Laghi, L.; Lanoye, E.; Micelli, F.; Panizza, M.; et al. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos. Part B Eng. 2017, 128, 100–119. [Google Scholar] [CrossRef]
- De Santis, S.; Carozzi, F.G.; De Felice, G.; Poggi, C. Test methods for Textile Reinforced Mortar systems. Compos. Part B Eng. 2017, 127, 121–132. [Google Scholar] [CrossRef]
- Gattesco, N.; Amadio, C.; Bedon, C. Experimental and numerical study on the shear behaviour of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord-reinforced repointing. Eng. Struct. 2015, 90, 143–157. [Google Scholar] [CrossRef]
- Kasal, B.; Heiduschke, A.; Kadla, J.; Haller, P. Laminated timber frames with composite fibre-reinforced connections. Prog. Struct. Eng. Mater. 2004, 6, 84–93. [Google Scholar] [CrossRef]
- Haller, P.; Chen, C.-J. Textile-Reinforced Joints in Timber Construction. Struct. Eng. Int. 1999, 9, 259–261. [Google Scholar] [CrossRef]
- Pavković, K.; Rajčić, V.; Haiman, M. Large diameter fastener in locally reinforced and non-reinforced timber loaded perpendicular to grain. Eng. Struct. 2014, 74, 256–265. [Google Scholar] [CrossRef]
- Ascione, L.; Barbieri, A.; Benedetti, A.; Berardi, V.P.; Bonamini, G.; Borri, A.; Cersosimo, G.; Corradi, M.; Credali, L.; Faggiano, B.; et al. Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures—Timber Structures; CNR-DT 210/2005; Italian Research Council (CNR): Italy, 2005; Available online: https://www.cnr.it/en/node/2637 (accessed on 27 June 2019).
- Elnokaly, A.M.; Chilton, J.C.; Wilson, R. Environmental performance of spaces enclosed or semi-enclosed by fabric membrane structures. In Textile Composites and Inflatable Structures; Onate, E., Kroplin, B.-H., Eds.; Springer: Heidelberg, Germany, 2003; p. 8521. [Google Scholar]
- BISFA. Available online: https://www.bisfa.org (accessed on 27 June 2019).
- BISFA. Terminology of man-made fibres. In The International Bureau for the Standardization of Man-Made Fibres; BISFA: Brussels, Belgium, 2009. [Google Scholar]
- Stranghöner, N.; Uhlemann, J.; Bilginoglu, F.; Bltzinger, K.U.; Bögner-Balz, H.; Corne, E.; Gibson, N.; Gosling, P.; Houtman, R.; Llorens, J.; et al. Prospect for European Guidance for the Structural Design of Tensile Membrane Structures; JRC Report EUR 27716; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- TensiNet. Available online: https://www.tensinet.com (accessed on 27 June 2019).
- Uhlemann, J.; Stranghöner, N. Einfluss fiktiver elastischer Konstanten von textilen Gewebemembranen in der Tragwerksanalyse von Membranstrukturen. Stahlbau 2013, 82, 643–651. [Google Scholar] [CrossRef]
- EN ISO 1421: 2016. Rubber- or Plastics-Coated Fabrics—Determination of Tensile Strength and Elongation at Break; European Committee for Standardization (CEN): Brussels, Belgium, 2016. [Google Scholar]
- EN 1990. Eurocode 0—Basis of Design—Annex D: Design Assisted by Testing; European Committee for Standardization (CEN): Brussels, Belgium, 2002. [Google Scholar]
- EN 1875-3: 1997. Rubber- or Plastics-Coated Fabrics—Determination of Tear Strength—Part 3: Trapezoidal Method; European Committee for Standardization (CEN): Brussels, Belgium, 1997. [Google Scholar]
- EN ISO 2411: 2017. Rubber- or Plastics-Coated Fabrics—Determination of Coating Adhesion; European Committee for Standardization (CEN): Brussels, Belgium, 2017. [Google Scholar]
- Hu, H. Auxetic Textile Materials—A review. J. Text. Eng. Fash. Technol. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H. Auxetic materials and their potential applications in textiles. Text. Res. J. 2014, 84, 1600–1611. [Google Scholar] [CrossRef]
- Klasztorny, M.; Szurgott, P.; Niezgoda, T.; Miedzinska, D.; Kiczko, A. Preliminary comparative static identification research on selected commercial auxetic fabrics. Compos. Theory Pract. 2017, 17, 59–66. [Google Scholar]
- Szurgott, P.; Klasztorny, M.; Niezgoda, T.; Miedzinska, D.; Gieleta, R. Dynamic Tests for Energy Absorption by Selected Auxetic Fabrics. J. Eng. Fibers Fabr. 2017, 12, 7–14. [Google Scholar]
- Ng, W.S.; Hu, H. Tensile and Deformation Behavior of Auxetic Plied Yarns. Phys. Status Solidi 2017, 254, 1600790. [Google Scholar] [CrossRef]
- Cerovic, M. Textile architecture: Exploring the potential of fiber assemblies and their applications in architecture. Serb. Archit. J. 2012, 4, 280–297. [Google Scholar]
- Singh, A.V.; Rahman, A.; Sudhir Kumar, N.V.G.; Aditi, A.S.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. 2011. [Google Scholar] [CrossRef]
- Barozzi, M.; Lienhard, J.; Zanelli, A.; Monticelli, C. The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Eng. 2016, 155, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Lüling, C.; Richter, I. Architecture Fully Fashioned—Exploration of foamed spacer fabrics for textile based building skins. J. Façade Des. Eng. 2015, 5, 77–92. [Google Scholar]
- SEFAR® Architecture. Fabric & Glass. Available online: http://www.sefararchitecture.com (accessed on 27 June 2019).
- Serode, J.; Schmelzeisen, D.; Engelhardt, P.; Baumgarten, S.; Lohmann, T.; Gries, T. 4D adaptive textile building skin. In Proceedings of the Powerskin Conference, Munich, Germany, 17 January 2019; pp. 95–109, ISBN 978-9463661256. [Google Scholar]
- Bedon, C.; Honfi, D.; Machalická, K.V.; Eliášová, M.; Vokáč, M.; Kozłowski, M.; Wüest, T.; Santos, F.; Portal, N.W. Structural characterisation of adaptive facades in Europe—Part I: Insight on classification rules, performance metrics and design methods. J. Build. Eng. 2019, 25, 100721. [Google Scholar] [CrossRef]
- Bedon, C.; Honfi, D.; Machalicka, K.V.; Eliasova, M.; Vokac, M.; Kozlowski, M.; Wuest, T.; Santos, F.; Portal, N.W. Structural characterisation of adaptive facades in Europe—Part 2: Validity of conventional experimental testing methods and key issues. J. Build. Eng. 2019. [Google Scholar] [CrossRef]
- Lueling, C.; Beuscher, J. 3dTEX—Exploration of movement mechanisms for 3D-Textiles used as solar shading devices. In Proceedings of the Powerskin Conference, Munich, Germany, 17 January 2019; pp. 159–172, ISBN 978-9463661256. [Google Scholar]
- Bedon, C.; Santos, F. Toward a novel SMA-reinforced laminated glass panel. In Advanced Engineering Materials and Modeling; Tiwari, A., Murugan, N.A., Ahuja, R., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 87–120. [Google Scholar]
- Bedon, C.; Dos Santos, F.A. FE Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panels. Adv. Eng. Mater. 2016, 18, 1478–1493. [Google Scholar] [CrossRef]
- Feirabend, S. Reinforced laminated glass. In Challenging Glass: Conference on Architectural and Structural Applications of Glass, Faculty of Architecture, Delft University of Technology, May 2008; IOS Press: Amsterdam, The Netherlands, 2008; pp. 469–478. ISBN 978-1-58603-866-3. [Google Scholar]
- Ølgaard, A.B.; Nielsen, J.H.; Olesen, J.F. Design of Mechanically Reinforced Glass Beams: Modelling and Experiments. Struct. Eng. Int. 2009, 19, 130–136. [Google Scholar] [CrossRef]
- Louter, C.; Belis, J.; Veer, F.; Lebet, J.-P. Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size. Eng. Struct. 2012, 36, 292–301. [Google Scholar] [CrossRef]
- Carvalho, P.; Cruz, P.J.S.; Veer, F. Perforated steel plate to laminated glass adhesive properties. In Proceedings of the 12th International Conference on Architectural and Automotive Glass (Glass Performance Days), Tampere, Finland, 17–20 June 2011; pp. 281–285. [Google Scholar]
- Bedon, C.; Louter, C. Structural glass beams with embedded GFRP, CFRP or steel reinforcement rods: Comparative experimental, analytical and numerical investigations. J. Build. Eng. 2019, 22, 227–241. [Google Scholar] [CrossRef]
- Corradi, M.; Speranzini, E. Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers. Materials 2019, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Achintha, M.; Zirbo, T. Developments in GFRP reinforced bolted joints in glass. In Proceedings of the Challenging Glass 6 Conference on Architectural and Structural Applications of Glass, Delft, The Netherlands, 17–18 May 2018; p. 8, ISBN 978-94-6366044-0. [Google Scholar]
- Pichandi, S.; Rana, S.; Oliveira, D.; Fangueiro, R. Fibrous and composite materials for blast protection of structural elements—A state-of-the-art review. J. Reinf. Plast. Compos. 2013, 32, 1477–1500. [Google Scholar] [CrossRef]
- Burmistrov, I.; Vikulova, M.; Panova, L.; Yudintseva, T. Development of acrylate-based polymeric layers for fireproof laminated glass. AIP Conf. Proc. 2017. [Google Scholar] [CrossRef]
- Heffernan, P.J.; Moyle, C.C.; Wight, R.G.; Scherbatiuk, K.D. The effectiveness of textile barriers to attenuate blast wave ingress into buildings. In Proceedings of the CSCE 1st Speciality Conference on Disaster Mitigation, Calgary, AB, Canada, 2006; p. 8. [Google Scholar]
- Yang, C.; Tran, P.; Ngo, T.; Mendis, P.; Humphries, W. Effect of Textile Architecture on Energy Absorption of Woven Fabrics Subjected to Ballistic Impact. Appl. Mech. Mater. 2014, 553, 757–762. [Google Scholar] [CrossRef]
- Tran, P.; Ngo, T.; Yang, E.C.; Mendis, P.; Humphries, W. Effects of architecture on ballistic resistance of textile fabrics: Numerical study. Int. J. Damage Mech. 2014, 23, 359–376. [Google Scholar] [CrossRef]
- Yang, E.C.; Ruan, D.; Tran, P.; Ngo, T.D. Impact Resistance and Failure Analysis of Plain Woven Curtains. Int. J. Prot. Struct. 2015, 6, 113–136. [Google Scholar] [CrossRef]
- Reyes, G.; Sharma, U. Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact. Compos. Struct. 2010, 92, 523–531. [Google Scholar] [CrossRef]
- Kerber, A.; Gargano, A.; Pingkarawat, K.; Mouritz, A. Explosive blast damage resistance of three-dimensional textile composites. Compos. Part A: Appl. Sci. Manuf. 2017, 100, 170–182. [Google Scholar] [CrossRef]
- Stopforth, R.; Adali, S. Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles. Def. Technol. 2019, 15, 186–192. [Google Scholar] [CrossRef]
- Liu, D.; Christe, D.; Shakibajahromi, B.; Knittel, C.; Castaneda, N.; Breen, D.; Dion, G.; Kontsos, A. On the role of material architecture in the mechanical behavior of knitted textiles. Int. J. Solids Struct. 2017, 109, 101–111. [Google Scholar] [CrossRef]
- Novotny, M.; Poot, B. Influence of temperature on laminated glass performances assembled with various interlayers. In Challenging Glass 5: Conference on Architectural and Structural Applications of Glass; Belis, J.L.I.F., Bos, F.P., Louter, C., Eds.; Ghent University: Gent, Belgium, 2016; p. 14. ISBN 978-90-825-2680-6. [Google Scholar]
- Maraqa, M.A.; Hawas, Y.S.; Alam, M.D.; El Szafir, J.; Aljunadi, K.N. Laboratory testing of different window design cases for noise transmission. IOP Conf. Ser. Mater. Sci. Eng. 2018, 383, 012027. [Google Scholar] [Green Version]
- Vedrtnam, A.; Motilal Nehru National Institute of Technology Allahabad; Pawar, S.J. Invertis University Experimental and simulation studies on acoustical characterisation of laminated safety glass. Glas. Technol. Eur. J. Glas. Sci. Technol. Part A 2018, 59, 58–70. [Google Scholar] [CrossRef]
- Duarte, I.; Rotter, A.; Malvestiti, A.; Silva, M. The role of glass as a barrier against the transmission of ultraviolet radiation: An experimental study. Photodermatol. Photoimmunol. Photomed. 2009, 25, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Serafinavicious, T.; Lebet, J.P.; Louter, C.; Kuranovas, A.; Lenkimas, T. The effects of environmental impacts on durability of laminated glass plates with interlayers (SG, EVA, PVB). In Challenging Glass 4 & COST Action TU0905 Final Conference; CRC Press: Boca Raton, FL, USA, 2014; pp. 455–462. ISBN 978-1-138-00164-0. [Google Scholar]
- Ranocchiai, G.; Sciurpi, F.; Fagone, M. Laminated glass beams subjected to artificial solar radiation. In Challenging Glass 6, Proceedings of the Conference on Architectural and Structural Applications of Glass, Delft, The Netherlands, 17–18 May 2018; Louter, P.C., Bos, F.P., Belis, J.L.I.F., Veer, F.A., Nijsse, R., Eds.; TU Delft Open: Delft, The Netherlands, 2018; ISBN 978-94-6366-044-0. [Google Scholar] [CrossRef]
- Grethe, T.; Schwarz-Pfeiffer, A.; Grassmann, C.; Engelhardt, E.; Feld, S.; Guo, F.; De Vrieze, M.; Mahltig, B. Polyvinylbutyral (PVB) coatings for optical modification of textile substrates. In Polymer Research: Communicating Current Advances, Contributions, Applications and Educational Aspects; Formatex Research Center: Badajoz, Spain, 2018; Chapter 5. [Google Scholar]
- Lee, J. Noise reduction and air behaviors in ventilated single-glazed façade with glass fiber-based shading louvers and compact silencers. In Proceedings of the INTER-NOISE 2018: 47th International Congress and Exposition on Noise Control Engineering; Impact of Noise and Control Engineering, Chicago, IL, USA, 26–29 August 2018; p. 142830. [Google Scholar]
- Urbán, D.; Zrneková, J.; Zaťko, P.; Maywald, C.; Rychtáriková, M. Acoustic Comfort in Atria Covered by Novel Structural Skins. Procedia Eng. 2016, 155, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Urban, D.; Chmelík, V.; Tomašovič, P.; Rychtáriková, M. Analysis of the Acoustic Conditions in a Tent Structures. Energy Procedia 2015, 78, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Pieren, R.; Schaffer, B.; Schoenwald, S.; Eggenschwiler, K. Sound absorption of textile curtains—Theoretical models and validations by experiments and simulations. Text. Res. J. 2018, 88, 36–48. [Google Scholar] [CrossRef]
PTFE-Glass Fibre Open Mesh | PTFE-Glass Fibre Open Mesh | PTFE-Glass Fibre Open Mesh | PVC/PES Open Mesh | |
---|---|---|---|---|
Tensile strength [MPa] | 5000/4500 | 1500/2500 | 2400/1800 | 3300/2200 |
Width [μm] | 300 | 300 | 300 | 300 |
Open area [%] | > 30 | 40 | 57 | > 30 |
Translucency [%] | 34 | 40 | 40 | 42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedon, C.; Rajčić, V. Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges. Buildings 2019, 9, 156. https://doi.org/10.3390/buildings9070156
Bedon C, Rajčić V. Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges. Buildings. 2019; 9(7):156. https://doi.org/10.3390/buildings9070156
Chicago/Turabian StyleBedon, Chiara, and Vlatka Rajčić. 2019. "Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges" Buildings 9, no. 7: 156. https://doi.org/10.3390/buildings9070156
APA StyleBedon, C., & Rajčić, V. (2019). Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges. Buildings, 9(7), 156. https://doi.org/10.3390/buildings9070156