Transferrins Reduce Replication of Chlamydia suis in McCoy Cells
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chlamydia suis, Cell Culture and Transferrins
4.2. Transferrin Cytotoxicity Assay
4.3. Effect of Transferrins on C. suis Infectivity and Replication in McCoy Cells
4.4. Effect of Ovotransferrin on C. suis Spiked Pig Semen
4.5. High Content Microscopy and Image Analysis
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aumayer, H.; Leonard, C.A.; Pesch, T.; Prähauser, B.; Wunderlin, S.; Guscetti, F.; Borel, N. Chlamydia suis Is Associated with Intestinal NF-ΚB Activation in Experimentally Infected Gnotobiotic Piglets. Pathog. Dis. 2020, 78, ftaa040. [Google Scholar] [CrossRef]
- Li, M.; Jelocnik, M.; Yang, F.; Gong, J.; Kaltenboeck, B.; Polkinghorne, A.; Feng, Z.; Pannekoek, Y.; Borel, N.; Song, C.; et al. Asymptomatic Infections with Highly Polymorphic Chlamydia Suis Are Ubiquitous in Pigs. BMC Vet. Res. 2017, 13, 370. [Google Scholar] [CrossRef] [Green Version]
- Rypuła, K.; Kumala, A.; Płoneczka-Janeczko, K.; Lis, P.; Karuga-Kuźniewska, E.; Dudek, K.; Całkosiński, I.; Kuźnik, P.; Chorbiński, P. Occurrence of Reproductive Disorders in Pig Herds with and without Chlamydia Suis Infection—Statistical Analysis of Breeding Parameters. Anim. Sci. J. 2018, 89, 817–824. [Google Scholar] [CrossRef]
- Schautteet, K.; Vanrompay, D. Chlamydiaceae Infections in Pig. Vet. Res. 2011, 42, 29. [Google Scholar] [CrossRef] [Green Version]
- Chahota, R.; Ogawa, H.; Ohya, K.; Yamaguchi, T.; Everett, K.D.E.; Fukushi, H. Involvement of Multiple Chlamydia Suis Genotypes in Porcine Conjunctivitis. Transbound. Emerg. Dis. 2018, 65, 272–277. [Google Scholar] [CrossRef]
- Hoque, M.M.; Adekanmbi, F.; Barua, S.; Rahman, K.S.; Aida, V.; Anderson, B.; Poudel, A.; Kalalah, A.; Bolds, S.; Madere, S.; et al. Peptide ELISA and FRET-QPCR Identified a Significantly Higher Prevalence of Chlamydia Suis in Domestic Pigs than in Feral Swine from the State of Alabama, USA. Pathogens 2021, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Kauffold, J.; Melzer, F.; Henning, K.; Schulze, K.; Leiding, C.; Sachse, K. Prevalence of Chlamydiae in Boars and Semen Used for Artificial Insemination. Theriogenology 2006, 65, 1750–1758. [Google Scholar] [CrossRef]
- Schautteet, K.; de Clercq, E.; Miry, C.; van Groenweghe, F.; Delava, P.; Kalmar, I.; Vanrompay, D. Tetracycline-Resistant Chlamydia Suis in Cases of Reproductive Failure on Belgian, Cypriote and Israeli Pig Production Farms. J. Med. Microbiol. 2013, 62, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Hamonic, G.; Pasternak, J.A.; Käser, T.; Meurens, F.; Wilson, H.L. Extended Semen for Artificial Insemination in Swine as a Potential Transmission Mechanism for Infectious Chlamydia Suis. Theriogenology 2016, 86, 949–956. [Google Scholar] [CrossRef]
- Andersen, A.A.; Rogers, D.G. Resistance to Tetracycline and Sulfadiazine in Swine C. Trachomatis Isolates. In Chlamydial Infections, Proceedings of the Ninth International Symposium on Human Chlamydial Infection, Napa, CA, USA, 21–26 June 1998; Stephens, R.S., Ed.; International Chlamydia Symposium: San Francisco, CA, USA, 1998; pp. 313–316. [Google Scholar]
- Di Francesco, A.; Donati, M.; Rossi, M.; Pignanelli, S.; Shurdhi, A.; Baldelli, R.; Cevenini, R. Tetracycline-Resistant Chlamydia Suis Isolates in Italy. Vet. Rec. 2008, 163, 251–252. [Google Scholar] [CrossRef]
- Borel, N.; Regenscheit, N.; Di Francesco, A.; Donati, M.; Markov, J.; Masserey, Y.; Pospischil, A. Selection for Tetracycline-Resistant Chlamydia Suis in Treated Pigs. Vet. Microbiol. 2012, 156, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Donati, M.; Balboni, A.; Laroucau, K.; Aaziz, R.; Vorimore, F.; Borel, N.; Morandi, F.; Vecchio Nepita, E.; Di Francesco, A. Tetracycline Susceptibility in Chlamydia Suis Pig Isolates. PLoS ONE 2016, 11, e0149914. [Google Scholar] [CrossRef] [Green Version]
- Wanninger, S.; Donati, M.; Di Francesco, A.; Hässig, M.; Hoffmann, K.; Seth-Smith, H.M.B.; Marti, H.; Borel, N. Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PLoS ONE 2016, 11, e0166917. [Google Scholar] [CrossRef] [Green Version]
- Marti, H.; Kim, H.; Joseph, S.J.; Dojiri, S.; Read, T.D.; Dean, D. Tet(C) Gene Transfer between Chlamydia Suis Strains Occurs by Homologous Recombination after Co-Infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front. Microbiol. 2017, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Seth-Smith, H.M.B.; Wanninger, S.; Bachmann, N.; Marti, H.; Qi, W.; Donati, M.; di Francesco, A.; Polkinghorne, A.; Borel, N. The Chlamydia Suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes. Genome Biol. Evol. 2017, 9, 750–760. [Google Scholar] [CrossRef]
- Unterweger, C.; Schwarz, L.; Jelocnik, M.; Borel, N.; Brunthaler, R.; Inic-Kanada, A.; Marti, H. Isolation of Tetracycline-Resistant Chlamydia Suis from a Pig Herd Affected by Reproductive Disorders and Conjunctivitis. Antibiotics 2020, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. ESVAC: Vision, Strategy and Objectives 2016–2020 European Surveillance of Veterinary Antimicrobial Consumption; European Medicines Agency: Amsterdam, The Netherlands, 2016.
- Legrand, D. Overview of Lactoferrin as a Natural Immune Modulator. J. Pediatr. 2016, 173S, S10–S15. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Dierick, M.; Vanrompay, D.; Devriendt, B.; Cox, E. Lactoferrin, a Versatile Natural Antimicrobial Glycoprotein That Modulates the Host’s Innate Immunity. Biochem. Cell Biol. 2021, 99, 61–65. [Google Scholar] [CrossRef]
- Kieckens, E.; Rybarczyk, J.; Cox, E.; Vanrompay, D. Antibacterial and Immunomodulatory Activities of Bovine Lactoferrin against Escherichia Coli O157:H7 Infections in Cattle. BioMetals 2018, 31, 321–330. [Google Scholar] [CrossRef]
- Latorre, D.; Puddu, P.; Valenti, P.; Gessani, S. Reciprocal Interactions between Lactoferrin and Bacterial Endotoxins and Their Role in the Regulation of the Immune Response. Toxins 2010, 2, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Rybarczyk, J.; Kieckens, E.; Vanrompay, D.; Cox, E. In Vitro and in Vivo Studies on the Antimicrobial Effect of Lactoferrin against Escherichia Coli O157:H7. Vet. Microbiol. 2017, 202, 23–28. [Google Scholar] [CrossRef]
- Ellison, R.T.; Giehl, T.J.; LaForce, F.M. Damage of the Outer Membrane of Enteric Gram-Negative Bacteria by Lactoferrin and Transferrin. Infect. Immun. 1988, 56, 2774–2781. [Google Scholar] [CrossRef] [Green Version]
- Ellison, R.T.; LaForce, F.M.; Giehl, T.J.; Boose, D.S.; Dunn, B.E. Lactoferrin and Transferrin Damage of the Gram-Negative Outer Membrane Is Modulated by Ca2+ and Mg2+. J. Gen. Microbiol. 1990, 136, 1437–1446. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, K.; Jürgens, G.; Müller, M.; Fukuoka, S.; Koch, M.H.J. Biophysical Characterization of Lipopolysaccharide and Lipid A Inactivation by Lactoferrin. Biol. Chem. 2001, 382, 1215–1225. [Google Scholar] [CrossRef]
- Rossi, P.; Giansanti, F.; Boffi, A.; Ajello, M.; Valenti, P.; Chiancone, E.; Antonini, G. Ca2+ Binding to Bovine Lactoferrin Enhances Protein Stability and Influences the Release of Bacterial Lipopolysaccharide. Biochem. Cell Biol. 2002, 80, 41–48. [Google Scholar] [CrossRef]
- Aguilera, O.; Quiros, L.M.; Fierro, J.F. Transferrins Selectively Cause Ion Efflux through Bacterial and Artificial Membranes. FEBS Lett. 2003, 548, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, T.J.; Noguera-Obenza, M.; Ebel, F.; Guzman, C.A.; Gomez, H.F.; Cleary, T.G. Lactoferrin Impairs Type III Secretory System Function in Enteropathogenic Escherichia Coli. Infect. Immun. 2003, 71, 5149–5155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atef Yekta, M.; Verdonck, F.; Van Den Broeck, W.; Goddeeris, B.M.; Cox, E.; Vanrompay, D. Lactoferrin Inhibits E. coli O157:H7 Growth and Attachment to Intestinal Epithelial Cells. Vet. Med. 2010, 55, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Kieckens, E.; Rybarczyk, J.; Barth, S.A.; Menge, C.; Cox, E.; Vanrompay, D. Effect of Lactoferrin on Release and Bioactivity of Shiga Toxins from Different Escherichia coli O157:H7 Strains. Vet. Microbiol. 2017, 202, 29–37. [Google Scholar] [CrossRef]
- Dierick, M.; Van der Weken, H.; Rybarczyk, J.; Vanrompay, D.; Devriendt, B.; Cox, E. Porcine and Bovine Forms of Lactoferrin Inhibit Growth of Porcine Enterotoxigenic Escherichia coli and Degrade Its Virulence Factors. Appl. Environ. Microbiol. 2020, 86, e00524-e20. [Google Scholar] [CrossRef]
- Giansanti, F.; Leboffe, L.; Pitari, G.; Ippoliti, R.; Antonini, G. Physiological Roles of Ovotransferrin. Biochim. Biophys. Acta 2012, 1820, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Legros, J.; Jan, S.; Bonnassie, S.; Gautier, M.; Croguennec, T.; Pezennec, S.; Cochet, M.F.; Nau, F.; Andrews, S.C.; Baron, F. The Role of Ovotransferrin in Egg-White Antimicrobial Activity: A Review. Foods 2021, 10, 823. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.R.; Iwamori, E.; Sugimoto, Y.; Aoki, T. Identification of a Distinct Antibacterial Domain within the N-Lobe of Ovotransferrin. Biochim. Biophys. Acta 1998, 1401, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.R.; Sugimoto, Y.; Aoki, T. Ovotransferrin Antimicrobial Peptide (OTAP-92) Kills Bacteria through a Membrane Damage Mechanism. Biochim. Biophys. Acta Gen. Subj. 2000, 1523, 196–205. [Google Scholar] [CrossRef]
- Beeckman, D.S.A.; Van Droogenbroeck, C.M.A.D.; De Cock, B.J.A.; Van Oostveldt, P.; Vanrompay, D. Effect of Ovotransferrin and Lactoferrins on Chlamydophila Psittaci Adhesion and Invasion in HD11 Chicken Macrophages. Vet. Res. 2007, 38, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Van Droogenbroeck, C.M.A.D.; Beeckman, D.S.A.; Harkinezhad, T.; Cox, E.; Vanrompay, D. Evaluation of the Prophylactic Use of Ovotransferrin against Chlamydiosis in SPF Turkeys. Vet. Microbiol. 2008, 132, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Van Droogenbroeck, C.M.A.D.; Dossche, L.; Wauman, T.; Van Lent, S.; Phan, T.T.T.; Beeckman, D.S.A.; Vanrompay, D. Use of Ovotransferrin as an Antimicrobial in Turkeys Naturally Infected with Chlamydia Psittaci, Avian Metapneumovirus and Ornithobacterium Rhinotracheale. Vet. Microbiol. 2011, 153, 257–263. [Google Scholar] [CrossRef]
- Van Droogenbroeck, C.M.A.D.; Vanrompay, D. Use of Ovotransferrin on a Turkey Farm to Reduce Respiratory Disease. Vet. Rec. 2013, 172, 71. [Google Scholar] [CrossRef]
- González-Chávez, S.A.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin: Structure, Function and Applications. Int. J. Antimicrob. Agents 2009, 33, 301.e1–301.e8. [Google Scholar] [CrossRef]
- Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Rosa, L.; Cutone, A.; Frioni, A.; Berlutti, F.; Paesano, R.; Valenti, P. Effect of Bovine Lactoferrin on Chlamydia Trachomatis Infection and Inflammation. Biochem. Cell Biol. 2017, 95, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.K.; Nielsen, M.K.; Casey, D.S. Responses in Ovulation Rate, Embryonal Survival, and Litter Traits in Swine to 14 Generations of Selection to Increase Litter Size. Anim. Sci. J. 1999, 77, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Rooke, J.A.; Bland, I.M. The Acquisition of Passive Immunity in the New-Born Piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- Rybarczyk, J.; Khalenkow, D.; Kieckens, E.; Skirtach, A.G.; Cox, E.; Vanrompay, D. Lactoferrin Translocates to the Nucleus of Bovine Rectal Epithelial Cells in the Presence of Escherichia coli O157:H7. Vet. Res. 2019, 50, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Brito, C.R.C.; Varela Junior, A.S.; Gheller, S.M.M.; Acosta, I.B.; Anciuti, A.N.; Gatti, N.L.S.; Silva, E.A.; Knabah, N.W.; Corcini, C.D. High-Speed Centrifugation of Extender of Freeze-Thaw Boar Semen. Reprod. Domest. Anim. 2021, 56, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.Y.; Mendoncam, A.F.; Ismail, H.; Ahn, D.U. Ethylenediaminetetraacetate and Lysozyme Improves Antimicrobial Activities of Ovotransferrin against Escherichia Coli O157:H7. Poult. Sci. 2009, 88, 406–414. [Google Scholar] [CrossRef]
- Valenti, P.; de Stasio, A.; Mastromerino, P.; Seganti, L.; Sinibaldi, L.; Orsi, N. Influence of Bicarbonate and Citrate on the Bacteriostatic Action of Ovotransferrin towards Staphylococci. FEMS Microbiol. Lett. 1981, 10, 77–79. [Google Scholar] [CrossRef]
- Superti, F.; Ammendolia, M.G.; Berlutti, F.; Valenti, P. Ovotransferrin. In Bioactive Egg Compounds; Huopalahti, R., López-Fandiño, R., Anton, M., Schade, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–50. [Google Scholar] [CrossRef]
- Kolbl, O. Untersuchungen Uber Das Vorkommen von Miyagawanellen Beim Schwein. Wien. Tierarztl. Monatsschrift 1969, 56, 355–361. [Google Scholar]
- Vanrompay, D.; Ducatelle, R.; Haesebrouck, F. Diagnosis of Avian Chlamydiosis: Specificity of the Modified Giménez Staining on Smears and Comparison of the Sensitivity of Isolation in Eggs and Three Different Cell Cultures. J. Vet. Med. Ser. B 1992, 39, 105–112. [Google Scholar] [CrossRef]
- De Puysseleyr, L.; De Puysseleyr, K.; Vanrompay, D.; De Vos, W.H. Quantifying the Growth of Chlamydia Suis in Cell Culture Using High-Content Microscopy. Microsc. Res. Tech. 2017, 80, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Mayr, A.; Bachmann, P.A.; Bibrack, B.; Wittman, G. Quantitative Bestimmung Der Virusinfektiosität (Virustitration). In Virologische Arbeitsmethoden; Mayr, A., Bachmann, P.A., Bibrack, B., Wittmann, G., Eds.; VEB Gustav Fisher Verlag: Jena, Germany, 1974; pp. 35–39. [Google Scholar]
- De Puysseleyr, K.; De Puysseleyr, L.; Geldhof, J.; Cox, E.; Vanrompay, D. Development and Validation of a Real-Time PCR for Chlamydia Suis Diagnosis in Swine and Humans. PLoS ONE 2014, 9, e96704. [Google Scholar] [CrossRef] [Green Version]
- Verminnen, K.; Van Loock, M.; Hafez, H.M.; Ducatelle, R.; Haesebrouck, F.; Vanrompay, D. Evaluation of a Recombinant Enzyme-Linked Immunosorbent Assay for Detecting Chlamydophila Psittaci Antibodies in Turkey Sera. Vet. Res. 2006, 37, 623–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vos, W.H.; Van Neste, L.; Dieriks, B.; Joss, G.H.; Van Oostveldt, P. High Content Image Cytometry in the Context of Subnuclear Organization. Cytom. Part A 2010, 77A, 64–75. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Puysseleyr, L.; De Puysseleyr, K.; Rybarczyk, J.; Vander Donck, P.; De Vos, W.H.; Vanrompay, D. Transferrins Reduce Replication of Chlamydia suis in McCoy Cells. Pathogens 2021, 10, 858. https://doi.org/10.3390/pathogens10070858
De Puysseleyr L, De Puysseleyr K, Rybarczyk J, Vander Donck P, De Vos WH, Vanrompay D. Transferrins Reduce Replication of Chlamydia suis in McCoy Cells. Pathogens. 2021; 10(7):858. https://doi.org/10.3390/pathogens10070858
Chicago/Turabian StyleDe Puysseleyr, Leentje, Kristien De Puysseleyr, Joanna Rybarczyk, Paulien Vander Donck, Winnok H. De Vos, and Daisy Vanrompay. 2021. "Transferrins Reduce Replication of Chlamydia suis in McCoy Cells" Pathogens 10, no. 7: 858. https://doi.org/10.3390/pathogens10070858
APA StyleDe Puysseleyr, L., De Puysseleyr, K., Rybarczyk, J., Vander Donck, P., De Vos, W. H., & Vanrompay, D. (2021). Transferrins Reduce Replication of Chlamydia suis in McCoy Cells. Pathogens, 10(7), 858. https://doi.org/10.3390/pathogens10070858