A Review of Chlamydial Infections in Wild Birds
Abstract
:1. Introduction
2. Chlamydial Diversity in Wild Birds—The Known and the Novel
2.1. Chlamydia psittaci
2.2. Other Chlamydia and Chlamydia-Related Bacteria (CRB)
3. Host Range of Chlamydial Infections in Wild Birds
3.1. Parrots
3.2. Pigeons
3.3. Other Wild Bird Species
3.4. Studies Where Chlamydia Have Not Been Found
4. Global Chlamydial Distribution
4.1. Europe
4.2. Asia
4.3. North America
4.4. South America
4.5. Australasia/Oceania
4.6. Africa and Antarctica
5. Host Disease and Fitness
5.1. Signs of Disease and Survival
5.2. Reproduction and Fitness
6. Conservation Implications
7. The Role of Wild Birds in Zoonotic Transmission
7.1. Evidence and Risk Factors for Zoonotic Transmission
7.2. Transmission Involving Poultry and Agriculture
8. Recommendations for Future Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borel, N.; Polkinghorne, A.; Pospischil, A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet. Pathol. 2018, 55, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Everett, K.; Bush, R.; Anderson, A. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 1999, 49, 415–440. [Google Scholar]
- Knittler, M.R.; Sachse, K. Chlamydia psittaci: Update on an underestimated zoonotic agent. Pathog. Dis. 2015, 73, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cheong, H.C.; Lee, C.Y.Q.; Cheok, Y.Y.; Tan, G.M.Y.; Looi, C.Y.; Wong, W.F. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019, 7, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laroucau, K.; Vorimore, F.; Aaziz, R.; Solmonson, L.; Hsia, R.C.; Bavoil, P.M.; Fach, P.; Holzer, M.; Wuenschmann, A.; Sachse, K. Chlamydia buteonis, a new Chlamydia species isolated from a red-shouldered hawk. Syst. Appl. Microbiol. 2019, 42, 125997. [Google Scholar] [CrossRef] [PubMed]
- Laroucau, K.; Ortega, N.; Vorimore, F.; Aaziz, R.; Mitura, A.; Szymanska-Czerwinska, M.; Cicerol, M.; Salinas, J.; Sachse, K.; Caro, M.R. Detection of a novel Chlamydia species in captive spur-thighed tortoises (Testudo graeca) in southeastern Spain and proposal of Candidatus Chlamydia testudinis. Syst. Appl. Microbiol. 2020, 43, 126071. [Google Scholar] [CrossRef]
- Sachse, K.; Laroucau, K.; Vanrompay, D. Avian Chlamydiosis. Curr. Clin. Microbiol. Rep. 2015, 2, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Branley, J.; Weston, K.; England, J.; Dwyer, D.; Sorrell, T. Clinical features of endemic community-acquired psittacosis. New Microbes New Infect. 2014, 2, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Telfer, B.; Moberly, S.; Hort, K.; Branley, J.; Dwyer, D.; Muscatello, D.; Correll, P.; England, J.; McAnulty, J. Probable Psittacosis Outbreak Linked to Wild Birds. Emerg. Infect. Dis. 2005, 11, 391–397. [Google Scholar] [CrossRef]
- Kaleta, E.F.; Taday, E.M. Avian host range of Chlamydophila spp. based on isolation, antigen detection and serology. Avian Pathol. 2003, 32, 435–461. [Google Scholar] [CrossRef] [Green Version]
- Vanrompay, D. Avian Chlamydiosis. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Aaziz, R.; Gourlay, P.; Vorimore, F.; Sachse, K.; Siarkou, V.I.; Laroucau, K. Chlamydiaceae in North Atlantic Seabirds Admitted to a Wildlife Rescue Center in Western France. Appl. Environ. Microbiol. 2015, 81, 4581–4590. [Google Scholar] [CrossRef] [Green Version]
- Andersen, A.; Franson, J. Avian Chlamydiosis. In Infectious Diseases of Wild Birds, 1st ed.; Thomas, N., Hunter, D., Atkinson, C., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2007; pp. 303–316. [Google Scholar]
- Gerlach, H. Chlamydia. In Avian Medicine: Principles and Application; Ritchie, B., Harrison, G., Harrison, L., Eds.; Wingers Publishing, Inc.: Lake Worth, FL, USA, 1994; pp. 984–996. [Google Scholar]
- Harkinezhad, T.; Geens, T.; Vanrompay, D. Chlamydophila psittaci infections in birds: A review with emphasis on zoonotic consequences. Vet. Microbiol. 2009, 135, 68–77. [Google Scholar] [CrossRef]
- Longbottom, D.; Coulter, L. Animal Chlamydioses and Zoonotic Implications. J. Comp. Pathol. 2003, 128, 217–244. [Google Scholar] [CrossRef]
- Smith, K.A.; Campbell, C.T.; Murphy, J.; Stobierski, M.G.; Tengelsen, L.A. Compendium of Measures to Control Chlamydophila psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2010 National Association of State Public Health Veterinarians (NASPHV). J. Exot. Pet Med. 2011, 20, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Andersen, A.A.; Vanrompay, D. Avian chlamydiosis. Sci. Tech. Rev. Off. Int. Epizoot. 2000, 19, 396–404. [Google Scholar] [CrossRef]
- Franson, J.C.; Pearson, J.E. Probable Epizootic Chlamydiosis in Wild California (Larus californicus) and Ring-Billed (Larus delawarensis) Gulls in North Dakota. J. Wildl. Dis. 1995, 31, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Jelocnik, M.; Branley, J.; Heller, J.; Raidal, S.; Alderson, S.; Galea, F.; Gabor, M.; Polkinghorne, A. Multilocus sequence typing identifies an avian-like Chlamydia psittaci strain involved in equine placentitis and associated with subsequent human psittacosis. Emerg. Microbes Infect. 2017, 6, e7. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Doyle, B.; Branley, J.; Sheppeard, V.; Gabor, M.; Viney, K.; Quinn, H.; Janover, O.; McCready, M.; Heller, J. An outbreak of psittacosis at a veterinary school demonstrating a novel source of infection. One Health 2017, 3, 29–33. [Google Scholar] [CrossRef]
- Magnino, S.; Haag-Wackernagel, D.; Geigenfeind, I.; Helmecke, S.; Dovc, A.; Prukner-Radovcic, E.; Residbegovic, E.; Ilieski, V.; Laroucau, K.; Donati, M.; et al. Chlamydial infections in feral pigeons in Europe: Review of data and focus on public health implications. Vet. Microbiol. 2009, 135, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Vanrompay, D.; Butaye, P.; Sayada, C.; Ducatelle, R.; Haesebrouck, F. Characterization of avian Chlamydia psittaci strains using ompl restriction mapping and serovar-specific monoclonal antibodies. Res. Microbiol. 1997, 148, 327–333. [Google Scholar] [CrossRef]
- Geens, T.; Desplanques, A.; Van Loock, M.; Bonner, B.M.; Kaleta, E.F.; Magnino, S.; Andersen, A.A.; Everett, K.D.; Vanrompay, D. Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J. Clin. Microbiol. 2005, 43, 2456–2461. [Google Scholar] [CrossRef] [Green Version]
- Andersen, A.A. Serotyping of Chlamydia psittaci Isolates Using Serovar-Specific Monoclonal Antibodies with the Microimmunofluorescence Test’. J. Clin. Microbiol. 1991, 29, 707–711. [Google Scholar] [CrossRef] [Green Version]
- Sachse, K.; Laroucau, K.; Hotzel, H.; Schubert, E.; Ehricht, R.; Slickers, P. Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes. BMC Microbiol. 2008, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Read, T.D.; Joseph, S.J.; Didelot, X.; Liang, B.; Patel, L.; Dean, D. Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. mBio 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Branley, J.M.; Bachmann, N.L.; Jelocnik, M.; Myers, G.S.A.; Polkinghorne, A. Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymanska-Czerwinska, M.; Mitura, A.; Niemczuk, K.; Zareba, K.; Jodelko, A.; Pluta, A.; Scharf, S.; Vitek, B.; Aaziz, R.; Vorimore, F.; et al. Dissemination and genetic diversity of chlamydial agents in Polish wildfowl: Isolation and molecular characterisation of avian Chlamydia abortus strains. PLoS ONE 2017, 12, e0174599. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, D.; Hoop, R.; Sachse, K.; Pospischil, A.; Borel, N. Prevalence of Chlamydophila psittaci in wild birds—Potential risk for domestic poultry, pet birds, and public health? Eur. J. Wildl. Res. 2009, 55, 575–581. [Google Scholar] [CrossRef]
- Stalder, S.; Marti, H.; Borel, N.; Mattmann, P.; Vogler, B.; Wolfrum, N.; Albini, S. Detection of Chlamydiaceae in Swiss wild birds sampled at a bird rehabilitation centre. Vet. Rec. Open 2020, 7, e000437. [Google Scholar] [CrossRef] [PubMed]
- Amery-Gale, J.; Legione, A.R.; Marenda, M.S.; Owens, J.; Eden, P.A.; Konsak-Ilievski, B.M.; Whiteley, P.L.; Dobson, E.C.; Browne, E.A.; Slocombe, R.F.; et al. Surveillance for Chlamydia spp. with Multilocus Sequence Typing Analysis in Wild and Captive Birds in Victoria, Australia. J. Wildl. Dis. 2020, 56. [Google Scholar] [CrossRef]
- Stokes, H.S.; Martens, J.M.; Walder, K.; Segal, Y.; Berg, M.L.; Bennett, A.T.D. Species, sex and geographic variation in chlamydial prevalence in abundant wild Australian parrots. Sci. Rep. 2020, 10, 20478. [Google Scholar] [CrossRef] [PubMed]
- Stalder, S.; Marti, H.; Borel, N.; Sachse, K.; Albini, S.; Vogler, B.R. Occurrence of Chlamydiaceae in Raptors and Crows in Switzerland. Pathogens 2020, 9, 724. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jensen, J.K.; Olsson, A.; Vorimore, F.; Aaziz, R.; Guy, L.; Ellstrom, P.; Laroucau, K.; Herrmann, B. Chlamydia psittaci in fulmars on the Faroe Islands: A causative link to South American psittacines eight decades after a severe epidemic. Microbes Infect. 2020, 22, 356–359. [Google Scholar] [CrossRef]
- Jeong, J.; An, I.; Oem, J.K.; Wang, S.J.; Kim, Y.; Shin, J.H.; Woo, C.; Kim, Y.; Jo, S.D.; Son, K.; et al. Molecular prevalence and genotyping of Chlamydia spp. in wild birds from South Korea. J. Vet. Med Sci. 2017, 79, 1204–1209. [Google Scholar] [CrossRef] [Green Version]
- Luján-Vega, C.; Hawkins, M.G.; Johnson, C.K.; Briggs, C.; Vennum, C.; Bloom, P.H.; Hull, J.M.; Cray, C.; Pesti, D.; Johnson, L.; et al. Atypical Chlamydiaceae in wild populations of hawks (Buteo spp.) in California. J. Zoo Wildl. Med. 2018, 49, 108–115. [Google Scholar] [CrossRef]
- Laroucau, K.; Vorimore, F.; Aaziz, R.; Berndt, A.; Schubert, E.; Sachse, K. Isolation of a new chlamydial agent from infected domestic poultry coincided with cases of atypical pneumonia among slaughterhouse workers in France. Infect. Genet. Evol. 2009, 9, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Sachse, K.; Laroucau, K.; Riege, K.; Wehner, S.; Dilcher, M.; Creasy, H.H.; Weidmann, M.; Myers, G.; Vorimore, F.; Vicari, N.; et al. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst. Appl. Microbiol. 2014, 37, 79–88. [Google Scholar] [CrossRef]
- Heijne, M.; van der Goot, J.A.; Fijten, H.; van der Giessen, J.W.; Kuijt, E.; Maassen, C.B.M.; van Roon, A.; Wit, B.; Koets, A.P.; Roest, H.I.J. A cross sectional study on Dutch layer farms to investigate the prevalence and potential risk factors for different Chlamydia species. PLoS ONE 2018, 13, e0190774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zocevic, A.; Vorimore, F.; Marhold, C.; Horvatek, D.; Wang, D.; Slavec, B.; Prentza, Z.; Stavianis, G.; Prukner-Radovcic, E.; Dovc, A.; et al. Molecular characterization of atypical Chlamydia and evidence of their dissemination in different European and Asian chicken flocks by specific real-time PCR. Environ. Microbiol. 2012, 14, 2212–2222. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Kaltenboeck, B.; Gong, J.; Fan, W.; Wang, C. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus). Sci. Rep. 2016, 6, 19638. [Google Scholar] [CrossRef]
- Ornelas-Eusebio, E.; Garcia-Espinosa, G.; Vorimore, F.; Aaziz, R.; Durand, B.; Laroucau, K.; Zanella, G. Cross-sectional study on Chlamydiaceae prevalence and associated risk factors on commercial and backyard poultry farms in Mexico. Prev. Vet. Med. 2020, 176, 104922. [Google Scholar] [CrossRef]
- Li, L.; Luther, M.; Macklin, K.; Pugh, D.; Li, J.; Zhang, J.; Roberts, J.; Kaltenboeck, B.; Wang, C. Chlamydia gallinacea: A widespread emerging Chlamydia agent with zoonotic potential in backyard poultry. Epidemiol. Infect. 2017, 145, 2701–2703. [Google Scholar] [CrossRef] [Green Version]
- Frutos, M.C.; Monetti, M.S.; Vaulet, L.G.; Cadario, M.E.; Fermepin, M.R.; Re, V.E.; Cuffini, C.G. Genetic diversity of Chlamydia among captive birds from central Argentina. Avian Pathol. 2015, 44, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Stokes, H.S.; Martens, J.M.; Jelocnik, M.; Walder, K.; Segal, Y.; Berg, M.L.; Bennett, A.T.D. Chlamydial diversity and predictors of infection in a wild Australian parrot, the Crimson Rosella (Platycercus elegans). Transbound. Emerg. Dis. 2021, 68, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Mattmann, P.; Marti, H.; Borel, N.; Jelocnik, M.; Albini, S.; Vogler, B.R. Chlamydiaceae in wild, feral and domestic pigeons in Switzerland and insight into population dynamics by Chlamydia psittaci multilocus sequence typing. PLoS ONE 2019, 14, e0226088. [Google Scholar] [CrossRef] [Green Version]
- Burt, S.A.; Roring, R.E.; Heijne, M. Chlamydia psittaci and C. avium in feral pigeon (Columba livia domestica) droppings in two cities in the Netherlands. Vet. Q. 2018, 38, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Pisanu, B.; Laroucau, K.; Aaziz, R.; Vorimore, F.; Le Gros, A.; Chapuis, J.-L.; Clergeau, P. Chlamydia avium Detection from a Ring-Necked Parakeet (Psittacula Krameri) in France. J. Exot. Pet Med. 2018, 27, 68–74. [Google Scholar] [CrossRef]
- Vorimore, F.; Hsia, R.C.; Huot-Creasy, H.; Bastian, S.; Deruyter, L.; Passet, A.; Sachse, K.; Bavoil, P.; Myers, G.; Laroucau, K. Isolation of a New Chlamydia species from the Feral Sacred Ibis (Threskiornis aethiopicus): Chlamydia ibidis. PLoS ONE 2013, 8, e74823. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, P.; Hou, J.; Xu, G.; Zhang, J.; Lei, Y.; Lou, Z.; Liang, L.; Wen, Y.; Zhou, J. Detection of Chlamydia psittaci and Chlamydia ibidis in the Endangered Crested Ibis (Nipponia nippon). Epidemiol. Infect. 2020, 148, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Krawiec, M.; Piasecki, T.; Wieliczko, A. Prevalence of Chlamydia psittaci and Other Chlamydia Species in Wild Birds in Poland. Vector Borne Zoonotic Dis. 2015, 15, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Greub, G. Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin. Microbiol. Infect. 2009, 15, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Wheelhouse, N.; Longbottom, D. Chlamydia-related Organisms: Infection in Ruminants and Potential for Zoonotic transmission. Curr. Clin. Microbiol. Rep. 2015, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jelocnik, M.; Taylor-Brown, A.; O’Dea, C.; Anstey, S.; Bommana, S.; Masters, N.; Katouli, M.; Jenkins, C.; Polkinghorne, A. Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transbound. Emerg. Dis. 2019, 66, 1132–1137. [Google Scholar] [CrossRef]
- Robertson, T.; Noormohammadi, A.H. Investigation of the Prevalence of Chlamydiosis in the Australian Chicken Meat Industry; Rural Industries Research and Development Corporation: Barton, ACT, Australia, 2011. [Google Scholar]
- Christerson, L.; Blomqvist, M.; Grannas, K.; Thollesson, M.; Laroucau, K.; Waldenstrom, J.; Eliasson, I.; Olsen, B.; Herrmann, B. A novel Chlamydiaceae-like bacterium found in faecal specimens from sea birds from the Bering Sea. Environ. Microbiol. Rep. 2010, 2, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Brown, A.; Vaughan, L.; Greub, G.; Timms, P.; Polkinghorne, A. Twenty years of research into Chlamydia-like organisms: A revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog. Dis. 2015, 73, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Collar, N. Globally threatened parrots: Criteria, characteristics and cures. Int. Zoo Yearb. 2000, 37, 21–35. [Google Scholar] [CrossRef]
- Beech, M.; Miles, J. Psittacosis among birds in South Australia I. A survey of infection in some common species in 1951 and 1952. Aust. J. Exp. Biol. 1953, 31, 473–480. [Google Scholar] [CrossRef]
- Chahota, R.; Katoch, R.C.; Batta, M.K. Prevalence of Chlamydia psittaci among feral birds in Himachal Pradesh, India. J. Appl. Anim. Res. 1997, 12, 89–94. [Google Scholar] [CrossRef] [Green Version]
- De Freitas Raso, T.; Seixas, G.H.; Guedes, N.M.; Pinto, A.A. Chlamydophila psittaci in free-living Blue-fronted Amazon parrots (Amazona aestiva) and Hyacinth macaws (Anodorhynchus hyacinthinus) in the Pantanal of Mato Grosso do Sul, Brazil. Vet. Microbiol. 2006, 117, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.; Sarker, S.; Vaz, P.K.; Legione, A.R.; Devlin, J.M.; Macwhirter, P.L.; Whiteley, P.L.; Raidal, S.R. Disease surveillance in wild Victorian cacatuids reveals co-infection with multiple agents and detection of novel avian viruses. Vet. Microbiol. 2019, 235, 257–264. [Google Scholar] [CrossRef]
- Stokes, H.S.; Martens, J.M.; Chamings, A.; Walder, K.; Berg, M.L.; Segal, Y.; Bennett, A.T.D. Identification of Chlamydia gallinacea in a parrot and in free-range chickens in Australia. Aust. Vet. J. 2019, 97, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Dickx, V.; Beeckman, D.S.; Dossche, L.; Tavernier, P.; Vanrompay, D. Chlamydophila psittaci in homing and feral pigeons and zoonotic transmission. J. Med. Microbiol. 2010, 59, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Sachse, K.; Kuehlewind, S.; Ruettger, A.; Schubert, E.; Rohde, G. More than classical Chlamydia psittaci in urban pigeons. Vet. Microbiol. 2012, 157, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.; Miyazawa, T.; Watarai, M.; Ishiguro, N. Bacteriological Survey of Feces from Feral Pigeons in Japan. J. Vet. Med. Sci. 2005, 67, 951–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.L.; Dias, R.A.; Raso, T.F. Screening of Feral Pigeons (Columba livia) for Pathogens of Veterinary and Medical Importance. Braz. J. Poult. Sci. 2016, 18, 701–704. [Google Scholar] [CrossRef] [Green Version]
- De Lima, V.Y.; Langoni, H.; da Silva, A.V.; Pezerico, S.B.; de Castro, A.P.; da Silva, R.C.; Araujo, J.P., Jr. Chlamydophila psittaci and Toxoplasma gondii infection in pigeons (Columba livia) from Sao Paulo State, Brazil. Vet. Parasitol. 2011, 175, 9–14. [Google Scholar] [CrossRef]
- Wannaratana, S.; Thontiravong, A.; Amonsin, A.; Pakpinyo, S. Persistence of Chlamydia psittaci in Various Temperatures and Times. Avian Dis. 2017, 61, 40–45. [Google Scholar] [CrossRef]
- Sariya, L.; Prompiram, P.; Tangsudjai, S.; Poltep, K.; Chamsai, T.; Mongkolphan, C.; Rattanavibul, K.; Sakdajivachareon, V. Detection and characterization of Chlamydophila psittaci in asymptomatic feral pigeons (Columba livia domestica) in central Thailand. Asian Pac. J. Trop. Med. 2015, 8, 94–97. [Google Scholar] [CrossRef]
- Jelocnik, M.; Jenkins, C.; O’Rourke, B.; Barnwell, J.; Polkinghorne, A. Molecular evidence to suggest pigeon-type Chlamydia psittaci in association with an equine foal loss. Transbound. Emerg. Dis. 2018, 65, 911–915. [Google Scholar] [CrossRef]
- Dickx, V.; Kalmar, I.D.; Tavernier, P.; Vanrompay, D. Prevalence and genotype distribution of Chlamydia psittaci in feral Canada geese (Branta canadensis) in Belgium. Vector Borne Zoonotic Dis. 2013, 13, 382–384. [Google Scholar] [CrossRef]
- Hermann, B.; Persson, H.; Jensen, J.; Joensen, H.; Klint, M.; Olsen, B. Chlamydophila psittaci in Fulmars, the Faroe Islands. Emerg. Infect. Dis. 2006, 12, 330–332. [Google Scholar] [CrossRef]
- Jouffroy, S.J.; Schlueter, A.H.; Bildfell, R.J.; Rockey, D.D. Rhabdochlamydia spp. in an Oregon raptor. J. Vet. Diagn. Investig. 2016, 28, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Blomqvist, M.; Christerson, L.; Waldenstrom, J.; Lindberg, P.; Helander, B.; Gunnarsson, G.; Herrmann, B.; Olsen, B. Chlamydia psittaci in birds of prey, Sweden. Infect. Ecol. Epidemiol. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, J.; Christerson, L.; Blomqvist, M.; Wille, M.; Alladio, L.A.; Sachse, K.; Olsen, B.; González-Acuña, D.; Herrmann, B. Chlamydiaceae-like bacterium, but no Chlamydia psittaci, in sea birds from Antarctica. Polar Biol. 2015, 38, 1931–1936. [Google Scholar] [CrossRef]
- Vorimore, F.; Hölzer, M.; Liebler-Tenorio, E.M.; Barf, L.M.; Delannoy, S.; Vittecoq, M.; Wedlarski, R.; Lécu, A.; Scharf, S.; Blanchard, Y.; et al. Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov. Syst. Appl. Microbiol. 2021. [Google Scholar] [CrossRef]
- Burnard, D.; Polkinghorne, A. Chlamydial infections in wildlife-conservation threats and/or reservoirs of ’spill-over’ infections? Vet. Microbiol. 2016, 196, 78–84. [Google Scholar] [CrossRef]
- Holzinger-Umlauf, H.A.; Marschang, R.E.; Gravendyck, M.; Kaleta, E.F. Investigation on the frequency of Chlamydia sp. infections in tits (Paridae). Avian Pathol. 1997, 26, 779–789. [Google Scholar] [CrossRef]
- Beckmann, K.; Borel, N.; Pocknell, A.; Dagleish, M.; Sachse, K.; KJohn, S.; Pospischil, A.; Cunningham, A.; Lawson, B. Chlamydiosis in British Garden Birds (2005–2011): Retrospective Diagnosis and Chlamydia psittaci Genotype Determination. EcoHealth 2014, 11, 544–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, J.M.; Sipinski, E.A.B.; Serafini, P.P.; Ferreira, V.L.; De Freitas Raso, T.; Pinto, A.A. Chlamydophila psittaci assessment in threatened red-tailed Amazon (Amazona brasiliensis) parrots in Paraná, Brazil. Ornithologia 2014, 6, 144–147. [Google Scholar]
- Vaz, F.F.; Serafini, P.P.; Locatelli-Dittrich, R.; Meurer, R.; Durigon, E.L.; de Araujo, J.; Thomazelli, L.M.; Ometto, T.; Sipinski, E.A.B.; Sezerban, R.M.; et al. Survey of pathogens in threatened wild red-tailed Amazon parrot (Amazona brasiliensis) nestlings in Rasa Island, Brazil. Braz. J. Microbiol. 2017, 48, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Deem, S.L.; Noss, A.J.; Cuellar, R.L.; Karesh, W.B. Health evaluation of free-ranging and captive blue-fronted Amazon parrots (Amazona aestiva) in the Gran chaco, Bolivia. J. Zoo Wildl. Med. 2005, 36, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, K.V.K.; Lowenstine, L.J.; Gilardi, J.D.; Munn, C.A. A survey for selected viral, chlamydial, and parasitic diseases in wild dusky-headed parakeets (Aratinga weddellii) and tui parakeets (Brotogeris sanctithomae) in Peru. J. Wildl. Dis. 1995, 31, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Tiyawattanaroj, W.; Lindenwald, R.; Mohr, L.; Günther, E.; Legler, M. Monitoring of the infectious agent Chlamydia psittaci in common swifts (Apus apus) in the area of Hannover, Lower Saxony, Germany. Berl. Münchener Tierärztliche Wochenschr. 2021, 134, 1–5. [Google Scholar] [CrossRef]
- Assunção, P.; de Ponte Machado, M.; De la Fe, C.; Ramírez, A.S.; Rosales, R.S.; Antunes, N.T.; Poveda, C.; Poveda, J.B. Prevalence of Pathogens in Great White Pelicans (Pelecanus onocrotalus) from the Western Cape, South Africa. J. Appl. Anim. Res. 2007, 32, 29–32. [Google Scholar] [CrossRef]
- Dusek, R.J.; Justice-Allen, A.; Bodenstein, B.; Knowles, S.; Grear, D.A.; Adams, L.; Levy, C.; Yaglom, H.D.; Shearn-Bochsler, V.I.; Ciembor, P.G.; et al. Chlamydia Psittaci in Feral Rosy-Faced Lovebirds (Agapornis Roseicollis) and Other Backyard Birds in Maricopa County, Arizona, USA. J. Wildl. Dis. 2018, 54, 248–260. [Google Scholar] [CrossRef]
- Gartrell, B.D.; French, N.P.; Howe, L.; Nelson, N.J.; Houston, M.; Burrows, E.A.; Russell, J.C.; Anderson, S.H. First detection of Chlamydia psittaci from a wild native passerine bird in New Zealand. N. Z. Vet. J. 2013, 61, 174–176. [Google Scholar] [CrossRef]
- Mahzounieh, M.; Moloudizargari, M.; Ghasemi Shams Abadi, M.; Baninameh, Z.; Heidari Khoei, H. Prevalence Rate and Phylogenetic Analysis of Chlamydia psittaci in Pigeon and House Sparrow Specimens and the Potential Human Infection Risk in Chahrmahal-va-Bakhtiari, Iran. Arch. Clin. Infect. Dis. 2020, 15. [Google Scholar] [CrossRef]
- McElnea, C.; Cross, G. Methods of detection of Chlamydia psittaci in domesticated and wild birds. Aust. Vet. J. 1999, 77, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Padilla, L.R.; Santiago-Alarcon, D.; Merkel, J.; Miller, R.E.; Parker, P.G. Survey for haemoproteus spp., trichomonas gallinae, chlamydophila psittaci, and salmonella spp. in Galapagos Islands Columbiformes. J. Zoo Wildl. Med. 2004, 35, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Schettler, E.; Fickel, J.; Hotzel, H.; Sachse, K.; Streich, W.J.; Wittstatt, U.; Frolich, K. Newcastle disease virus and Chlamydia psittaci in free-living raptors from eastern Germany. J. Wildl. Dis. 2003, 39, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Schettler, E.; Langgemach, T.; Sommer, P.; Streich, J.; Frolich, K. Seroepizootiology of selected infectious disease agents in free-living birds of prey in Germany. J. Wildl. Dis. 2001, 37, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Sharples, E.; Baines, S.J. Prevalence of Chlamydophila psittaci-positive cloacal PCR tests in wild avian casualties in the UK. Vet. Rec. 2009, 164, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Stenzel, T.; Pestka, D.; Choszcz, D. The prevalence and genetic characterization of Chlamydia psittaci from domestic and feral pigeons in Poland and the correlation between infection rate and incidence of pigeon circovirus. Poult. Sci. 2014, 93, 3009–3016. [Google Scholar] [CrossRef]
- Floriano, A.M.; Rigamonti, S.; Comandatore, F.; Scaltriti, E.; Longbottom, D.; Livingstone, M.; Laroucau, K.; Gaffuri, A.; Pongolini, S.; Magnino, S.; et al. Complete Genome Sequence of Chlamydia avium PV 4360/2, Isolated from a Feral Pigeon in Italy. Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulin, V.; Oger, S.; Vorimore, F.; Aaziz, R.; de Barbeyrac, B.; Berruchon, J.; Sachse, K.; Laroucau, K. Host preference and zoonotic potential of Chlamydia psittaci and C. gallinacea in poultry. Pathog. Dis. 2015, 73, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doosti, A.; Arshi, A. Determination of the Prevalence of Chlamydia psittaci by PCR in Iranian Pigeons. Int. J. Biol. 2011, 3. [Google Scholar] [CrossRef]
- Zhang, N.Z.; Zhang, X.X.; Zhou, D.H.; Huang, S.Y.; Tian, W.P.; Yang, Y.C.; Zhao, Q.; Zhu, X.Q. Seroprevalence and genotype of Chlamydia in pet parrots in China. Epidemiol. Infect. 2015, 143, 55–61. [Google Scholar] [CrossRef]
- Cong, W.; Huang, S.Y.; Zhang, X.Y.; Zhou, D.H.; Xu, M.J.; Zhao, Q.; Song, H.Q.; Zhu, X.Q.; Qian, A.D. Seroprevalence of Chlamydia psittaci infection in market-sold adult chickens, ducks and pigeons in north-western China. J. Med. Microbiol. 2013, 62, 1211–1214. [Google Scholar] [CrossRef]
- Cong, W.; Huang, S.Y.; Zhang, X.X.; Zhou, D.H.; Xu, M.J.; Zhao, Q.; Qian, A.D.; Zhu, X.Q. Chlamydia psittaci exposure in pet birds. J. Med. Microbiol. 2014, 63, 578–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, J.E. Recovery of Ornithosis Agent from Naturally Infected White-Winged Doves. J. Wildl. Manag. 1966, 30, 594–598. [Google Scholar] [CrossRef]
- Goltz, J.P.; Huines, J.G. Psittacosis in Wild Rock Doves. In Canadian Cooperative Wildlife Health Centre Newsletter; Canadian Cooperative Wildlife Center: Guelph, ON, Canada, 2000; pp. 9–10. [Google Scholar]
- Hutchison, R.; Rowlands, R.A.; Simpson, S.L. A study of psittacosis. Br. Med. J. 1930, 1, 633–646. [Google Scholar] [CrossRef]
- De Freitas Raso, T.; Berchieri Júnior, A.; Augusto Pinto, A. Evidence of Chlamydophila psittaci infection in captive Amazon parrots in Brazil. J. Zoo Wildl. Med. 2002, 33, 118–121. [Google Scholar]
- De Freitas Raso, T.; Godoy, S.N.; Milanelo, L.; Souza, C.A.I.; Matushima, E.R.; Araujo, J.P., Jr.; Pinto, A.A. An outbreak of chlamydiosis in captive Blue-fronted Amazon parrots (Amazona aestiva) in Brazil. J. Zoo Wildl. Med. 2004, 35, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.C.; Negrão, V.B.; Santos, F.; Raso, T.F.; Barrouin-Melo, S.M.; Franke, C.R. Ocorrência de Chlamydophila psittaci em pombos (Columba livia) na cidade de Salvador, Bahia. Arq. Bras. Med. Veterinária Zootec. 2015, 67, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Burnet, F. Enzootic psittacosis amongst wild Australian parrots. J. Hyg. 1935, 35, 412–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedye, K.R.; Fremaux, M.; Garcia-Ramirez, J.C.; Gartrell, B.D. A preliminary survey of Chlamydia psittaci genotypes from native and introduced birds in New Zealand. N. Z. Vet. J. 2018, 66, 162–165. [Google Scholar] [CrossRef] [PubMed]
- El-Jakee, J.K.; Osman, K.M.; Ezzeldeen, N.A.; Ali, H.A.; Mostafa, E.R. Chlamydia species in free-living Cattle Egret (Bubulcus ibis) and Hoopoe (Upupa epops) in Egypt. Int. J. Vet. Sci. Med. 2014, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Brand, C.J. Chlamydial infections in free-living birds. J. Am. Vet. Med. Assoc. 1989, 195, 1531–1535. [Google Scholar]
- Amery-Gale, J.; Marenda, M.S.; Owens, J.; Eden, P.A.; Browning, G.F.; Devlin, J.M. A high prevalence of beak and feather disease virus in non-psittacine Australian birds. J. Med. Microbiol. 2017, 66, 1005–1013. [Google Scholar] [CrossRef]
- Branley, J.M.; Roy, B.; Dwyer, D.E.; Sorrell, T.C. Real-time PCR detection and quantitation of Chlamydophila psittaci in human and avian specimens from a veterinary clinic cluster. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-Eusebio, E.; Sanchez-Godoy, F.D.; Chavez-Maya, F.; De la Garza-Garcia, J.A.; Hernandez-Castro, R.; Garcia-Espinosa, G. First Identification of Chlamydia psittaci in the Acute Illness and Death of Endemic and Endangered Psittacine Birds in Mexico. Avian Dis. 2016, 60, 540–544. [Google Scholar] [CrossRef]
- Vanrompay, D.; Ducatelle, R.; Haesebrouck, F. Chlamydia psittaci infections: A review with emphasis on avian chlamydiosis. Vet. Microbiol. 1995, 45, 93–119. [Google Scholar] [CrossRef]
- Popelin-Wedlarski, F.; Roux, A.; Aaziz, R.; Vorimore, F.; Lagourette, P.; Crispo, M.; Borel, N.; Laroucau, K. Captive Psittacines with Chlamydia avium Infection. Avian Dis. 2020, 64, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G. Essentials of Disease in Wild Animals, 1st ed.; Blackwell Publishing Professional: Ames, IA, USA, 2006; p. 243. [Google Scholar]
- Das, S.; Smith, K.; Sarker, S.; Peters, A.; Adriaanse, K.; Eden, P.; Ghorashi, S.A.; Forwood, J.K.; Raidal, S.R. Repeat Spillover of Beak and Feather Disease Virus into an Endangered Parrot Highlights the Risk Associated with Endemic Pathogen Loss in Endangered Species. J. Wildl. Dis. 2020, 56. [Google Scholar] [CrossRef] [PubMed]
- Vanrompay, D.; Ducatelle, R.; Haesebrouck, F. Pathogenicity for turkeys of Chlamydia psittaci strains belonging to the avian serovars A, B and D. Avian Pathol. 1994, 23, 247–262. [Google Scholar] [CrossRef]
- Crowl, T.A.; Crist, T.O.; Parmenter, R.R.; Belovsky, G.; Lugo, A.E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 2008, 6, 238–246. [Google Scholar] [CrossRef]
- Brochier, B.; Vangeluwe, D.; van den Berg, T. Alien invasive birds. Rev. Sci. Tech. 2010, 29, 217–226. [Google Scholar] [CrossRef]
- Brearley, G.; Rhodes, J.; Bradley, A.; Baxter, G.; Seabrook, L.; Lunney, D.; Liu, Y.; McAlpine, C. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 2013, 88, 427–442. [Google Scholar] [CrossRef]
- McCallum, H.; Kerlin, D.H.; Ellis, W.; Carrick, F. Assessing the significance of endemic disease in conservation- koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 2018, 11, e12425. [Google Scholar] [CrossRef]
- Polkinghorne, A.; Hanger, J.; Timms, P. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet. Microbiol. 2013, 165, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Vanrompay, D.; Harkinezhad, T.; van de Walle, M.; Beeckman, D.; van Droogenbroeck, C.; Verminnen, K.; Leten, R.; Martel, A.; Cauwerts, K. Chlamydophila psittaci Transmission from Pet Birds to Humans. Emerg. Infect. Dis. 2007, 13, 1108–1110. [Google Scholar] [CrossRef] [PubMed]
- Laroucau, K.; de Barbeyrac, B.; Vorimore, F.; Clrec, M.; Bertin, C.; Harkinezhad, T.; Verminnen, K.; Obeniche, F.; Capek, I.; Bébéar, C.; et al. Chlamydial infections in duck farms associated with human cases of psittacosis in France. Vet. Microbiol. 2009, 135, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkinezhad, T.; Verminnen, K.; Van Droogenbroeck, C.; Vanrompay, D. Chlamydophila psittaci genotype E/B transmission from African grey parrots to humans. J. Med. Microbiol. 2007, 56, 1097–1100. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, A.A.; Dijkstra, F.; Notermans, D.W.; van der Hoek, W. Laboratory methods for case finding in human psittacosis outbreaks: A systematic review. BMC Infect. Dis. 2018, 18, 442. [Google Scholar] [CrossRef] [PubMed]
- Levinson, D.C.; Gibbsm, J.; Bearwood, J.T. Ornithosis as a cause of sporadic atypical pneumonia. JAMA 1944, 126, 1079–1084. [Google Scholar] [CrossRef]
- Haag-Wackernagel, D.; Moch, H. Health hazards posed by feral pigeons. J. Infect. 2004, 48, 307–313. [Google Scholar] [CrossRef]
- Henry, K.; Crossley, K. Wild-pigeon-related psittacosis in a family. Chest 1986, 90, 708–710. [Google Scholar] [CrossRef]
- Mair-Jenkins, J.; Lamming, T.; Dziadosz, A.; Flecknoe, D.; Stubington, T.; Mentasti, M.; Muir, P.; Monk, P. A Psittacosis Outbreak among English Office Workers with Little or No Contact with Birds, August 2015. PLOS Curr. Outbreaks 2018. [Google Scholar] [CrossRef]
- Rehn, M.; Ringberg, H.; Runehagen, A.; Herrmann, B.; Olsen, B.; Petersson, A.; Hjertqvist, M.; Kühlmann-Berenzon, S.; Wallensten, A. Unusual increase of psittacosis in southern Sweden linked to wild bird exposure, January to April 2013. Eurosurveillance 2013, 18, 13–20. [Google Scholar] [CrossRef]
- Chereau, F.; Rehn, M.; Pini, A.; Kuhlmann-Berenzon, S.; Ydring, E.; Ringberg, H.; Runehagen, A.; Ockborn, G.; Dotevall, L.; Wallensten, A. Wild and domestic bird faeces likely source of psittacosis transmission-A case-control study in Sweden, 2014–2016. Zoonoses Public Health 2018, 65, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Olsen, B.; Persson, K.; Broholm, K.A. PCR detection of Chlamydia psittaci in faecal samples from passerine birds in Sweden. Epidemiol. Infect. 1998, 121, 481–484. [Google Scholar] [CrossRef]
- Williams, J.; Tallis, G.; Dalton, C.; Ng, S.; Beaton, S.; Catton, M.; Elliott, J.; Carnie, J. Community outbreak of psittacosis in a rural Australian town. Lancet 1998, 351, 1697–1699. [Google Scholar] [CrossRef]
- Parkin, D. Wildlife Feeding, National Park Policy and Visitor Practice: Where to from Here? Project Nature-Ed: Grafton, NSW, Australia, 2001; pp. 1–12. [Google Scholar]
- Parsons, H.; Major, R.E.; French, K. Species interactions and habitat associations of birds inhabiting urban areas of Sydney, Australia. Austral Ecol. 2006, 31, 217–227. [Google Scholar] [CrossRef]
- Schell, C.J.; Stanton, L.A.; Young, J.K.; Angeloni, L.M.; Lambert, J.E.; Breck, S.W.; Murray, M.H. The evolutionary consequences of human-wildlife conflict in cities. Evol. Appl. 2021, 14, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, C. Impact of Urbanization on Birds. In Bird Species: How They Arise, Modify and Vanish; Tietze, D.T., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 235–257. [Google Scholar]
- Strubbe, D.; Matthysen, E. Establishment success of invasive ring-necked and monk parakeets in Europe. J. Biogeogr. 2009, 36, 2264–2278. [Google Scholar] [CrossRef]
- Davis, A.; Taylor, C.E.; Major, R.E. Do fire and rainfall drive spatial and temporal population shifts in parrots? A case study using urban parrot populations. Landsc. Urban Plan. 2011, 100, 295–301. [Google Scholar] [CrossRef]
- Davis, A.; Taylor, C.E.; Major, R.E. Seasonal abundance and habitat use of Australian parrots in an urbanised landscape. Landsc. Urban Plan. 2012, 106, 191–198. [Google Scholar] [CrossRef]
- Hulin, V.; Bernard, P.; Vorimore, F.; Aaziz, R.; Cleva, D.; Robineau, J.; Durand, B.; Angelis, L.; Siarkou, V.I.; Laroucau, K. Assessment of Chlamydia psittaci Shedding and Environmental Contamination as Potential Sources of Worker Exposure throughout the Mule Duck Breeding Process. Appl. Environ. Microbiol. 2015, 82, 1504–1518. [Google Scholar] [CrossRef] [Green Version]
- Verminnen, K.; Van Loock, M.; Hafez, H.M.; Ducatelle, R.; Haesebrouck, F.; Vanrompay, D. Evaluation of a recombinant enzyme-linked immunosorbent assay for detecting Chlamydophila psittaci antibodies in turkey sera. Vet. Res. 2006, 37, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Carver, S.; Bevins, S.N.; Lappin, M.R.; Boydston, E.E.; Lyren, L.M.; Alldredge, M.; Logan, K.A.; Sweanor, L.L.; Riley, S.P.D.; Serieys, L.E.K.; et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol. Appl. 2016, 26, 367–381. [Google Scholar] [CrossRef]
- Jenkins, C.; Jelocnik, M.; Micallef, M.L.; Galea, F.; Taylor-Brown, A.; Bogema, D.R.; Liu, M.; O’Rourke, B.; Chicken, C.; Carrick, J.; et al. An epizootic of Chlamydia psittaci equine reproductive loss associated with suspected spillover from native Australian parrots. Emerg. Microbes Infect. 2018, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Polkinghome, A.; Branley, J. New insights into chlamydial zoonoses. Microbiol. Aust. 2020, 41, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Akter, R.; Stent, A.W.; Sansom, F.M.; Gilkerson, J.R.; Burden, C.; Devlin, J.M.; Legione, A.R.; El-Hage, C.M. Chlamydia psittaci: A suspected cause of reproductive loss in three Victorian horses. Aust. Vet. J. 2020, 98, 570–573. [Google Scholar] [CrossRef]
- Anstey, S.; Lizárraga, D.; Nyari, S.; Chalmers, G.; Carrick, J.; Chicken, C.; Jenkins, C.; Perkins, N.; Timms, P.; Jelocnik, M. Epidemiology of Chlamydia psittaci infections in pregnant Thoroughbred mares and foals. Vet. J. 2021, 273. [Google Scholar] [CrossRef] [PubMed]
- Fudge, A.M. A Review of Methods to Detect Chlamydia psittaci in Avian Patients. J. Avian Med. Surg. 1997, 11, 153–165. [Google Scholar]
- Buckland, S.T. A Mark-Recapture Survival Analysis. J. Anim. Ecol. 1982, 51, 833–847. [Google Scholar] [CrossRef]
Host Species | Family | Location | Sample Source | Sample Size | Detection Method(s) | Chlamydiales Species Tested For | Key Findings | Disease Signs Reported? (Y/N/NR) ** | Reference |
Seabirds; 13 species, 4 orders * | Anatidae, Alcidae, Laridae, Procellaridae, Sulidae | France | Rehabilitation centre | 195 | PCR (cloacal swabs) Sequencing Multilocus sequence typing (MLST) | C. psittaci Chlamydiaceae | • 18.5% Chlamydiaceae prevalence (prev.) • Prev. varied between host spp.; Northern gannets Morus bassanus) had higher prev. compared to European herring gulls (Larus argentatus) and common murres (Uria aalge) • Seasonal variation in prev. (in Northern gannets) • C. psittaci identified in Northern gannets and herring gulls • Unclassified Chlamydiaceae also identified | N | Aaziz et al., 2015 [12] |
48 species from 11 orders * | Psittacidae, Cacatuidae, Podargidae (…) * | Australia | Rehabilitation centre | 229 | PCR (live birds: choanal/cloacal swabs; dead birds: swabs from trachea and intestine/caecum) MLST | C. psittaci | • 1 crimson rosella (Platycercus elegans) and 1 superb lyrebird (Menura novaehollandiae) tested positive (0.7%) • All other wild birds tested negative | Y | Amery-Gale et al. 2020 [32] |
Great white pelicans (Pelecanus onocrotalus) | Pelecanidae | South Africa | Live trapping | 50 | PCR (tracheal and cloacal swabs) | C. psittaci | • 0% C. psittaci prevalence | N/A | Assunção et al., 2007 [87] |
Songbirds (Passeriformes); Pigeons and doves (Columbiformes) * | Paridae, Prunellidae, Turdidae (…) * | U.K. | Necropsy (selected based on clinical signs) | 40 | PCR (liver and spleen) Histology Immunohistochemistry | C. psittaci | • 53% C. psittaci prevalence • Nonspecific clinical signs observed (lethargy, fluffed up plumage) and emaciation • Concurrent disease in >50% cases • Genotype A present in all passerine cases | Y | Beckmann et al., 2014 [81] |
16 species from 5 orders * | Cacatuidae, Psittacidae, Columbidae (…) * | Australia | Trapping and community submissions | 278 | Isolation (from liver) and inoculation Serology (Complement Fixation Test (CFT)) | C. psittaci (methods not spp. specific) | • 10.6% prevalence (Psittaciformes) • 0.7% prevalence (all other species; 1 house sparrow (Passer domesticus) tested positive) | NR | Beech and Miles 1953 [60] |
Peregrine falcons (Falco peregrinus) and white-tailed sea eagles (WTSE) (Haliaeetus albicilla) | Falconidae, Accipitridae | Sweden | Nestlings (breeding monitoring), adults (museum submissions) | 319 (299 nestlings; 108 falcons and 191 WTSE, and 20 WTSE adults) | PCR (cloacal swabs) ompA sequencing | C. psittaci Chlamydia | • 1.3% C. psittaci prev. (n = 2 falcons, n = 2 eagles) • New strains of C. psittaci identified | NR | Blomqvist et al., 2012 [76] |
Feral pigeons (Columbia livia domestica), ring-necked parakeets (Psittacula krameri), crows (Corvus splendens) | Psittacidae, Columbidae, Corvidae | India | Trapping | 85 (55 pigeons, 19 parakeets, 11 crows) | Isolation and inoculation (faecal swabs/intestinal and visceral organs) Serology (indirect micro-immunofluorescense test (IMIFT) and ELISA) | C. psittaci (methods not spp.-specific) | • 26.3% prev. in ring-necked parakeets • 16.4% prev. in pigeons • 18.2% prev. in crows | NR | Chahota et al., 1997 [61] |
Seabirds; 22 species * | Laridae, Alcidae | Bering Sea | NR | 722 | PCR (faeces) ompA, mpB, and 16S sequencing | C. psittaci Chlamydiales | • 0.1% C. psittaci prev. (n = 1 black-headed gull (Larus ridibundus)) | NR | Christerson et al., 2010 [57] |
Blue-fronted Amazon parrot (Amazona aestiva) and hyacinth macaw (Anodorhynchus hyacinthinus) | Psittacidae | Brazil | Nestlings (breeding monitoring) | 77 (32 Amazon parrots nestlings, 45 macaw nestlings) | PCR (tracheal and cloacal swabs) Serology (CFT) | C. psittaci (methods not spp.-specific) | • 6.3% prevalence in Amazon parrots (cloacal swabs) • 26.7% prevalence in hyacinth macaws (cloacal swabs) 8.9% (tracheal swabs), 4.8% (CFT) | N | de Freitas Raso et al., 2006 [62] |
Feral pigeons | Columbidae | Brazil | Live trapping | 238 | PCR (cloacal and tracheal swabs) | C. psittaci | • 16.8% C. psittaci prev. • Prev. ranged from 6.1% to 37.8% according to location | NR | de Lima et al., 2010 [69] |
Blue-fronted Amazon parrot | Psittacidae | Bolivia | Live trapping | 34 | Serology (CFT) | C. psittaci (method not species-specific) | • 0% prevalence | N/A | Deem et al. 2005 [84] |
Canada geese (Branta canadensis) | Anatidae | Belgium | Culling program | 81 | Serology (rMOMP-based ELISA) Inoculation and culture (pharyngeal swabs) | C. psittaci | • 93.6% seropositive • 58% of swabs were culture positive, but low culture score (low no. of viable organisms) | N | Dickx et al., 2013 [73] |
Rosy-faced lovebirds (Agapornis roseicollis); 15 other species, including Passeriformes and Columbiformes * | Psittaculidae, Columbidae, Icteridae, Troglodytidae (…) * | USA | Live trapping | 188 (46 lovebirds; 142 birds of other species) | PCR (conjunctival/ choanal and cloacal swabs) Serology (Elementary body agglutination (EBA)) | C. psittaci | • 93% C. psittaci prev. and 76% seroprevalence in lovebirds • 10% C. psittaci prev. and 7% seroprevalence (in all other bird species combined) | NR | Dusek et al., 2018 [88] |
Feral pigeons | Columbidae | Brazil | Live trapping | 240 | PCR (cloacal swabs) | C. psittaci | • 13% C. psittaci prevalence | NR | Ferreira et al., 2016 [68] |
New Zealand bellbirds (Anthornis melanura; n = 4); rifleman (Acathisitta chloris; n = 3); hihi (Notiomyces cincta; n = 2); whitehead (Mohoua albicilla; n = 1) | Meliphagidae, Notiomystidae, Acanthisittidae, Mohouidae | New Zealand | Live trapping | 10 | PCR (cloacal swabs) Sequencing | C. psittaci | • 10% C. psittaci prevalence; one bird identified positive (a hihi) • First report of C. psittaci detection from a wild native bird in New Zealand | NR | Gartrell et al., 2012 [89] |
Dusky-headed parakeets (Aratinga weddellii) and Tui parakeets (Brotogeris sanctithomae) | Psittacidae | Peru | Live trapping | 48 (35 dusky-headed parakeets, 13 Tui parakeets) | Serology (CFT, Latex agglutination, EBA) | C. psittaci (methods not spp.-specific) | • 0% seroprevalence using any method | N/A | Gilardi et al., 1995 [85] |
Fulmars (Fulmarus glacialis) | Procellaridae | Faroe Islands | Non-flying juveniles sampled | 431 (juveniles) | PCR (cloacal swabs) ompA sequencing | C. psittaci | • 10% C. psittaci prevalence (range from 7% to 21% between locations) • 6BC strain identified in all positive samples | NR | Hermann et al., 2006 [74] |
Great tits (Parus major; n = 318), blue tits (Parus caerulus; n = 43), marsh tits (Parus palustris; n = 32), coal tits (Parus ater; n = 3), willow tits (Parus montanus; n = 3) | Paridae | Germany | Live trapping (n = 389), necropsy (n = 6) | 395 | Inoculation and culture (cloacal and pharyngeal swabs) Organ tissues (necropsied birds) | Chlamydia | • 54.3% Chlamydia prevalence • Shedding varied according to swab site • Prevalence varied between host species; highest prevalence in blue tits, followed by great tits, then marsh tits • Repeated sampling of n = 38 individuals; 60.5% changed in Chlamydia status | N | Holzinger-Umlauf et al., 1997 [80] |
Chinstrap penguins (Pygoscelis antarcticus) and Magellanic penguins (Scheniscus magellanicus); seabirds * | Sphenisicidae, Sterocorariidae, Laridae, Procellaridae, Chionidae | Antarctica, Chile | Live trapping (penguins), fresh faeces (seabirds) | 527 (264 penguins; 263 seabirds) | PCR (cloacal swabs and faeces) Sequencing | C. psittaci Chlamydiales | • 18% Chlamydiales prevalence (Antarctica) • No C. psittaci detected in birds in Antarctica • 10% C. psittaci prevalence (Chile) | NR | Isaksson et al., 2015 [77] |
43 species; 14 different orders * | Corvidae, Scolopacidae, Columbidae (…) * | South Korea | Rehabilitation centres | 225 | PCR (tracheal swabs and tissues) ompA sequencing | C. psittaci Chlamydiales | • 1.8% C. psittaci prev. (rook (Corvus frugilegus), Korean magpie (Pica serica), feral pigeon) • 0.9% C. gallinacea prev. (woodcock (Scolopax rusticola)) | NR | Jeong et al., 2017 [36] |
Raptors: osprey (Pandion haliaetus), great horned owl (Bubo virginianus), red-tailed hawk (Buteo jamaicaensis) (others not listed) | Accipitridae, Pandionidae, Strigidae (others not listed) | USA | Rehabilitation centres | 82 | PCR (oral and cloacal swabs) Sequencing | C. psittaci Chlamydiales | • 1 osprey was C. psittaci-positive • 1 red-tailed hawk was Ca, Rhabdochlamydia spp. positive | NR | Jouffroy et al., 2016 [75] |
35 species; 15 orders * | Anatidae, Accipitridae, Passeridae (…) * | Poland | Hunting, culling programs, fishing bycatch, wildlife rehabilitation centres, community submissions | 369 | PCR (combined tissues and conjunctival swabs) Sequencing | Chlamydia (all species) | • 7.3% Chlamydia prevalence • C. psittaci and C. trachomatis identified • Chlamydia positive birds identified across eight orders | N | Krawiec et al., 2015 [52] |
Hawks; Buteo genus | Accipitridae | USA | Live trapping | 297 | PCR (conjunctival, choanal, and cloacal swab) Sequencing Serology (EBA) and immunofluorescent antibody (IFA)) | Chlamydiaceae | • 1.4% Chlamydia prev. (2 positive red-tailed hawks, 2 positive Swainson’s hawks (Buteo swainsoni)) • 0% seroprevalence | N | Luján-Vega et al., 2018 [37] |
Feral pigeons; house sparrows | Columbidae | Iran | NR | 150 (75 pigeons; 75 house sparrows) | PCR (cloacal swabs) ompA sequencing | C. psittaci | • 25.3% C. psittaci prev. in pigeons • 18.6% C. psittaci prev. in house sparrows • Genotypes A and B identified | NR | Mahzounieh et al., 2020 [90] |
Feral pigeons, Eurasian collared doves (Streptopelia decaocto), wood pigeon (Columba palumbus) | Columbidae | Switzerland | Pigeon lofts, rehabilitation centres, culling programs | 431 | PCR (choanal/cloacal swabs and liver samples) DNA microarray assay 16S sequencing MLST | C. psittaci Chlamydiaceae | • 14.1% Chlamydiaceae prev. (feral pigeons) • 5.1% Chlamydiaceae prev. (collard dove) • 5.7% Chlamydiacaeae prev. (wood pigeon) • Prevalence in feral pigeons varied by location • 57.6% positive samples were C. psittaci, 5.4% of positive samples were C. avium | NR | Mattman et al., 2019 [47] |
7 species, order Psittaciformes, Anseriformes, Passeriformes * | Cacatuidae, Anatidae, Rallidae, Artamidae | Australia | NR | 124 | PCR (conjunctival, choanal, and cloacal swabs) Cell culture | C. psittaci | • 0% prevalence; no wild birds tested positive | N/A | McElnea and Cross, 1999 [91] |
Galapagos doves (Zenaida galapagoensis) and feral pigeons | Columbidae | The Galapagos Islands, Ecuador | Live trapping | 133 (105 Galapagos doves, 28 feral pigeons) | PCR (cloacal swabs) | C. psittaci | • 6% C. psittaci prev. (Galapagos doves) • 0% C. psittaci prev. (feral pigeons) • Geographic variation in prev. (all positive cases occurred on one island) | NR | Padilla et al., 2004 [92] |
Ring-necked parakeet | Psittacidae | France | Live trapping | 85 | PCR (cloacal swabs) | C. psittaci C. avium Chlamydiaceae | • 7.1% Chlamydiaceae prevalence • The chlamydial species was only identified to species level in one individual (C. avium) | NR | Pisanu et al. 2018 [49] |
Red-tailed Amazon parrot (Amazona brasiliensis) | Psittacidae | Rasa Island, Brazil | Nestlings (breeding monitoring) | 117 (nestlings) | PCR (tracheal and cloacal swabs) | C. psittaci (method not spp. specific) | • 1.2% prevalence (one positive sample identified) | N | Ribas et al. 2014 [82] |
Feral pigeons | Columbidae | Germany | Management project | 570 | PCR (cloacal swabs and faeces) DNA microarray ompA sequencing | C. psittaci Chlamydiaceae | • 14.6% Chlamydiaceae prev. (swabs) and 10.4% C. psittaci prev. (swabs) • Faecal prev. higher than swabs • Temporal variation in Chlamydiaceae prev.; 9.3% prev. in 2009, compared to 19.3% in 2010 • C. pecorum, C. abortus, C. trachomatis, and unclassified Chlamydiaceae also identified | NR | Sachse et al., 2012 [66] |
Feral pigeons | Columbidae | Thailand | NR | 407 | PCR (tracheal and cloacal swabs), ompA sequencing | C. psittaci | • 10.8% C. psittaci prevalence • Genotype B identified | N | Sariya et al., 2015 [71] |
Raptors; 15 species * | Accipitridae, Falconidae, Tytonidae, Strigidae, Pandionidae | Germany | Veterinary submissions | 39 | PCR (lung and spleen) | C. psittaci | • 74% C. psittaci prevalence • No association of infection with sex, age, or year | NR | Schettler et al., 2003 [93] |
Raptors; 346 diurnal birds of prey; 55 owls) * | Accipitridae, Pandionidae, Strigidae, Tytonidae, Falconidae | Germany | Rehabilitation centres | 428 | Serology (ELISA) | C. psittaci | • 63% seropositivity • Age association with seroprevalence; older birds more likely to test seropositive | NR | Schettler et al., 2001 [94] |
10 species * majority of birds tested were Columbiformes | Columbidae, Turdidae, Anatidae (…) | U.K. | Rehabilitation centre | 43 | PCR (cloacal swabs) | C. psittaci | • 11.6% C. psittaci prevalence • All positive birds were Columbiformes • Positive pigeons were emaciated and anorexic, but no signs of respiratory distress | Y | Sharples and Baines, 2009 [95] |
42 species * | Columbidae, Passeridae, Fringillidae (…) * | Switzerland | Rehabilitation centre | 339 | PCR (choanal and cloacal swabs, faecal swabs) ompA sequencing | C. psittaci Chlamydiaceae | • 0.9% Chlamydiaceae prev. (all Columbidae) • No other birds tested positive | NR | Stalder et al., 2020 [31] |
Raptors (16 species); corvids (six species) * | Accipitridae, Falconidae, Strigidae, Tytonidae, Corvidae | Switzerland | Rehabilitation centres, community submissions, culling programs | 594 (341 raptors, 253 corvids) | PCR (choanal and cloacal swabs, faecal swabs) ompA and 16S sequencing | C. psittaci C. buteonis Chlamydiaceae | • 23.7% Chlamydiaceae prev. (corvids) • 5.9% Chlamydiaceae prev. (raptors) • 0% C. buteonis prev. | N | Stalder et al., 2020 [34] |
Feral pigeons | Columbidae | Poland | NR | 101 | PCR (cloacal and pharyngeal swabs) ompA sequencing | C. psittaci | • 3.9% C. psittaci prevalence • More pigeons were co-infected with C. psittaci and pigeon circovirus than with C. psittaci alone | N | Stenzel et al., 2014 [96] |
Crimson rosella | Psittacidae | Australia | Live trapping | 136 | PCR (cloacal swabs) Serology (ELISA) 16S sequencing | C. psittaci C. gallinacea Chlamydiales | • 27.7% Chlamydiales prevalence • 6.2% C. psittaci prev. and 4.6% C. gallinacea prev. • 16% seroprevalence • Higher Chlamydiales prev. in non-breeding birds and female birds • Seroprevalence was highest in autumn and in non-breeding birds | N | Stokes et al., 2020 [46] |
7 species; order Psittaciformes * | Psittacidae, Cacatuidae | Australia | Live trapping | 132 | PCR (cloacal swabs) Serology (ELISA) 16S and ompA sequencing | C. psittaci C. gallinacea Chlamydiales | • Overall Chlamydiales prevalence was 39.8% • C. psittaci prevalence was 9.8%, and C. gallinacea prevalence was 0.8% • Seroprevalence was 37.0% • Prevalence varied between species and location | N | Stokes et al., 2020b [33] |
Long-billed corella (Cacatua tenuirostris), little corella (Cacatua sanguinea), sulfur-crested cockatoo (Cacatua galerita) and galah (Eolophus roseicapillus) | Cacatuidae | Australia | Live trapping and rehabilitation centres | 55 | PCR (choanal/cloacal swabs) Next-generation sequencing (NGS) | C. psittaci | • None PCR positive, but NGS identified C. psittaci in one little corella; hence, overall prevalence was 1.8% | Y | Sutherland et al. 2019 [63] |
33 species; 16 families * | Accipitridae, Anatidae, Corvidae (…) * | Poland | Rehabilitation centres; some free-living birds captured | 894 | PCR (cloacal or faecal swabs) ompA and rrn sequencing | C. psittaci C. abortus Chlamydiaceae | • 14.8% Chlamydiaceae prev. (all birds tested) • 19.7% Chlamydiaceae prev. (Anatidae) • 13.4% Chlamydiaceae prev. (Corvidae) • C. psittaci/C. abortus intermediate isolates identified | NR | Szymańska-Czerwińska et al., 2017 [29] |
Common swift (Apus apus) | Apodidae | Germany | Community veterinary submissions | 243 | PCR (pooled organs) | C. psittaci Chlamydia | • 0% prev. (no birds tested positive over 9 years) | N/A | Tiyawattanaroj et al. 2021 [86] |
Red-tailed Amazon parrot | Psittacidae | Rasa Island, Brazil | Nestlings (breeding monitoring) | 74 (nestlings) | PCR (cloacal and oropharyngeal swabs) Serology (ELISA) | C. psittaci (method not spp. specific) | • 0% prevalence | N/A | Vaz et al. 2017 [83] |
African sacred ibis (Threskiornis aethiopicus) | Threskiornithidae | France | Culling program | 70 | PCR (cloacal swabs) Culture and inoculation | C. psittaci Chlamydiaceae | • 11% Chlamydiaceae prev. • 1.4% C. psittaci prev. and • 4.3% Ca. C. ibidis prev. • Ca. C. ibidis identified and proposed as a new species | N | Vorimore et al., 2013 [50] |
Greater flamingo (Phoenicopterus roseus) | Phoenicopteridae | France | Live trapping | 404 | PCR (cloacal swabs) Isolation and cell culture Sequencing | C. psittaci C. avium C. gallinacean Ca. C. ibidis | • 30.9% (125/404) chlamydial positive, but not for known species • Three isolates were cultured, with two new species identified and proposed, in a new genus, Chlamydiifrater gen. nov. | N | Vorimore et al., 2021 [78] |
Feral pigeons | Columbidae | Thailand | Live trapping (public locations) | 150 | PCR (cloacal swabs) Isolation and inoculation | C. psittaci | • 1.3% C. psittaci prevalence | N | Wannaratana et al., 2017 [70] |
Songbirds (n = 527; 11 families) Pigeons (n = 84; Columbidae) Waterfowl (n = 442; 5 families) * | Columbidae, Fringillidae, Turdidae (…) * | Switzerland | Collected through avian influenza surveillance, live trapping (pigeons), and hunters (cormorants) | 1091 | PCR (cloacal swabs) 16S Sequencing | C. psittaci Chlamydiaceae | • 3.3% C. psittaci prev. in feral pigeons • 0.4% Chlamydiaceae prev. in songbirds (Passeriformes) • 4% Chlamydiaceae prev. in waterfowl (all were tufted ducks (Aythya fuligula) and pochards (Aythya farina)) | NR | Zweifel et al., 2009 [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stokes, H.S.; Berg, M.L.; Bennett, A.T.D. A Review of Chlamydial Infections in Wild Birds. Pathogens 2021, 10, 948. https://doi.org/10.3390/pathogens10080948
Stokes HS, Berg ML, Bennett ATD. A Review of Chlamydial Infections in Wild Birds. Pathogens. 2021; 10(8):948. https://doi.org/10.3390/pathogens10080948
Chicago/Turabian StyleStokes, Helena S., Mathew L. Berg, and Andrew T. D. Bennett. 2021. "A Review of Chlamydial Infections in Wild Birds" Pathogens 10, no. 8: 948. https://doi.org/10.3390/pathogens10080948
APA StyleStokes, H. S., Berg, M. L., & Bennett, A. T. D. (2021). A Review of Chlamydial Infections in Wild Birds. Pathogens, 10(8), 948. https://doi.org/10.3390/pathogens10080948