Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China
Abstract
:1. Introduction
2. Applications of Traditional Risk Identification Technologies
2.1. Pathogen Biology Technologies
2.2. Immunological Technologies
2.3. Molecular Biology Technologies
2.4. Imaging Technology
3. Novel Risk Identification Technologies
3.1. 3S Technology
3.2. Mathematical Modeling
3.3. Big Data and Artificial Intelligence Technology
4. Lessons Learned in Risk Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, E.; Gurarie, D.; Lo, N.; Zhu, X.; King, C. Improving public health control of schistosomiasis with a modified WHO strategy: A model-based comparison study. Lancet Glob. Health 2019, 7, e1414–e1422. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Hu, W.; Yang, K.; Lu, S.; Li, S.; Zhou, X. Key points and research priorities of schistosomiasis control in China during the 14th Five-Year Plan Period. Chin. J. Schistosomiasis Control 2021, 33, 1–6. [Google Scholar]
- Control and Elimination of Schistosomiasis; General Administration of Quality Supervision: Beijing, China, 2015; pp. 1–2.
- Zhang, L.; Xu, Z.; Yang, F.; Dang, H.; Li, Y.; Lü, S.; Cao, C.; Xu, J.; Li, S.; Zhou, X. Endemic status of schistosomiasis in China in 2020. Chin. J. Schistosomiasis Control 2021, 33, 225–233. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Xu, J.; Wu, Z.; Liu, Y.; Zhong, B. Investigation on current schistosomiasis cases in Sichuan Province. Chin. J. Schistosomiasis Control 2019, 31, 264–268. [Google Scholar]
- Lin, J. Endemic status and control of animal schistosomiasis in China. Chin. J. Schistosomiasis Control 2019, 31, 40–46. [Google Scholar]
- Li, K.; Cai, S.; Tang, L.; Lun, S.; Li, X. Research on epidemic factors after schistosomiasis transmission being under control in Hubei Province. J. Public Health Prev. Med. 2018, 29, 117–120. [Google Scholar]
- Guan, Z.; Lu, S.; Li, S.; Xu, J. Endemic status of schistosomiasis in floating population and challenges in schistosomiasis control in China. Chin. J. Parasitol. Parasit. Dis. 2017, 35, 598–603. [Google Scholar]
- Wang, S.; Li, Y.; Zhang, L.; Lu, S.; Xu, J. Thinking on schistosomiasis control under the strategy of China’s Yangtze River Economic Belt. Chin. J. Schistosomiasis Control 2019, 31, 459–462. [Google Scholar]
- Xie, J.; Wen, L. Impact of new trend of ecological environment changes on growth, reproduction and diffusion of Oncomelania Hupensis. Chin. J. Schistosomiasis Control 2016, 28, 225–228. [Google Scholar]
- Xu, J.; Li, S.; Zhang, L.; Bergquist, R.; Dang, H.; Wang, Q.; Lv, S.; Wang, T.; Lin, D.; Liu, J. Surveillance-based evidence: Elimination of schistosomiasis as a public health problem in China. Infect. Dis. Poverty 2020, 9, 12. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, B.; Liu, Y.; Wu, Z.; Zhang, Y.; Chen, L. Impact of earthquake disaster on schistosomiasis transmission and emergency prevention and control in Sichuan Province. Chin. J. Schistosomiasis Control 2019, 31, 333–336. [Google Scholar]
- Zhang, L.; Zhu, H.; Wang, Q.; Lü, S.; Li, S. Assessment of schistosomiasis transmission risk along the Yangtze River basin after the flood disaster in 2020. Chin. J. Schistosomiasis Control 2020, 32, 464–468. [Google Scholar]
- Huang, Y. Ecological characteristics of Oncomelania Hupensis and water conservancy combined with schistosomiasis prevention and control. Chin. J. Schistosomiasis Control 2019, 31, 47–52. [Google Scholar]
- Xu, L.; Xu, J.; Wan, J.; Chen, L.; Li, R.; Wang, N.; Zhang, Y.; Wu, Z. Construction and application of the surveillance system for schistosomiasis transmission risk in Sichuan Province. Chin. J. Schistosomiasis Control 2019, 31, 251–257. [Google Scholar]
- Duan, J.; Zhou, J.; Huang, D.; Liu, L. Transmission Risk Assessment of Schistosomiasis in China Based on Maximum Entropy Model. Meteorol. Sci. Technol. 2019, 47, 520–525. [Google Scholar]
- Zhou, X. Implementation of precision control to achieve the goal of schistosomiasis elimination in China. Chin. J. Schistosomiasis Control 2016, 28, 1–4. [Google Scholar]
- Lu, C.; Zhou, L.; Xing, X. Analysis of transmission risk factors of schistosomiasis in a hilly demonstration plot of transmission interruption. Chin. J. Parasitol. Parasit. Dis. 2018, 36, 333–339. [Google Scholar]
- Zuo, Y.; Zhu, D.; Du, G.; Tang, K.; Ma, Y.; Zhang, Z.; Chen, S.; Wang, F.; Tang, H.; Zhang, J.; et al. Surveillance and risk assessment system of schistosomiasis in Jiangsu Province Risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City. Chin. J. Schistosomiasis Control 2016, 28, 353–357. [Google Scholar]
- Hinz, R.; Schwarz, N.G.; Hahn, A.; Frickmann, H. Serological approaches for the diagnosis of schistosomiasis—A review. Mol. Cell. Probes 2017, 31, 2–21. [Google Scholar] [CrossRef]
- Zhu, R.; Qin, Z.; Feng, T.; Dang, H.; Zhang, L.; Xu, J. Assessment of effect and quality control for parasitological tests in national schistosomiasis surveillance sites. Chin. J. Schistosomiasis Control 2013, 25, 11–15. [Google Scholar]
- Shi, Y.; Rong, H.; Wang, L.; Liu, F.; Zhong, X. Schistosomiasis risk surveillance report in Mianyang City of Sichuan Province in 2017. J. Med. Pest Control 2019, 35, 706–708. [Google Scholar]
- Xiong, Y.; Wang, H.; Li, Y.; Zuo, Y.; Zhang, J.; Xu, X. Analysis of the Surveillance over Risks of Schistosomiasis Endemic Areas in Wuhan City in 2017. Chin. J. Soc. Med. 2019, 36, 437–440. [Google Scholar]
- Xiong, Y.; Wang, H.; Luo, H.; Zhang, J.; Li, Y.; Zuo, Y.; Xu, M. Surveillance and risk assessment of schistosomiasis after transmission interruption in Wuhan. Chin. Trop. Med. 2020, 20, 604–607. [Google Scholar]
- He, L.; Wang, J.; Rong, X.; He, Z.; Liao, C.; Huang, W.; Wang, D.; Yuan, M.; Peng, X.; Zhao, Y. Survey of causes of infected Oncomelania snails and infectious sources of schistosomiasis in marshland and lake region of Jingzhou City. Chin. J. Schistosomiasis Control 2011, 23, 381–385. [Google Scholar]
- Shen, M.; Feng, X.; Wang, L.; Du, C.; Dong, Y. Assessment on the risks of schistosomiasis transmission in Yunnan Province. J. Trop. Dis. Parasitol. 2019, 17, 214–217. [Google Scholar]
- Yu, Q. Techniques for identification and detection of Schistosoma cercaria. Int. J. Med. Parasit. Dis. 2015, 42, 180–188. [Google Scholar]
- Qu, G.; Dai, J.; Xing, Y.; Wang, W.; Yang, Z.; Zhao, Z.; Guo, N.; Sun, L.; Liang, Y. Surveillance and forecast system of schistosomiasis in Jiangsu Province. VI. Detection technology of water infectivity based on enrichment of Schistosoma Japonicum Cercariae on water surface. Chin. J. Schistosomiasis Control 2014, 26, 510–513. [Google Scholar]
- Li, R.; Wan, J.; Xu, J.; Xu, L.; Wu, Z. Epidemic Recurrence of Schistosomiasis and Risk Analysis in Sichuan Province From 2005 to 2015. J. Prev. Med. Inf. 2018, 34, 188–193. [Google Scholar]
- Wang, S.; Luo, H.; Xiong, Y.; Zuo, Y.; Li, Y.; Zhou, Y.; Xu, M. Assessment of schistosomiasis transmission risk after the flood disaster in 2020, Wuhan. Mod. Prev. Med. 2021, 48, 2316–2332. [Google Scholar]
- Sun, C.; Zhu, H.; Zhang, L.; Cai, J.; Gong, Y.; Xie, W.; Zhang, S.; Wang, T. Investigation on endemic situation of schistosomiasis in high-risk areas of Anhui Province during flood damage in 2020. J. Trop. Dis. Parasitol. 2021, 19, 77–81. [Google Scholar]
- Mao, C.P. Biology of Schistosome and Control of Schistosomiasis; People’s Health Press: Beijing, China, 1990; pp. 474–506. [Google Scholar]
- Shen, M.; Feng, X.; Zhang, Y.; Wu, M.; Yang, G. Monitoring of sentinel mice and risk assessment of schistosomiasis transmission in key regions of Yunnan Province in 2014. Chin. J. Schistosomiasis Control 2015, 27, 174. [Google Scholar]
- Zhang, S.; Cheng, B.; Qu, H.; Chen, Z.; Zou, Q.; Chu, L.; Zhang, L.; He, H.; Tang, S.; Huang, X.; et al. Validity evaluation of dipstick dye immuno-assay (DDIA) for screening in low endemic areas of schistosomiasis. Chin. J. Schistosomiasis Control 2010, 22, 171–173. [Google Scholar]
- Wang, X.; Yang, K. Serological diagnosis methods of Schistosomiasis japonica at different prevalence: A meta-analysis. Chin. J. Schistosomiasis Control 2016, 28, 18–29. [Google Scholar]
- Liang, Y.; Huang, Y.; Hong, Q.; Yang, K.; Sun, L.; Dai, J.; Yang, G.; Yu, C.; Tian, Z.; Ge, J.; et al. Novel strategies and technologies to achieve the transmission control of schistosomiasis in Jiangsu Province. Chin. J. Schistosomiasis Control 2012, 24, 119–122. [Google Scholar]
- Guan, Z.; Dai, S.; Zhou, J.; Ren, X.; Qin, Z.; Li, Y.; Lv, S.; Li, S.; Zhou, X.; Xu, J. Assessment of knowledge, attitude and practices and the analysis of risk factors regarding schistosomiasis among fishermen and boatmen in the Dongting Lake Basin, China. Parasites Vectors 2020, 13, 273. [Google Scholar] [CrossRef]
- Wong, Y.; Othman, S.; Lau, Y.; Radu, S.; Chee, H. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [Green Version]
- James, A.; Macdonald, J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev. Mol. Diagn. 2015, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Rong, R.; Zhang, H.; Shi, C.; Zhu, X.; Xia, C. Sensitive and rapid detection of Schistosoma Japonicum DNA by loop-mediated isothermal amplification (LAMP). Int. J. Parasitol. 2010, 40, 327–331. [Google Scholar] [CrossRef]
- Wang, W.; Zhan, T.; Song, J.; Xiang, K.; Zhu, Y.; Duan, Y.; Lou, J. Surveillance of schistosomiasis transmission risk in Ma’anshan city in 2018. J. Trop. Dis. Parasitol. 2019, 17, 75–78. [Google Scholar]
- Wang, J.; Shen, M.; Li, H.; Du, C.; Yang, J. Risk assessment of schistosomiasis transmission in Chuxiong City of Yunnan Province. Chin. J. Schistosomiasis Control 2019, 31, 337–338. [Google Scholar]
- Du, C.; Yang, H.; Yang, M.; Zhang, Y.; Dong, Y. Assessment of schistosomiasis transmission risk in Nanjian County of Yunnan Province in 2019. Chin. J. Schistosomiasis Control 2020, 32, 531–533. [Google Scholar]
- Li, T.; Liu, Y.; Zhao, S.; Xiong, C.; Yang, K. Rapid detection of Schistosoma japonicum-infected snails with recombinase-aided isothermal amplification assay. Chin. J. Schistosomiasis Control 2019, 31, 109–114. [Google Scholar]
- Zhao, S.; Ting, L.; Yang, K.; Wei, L.; Zhang, J.; Guo, L.; Liu, Y.; Dai, Y.; Ying, Q.; Yang, H. Establishment of a recombinase-aided isothermal amplification technique to detect Schistosoma japonicum specific gene fragments. Chin. J. Schistosomiasis Control 2018, 30, 273–306. [Google Scholar]
- Pan, W.; Li, X. Value of CT diagnosis o patients with chronic hepaic schistosomiasis. China Trop. Med. 2013, 13, 1002–1004. [Google Scholar]
- Li, H.; Lu, Z. Imaging findings and progress of schistosomal hepatopathy. Chin. J. Schistosomiasis Control 2017, 29, 656–659. [Google Scholar]
- Wu, X.; Xu, J.; Li, S.; Huang, Y.; Wang, T.; Wu, C.; Huang, X.; Feng, M.; Chen, Z.; Wang, L. Prediction and surveillance of Schistosomiasis japonica in potential endemic areas in China, 2008. Chin. J. Schistosomiasis Control 2009, 21, 353–357. [Google Scholar]
- Li, G.; Chen, Y.; Tu, Z.; Shan, X.; Cai, S. Surveillance results and risk analysis of Schistosoma Japonicum-infected sentinel mice in key water regions in Hubei Province in 2016. Chin. J. Schistosomiasis Control 2017, 29, 412–415. [Google Scholar]
- Ding, Z.; Ma, J.; Wang, D.; Tian, R. Surveillance of schistosomiasis transmission risk in Jingmen City, Hubei Province. Chin. J. Schistosomiasis Control 2017, 29, 619–621. [Google Scholar]
- He, J.; Li, T.; Gao, F.; Wang, H.; Wang, Q.; Cao, Z.; Yang, W.; Zhang, G.; Zhang, S.; Wang, T. Risk assessment on the achievement of schistosomiasis transmission control in Anhui Province. J. Trop. Dis. Parasitol. 2013, 11, 1–4. [Google Scholar]
- Lin, D.; Gu, X.; Chen, Z.; Zeng, X.; Lu, H.; Li, Z.; Jiang, W.; Lv, S.; Gao, Z.; Chen, H. Assessment and analysis of risks of realizing schistosomiasis transmission control in Jiangxi Province. Chin. J. Schistosomiasis Control 2013, 25, 348–366. [Google Scholar]
- Xu, J.; He, Q.; Hu, B. Identification and risk monitoring of potential risk areas of schistosomiasis in Dongting Lake area. Chin. J. Dis. Control. Prev. 2019, 23, 555–560. [Google Scholar]
- Li, Y. The Influence of Water Level and Climatic Factors in the Dongdong Area on the Snails in the Central Lake of Schistosoma Japonicum and the Exploration of Their Breeding Sites. Master Thesis, Fudan University, Shanghai, China, 2011. [Google Scholar]
- Xu, J.; Ouyang, X.; He, Q.; Wei, G. Comprehensive Risk Assessment of Schistosomiasis Epidemic Based on Precise Identification of Oncomelania Hupensis Breeding Grounds-A Case Study of Dongting Lake Area. Int. J. Environ. Res. Public Health 2021, 18, 1950. [Google Scholar] [CrossRef]
- Guo, J.; Penelope, V.; Cao, C.; Jürg, U.; Zhu, H.; Daniel, A.; Rong, Z.; He, Z.; Dong, L.; Fei, H. A geographic information and remote sensing based model for prediction of Oncomelania Hupensis habitats in the Poyang Lake area, China. Acta Trop. 2005, 96, 213–222. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, X.; Yao, Z.; Wang, T.; Yang, Y.; Zhang, S.; Wu, X.; Wang, X.; Jia, T.; Qiang, W. Analysis of spatial relations of risk factors to infection rate of schistosomiasis in population. Chin. J. Schistosomiasis Control 2005, 42, 2023–2027. [Google Scholar]
- Xia, S.; Xue, J.; Gao, F.; Lu, S.; Xu, J.; Zhang, S.; Li, S. Sentinel-1A radar remote sensing-based modeling for quick identification of potential risk areas of schistosomiasis transmission after flood. Chin. J. Parasitol. Parasit. Dis. 2020, 38, 417. [Google Scholar]
- Fan, W.; Zhao, Q.; Wu, J.; Huang, S.; Wang, X.; Wang, X. Study on monitoring and early warning index system for schistosomiasis in Poyang Lake eco-economic region. Chin. J. Dis. Control. Prev. 2019, 23, 421–425. [Google Scholar]
- Huang, Y.; Hang, D.; Gao, Y.; Sun, D.; Guo, J.; Li, W.; Zhang, J.; Zhu, X.; Gao, J.; Zheng, B. Study on surveillance and early-warning system of schistosomiasis in first phase of east route of South-to-North Water Diversion Project. III. Indexes of surveillance and early-warning and risk assessment. Chin. J. Schistosomiasis Control 2011, 23, 32–37. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yang, J.; Zhao, Z.; Wen, S.; Tan, H. Superiority of the Multilevel Logistic Model in the Study of the Risk Factors of Schistosomiasis. Chin. J. Health Stat. 2012, 29, 504–506. [Google Scholar]
- Li, C.; Ren, G.; Deng, W.; Li, S.; Hu, B.; Shi, Y.; Wang, Y.; Dong, S.; Zhang, N.; Zheng, Y.; et al. Prevalence and incidence of advanced schistosomiasis and risk factors for case fatality in Hunan Province, China. Acta Trop. 2021, 217, 105862. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Lian, L.; Song, X.; Sun, W.; Miao, J.; Li, B.; Yuan, Y.; Wu, S.; Liu, X.; et al. Derivation and external validation of a model to predict 2-year mortality risk of patients with advanced schistosomiasis after discharge. EBioMedicine 2019, 47, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Seto, E.Y.W.; Remais, J.V.; Zhong, B.; Yang, C.; Hubbard, A.; Davis, G.M.; Gu, X.; Qiu, D.; Spear, R.C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 2007, 104, 7110–7115. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Y.; Jiang, Q. Progress of research on mathematical model for transmission of schistosomiasis. Chin. J. Schistosomiasis Control 2009, 21, 568–571. [Google Scholar]
- Zhou, X. Space Epidemiology; Science Press: Beijing, China, 2009; pp. 236–239. [Google Scholar]
- Zhang, Z.; Peng, W.; Zhou, Y.; Zhuang, J.; Jiang, Q.; Chen, G.; Cui, D. Spatial autocorrelation analysis of the small-scale distribution of Oncomelania Hupensis in marshland and lake regions. Chin. J. Schistosomiasis Control 2007, 19, 418–423. [Google Scholar]
- Tang, X.; Li, Q.; Huang, Q.; Qiu, X.; Huang, G.; Huang, Z.; Zhou, H. Realization of 3D Visualization of Time and Space Scanning Statistics. China Health Stat. 2015, 32, 693–696. [Google Scholar]
- Wang, E.; Zhao, Z.; Miao, C.; Wu, Z. A Spatiotemporal Analysis of Schistosomiasis in Hunan Province, China. Asia Pac. J. Public Health 2018, 30, 521–531. [Google Scholar] [CrossRef]
- Xu, B.; Gong, P.; Seto, E.; Liang, S.; Yang, C.; Wen, S.; Qiu, D.; Gu, X.; Spear, R. A Spatial-Temporal Model for Assessing the Effects of Intervillage Connectivity in Schistosomiasis Transmission. Ann. Assoc. Am. Geogr. 2006, 96, 31–46. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, F.; Xue, J.; Wang, J.-F.; Zhang, Q. Spatial-temporal clustering analysis of schistosomiasis transmission risk in Yunnan Province from 2004 to 2015. Chin. J. Schistosomiasis Control 2019, 31, 269–274. [Google Scholar]
- Manyangadze, T.; Chimbari, M.J.; Gebreslasie, M.; Mukaratirwa, S. Risk factors and micro-geographical heterogeneity of Schistosoma Haematobium in Ndumo area, uMkhanyakude district, KwaZulu-Natal, South Africa. Acta Trop. 2016, 159, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Jiang, T. The Study on Spread of Oncomelania Hupensis Snails along the Danyang Section of Beijing-Hangzhou Grand Canal and the Danyang-Jintan-Liyang Canal. Master Thesis, Jiangsu Institute of Parasitic Diseases, Wuxi, China, 2020. [Google Scholar]
- Chammartin, F.; Houngbedji, C.A.; Hürlimann, E.; Yapi, R.B.; Silué, K.D.; Soro, G.; Kouamé, F.N.; N’Goran, E.K.; Utzinger, J.; Raso, G.; et al. Bayesian risk mapping and model-based estimation of Schistosoma haematobium-Schistosoma mansoni co-distribution in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2014, 8, e3407. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.C.; Lwambo, N.J.; Blair, L.; Nyandindi, U.; Kaatano, G.; Kinung’hi, S.; Webster, J.P.; Fenwick, A.; Brooker, S. Bayesian spatial analysis and disease mapping: Tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop. Med. Int. Health 2006, 11, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Beck-Worner, C.; Raso, G.; Vounatsou, P.; N’Goran, E.K.; Rigo, G.; Parlow, E.; Utzinger, J. Bayesian spatial risk prediction of Schistosoma Mansoni infection in western Cote d’Ivoire using a remotely-sensed digital elevation model. Am. J. Trop. Med. Hyg. 2007, 76, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Ward, M.P.; Xia, C.; Li, R.; Sun, L.; Lynn, H.; Gao, F.; Wang, Q.; Zhang, S.; Xiong, C.; et al. Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach. Sci. Rep. 2016, 6, 24173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Zhou, X.; Wang, X.; Yang, G.; Jia, T.; He, W. Establishment and application of spatio-temporal model of Schistosomiasis japonica in a county in marshland region. Chin. J. Schistosomiasis Control 2012, 24, 14–20. [Google Scholar]
- Zhang, H.; Yu, Q.; Zhang, X.; Coa, C.; Li, S.; Zhu, H. Cost-effectiveness evaluation on comprehensive control measures carrying out in schistosomiasis endemic areas with regard to different layers of administrative villages stratified by infection situation of human and domestic animals. I. Cost-effectiveness study in inner embankment of marshland and lake regions from 2006 to 2010. Chin. J. Schistosomiasis Control 2014, 26, 254–259. [Google Scholar]
- Hu, X.; Hao, Y.; Xia, S.; Guo, Y.; Xue, J.; Zhang, Y.; Wang, L.; Dong, Y.; Xu, J.; Li, S. Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling. Chin. J. Parasitol. Parasit. Dis. 2020, 38, 80–87. [Google Scholar]
- Zhu, G.; Fan, J.; Peterson, A.T. Schistosoma Japonicum transmission risk maps at present and under climate change in mainland China. PLoS Negl. Trop. Dis. 2017, 11, e0006021. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Cheng, Q.; Tang, Y.; Xu, P. Design and Realization for Schistosomiasis Prevention and Management Information Systems Based on WebGIS Technology. Geomat. Spat. Inf. Technol. 2012, 8, 39. [Google Scholar]
- Cui, H.; Ye, H.; Yang, Y. Development and Implementation of Mobile Phone Client for Schistosomiasis Control System Based on C/S Structure. Comput. Sci. Appl. 2017, 7, 49–51. [Google Scholar]
- Jiangsu Institute of Parasitic Diseases. Information Management Platform for Prevention and Control of Schistosomiasis in Jiangsu; Computer Software Copyright; Protection Center of China: Beijing China, 2017. [Google Scholar]
- Hua, W.; Yang, F.; Peng, G. Development and application of WEB-based information management system for chronic schistosomiasis patients. Chin. J. Schistosomiasis Control 2017, 29, 363–365. [Google Scholar]
- Yang, K.; Li, S. Application of Big Data Mining Technology in Monitoring and Early-warning of Schistosomiasis. Chin. J. Parasitol. Parasit. Dis. 2015, 33, 461–465. [Google Scholar]
- Zheng, J.; Xia, S.; Lv, S.; Zhang, Y.; Bergquist, R.; Zhou, X. Infestation risk of the intermediate snail host of Schistosoma Japonicum in the Yangtze River Basin: Improved results by spatial reassessment and a random forest approach. Infect. Dis. Poverty 2021, 10, 74. [Google Scholar] [CrossRef]
- Gong, Y.; Zhu, L.; Li, Y.; Zhang, L.; Xue, J.; Xia, S.; Lv, S.; Xu, J.; Li, S. Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: A newly data-driven modeling attempt. Infect. Dis. Poverty 2021, 10, 88. [Google Scholar] [CrossRef]
- Panch, T.; Pearson-Stuttard, J.; Greaves, F.; Atun, R. Artificial intelligence: Opportunities and risks for public health. Lancet Digit. Health 2019, 1, e13–e14. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Greece used AI to curb COVID: What other nations can learn. Nature 2021, 597, 447–448. [Google Scholar]
- Gennatas, E.D.; Chen, J.H. Artificial Intelligence in Medicine: Past, Present, and Future. In Artificial Intelligence in Medicine; Xing, L., Giger, M.L., Min, J.K., Eds.; Academic Press: Amsterdam, The Netherlands, 2021; pp. 3–18. [Google Scholar]
- Gao, H.; Yang, P.; Yang, S.; Fei, X. Effectiveness evaluation of dynamic automatic identification system (device) of Schistosoma Japonicum Miracidia. Chin. J. Schistosomiasis Control 2018, 30, 54–56. [Google Scholar]
- Tallam, K.; Liu, Z.Y.-C.; Chamberlin, A.J.; Jones, I.J.; Shome, P.; Riveau, G.; Ndione, R.A.; Bandagny, L.; Jouanard, N.; Eck, P.V.; et al. Identification of Snails and Schistosoma of Medical Importance via Convolutional Neural Networks: A Proof-of-Concept Application for Human Schistosomiasis. Front. Public Health 2021, 9, 642895. [Google Scholar] [CrossRef]
- Shi, L.; Xiong, C.; Liu, M.; Wei, X.; Wang, X.; Wang, T.; Huang, Y.; Hong, Q.; Li, W.; Yang, H.; et al. Establishment of a deep learning-visual model for intelligent recognition of Oncomelania Hupensis. Chin. J. Schistosomiasis Control 2021, 33, 445–451. [Google Scholar]
- Hu, M.; Zhang, S.; Zhang, L.; Wang, E.; Hao, X.; Xu, Q.; Zhai, D.; Zhang, L. Comparison of laboratory test results of four immunological diagnostic reagents for Schistosomiasis japonica. J. Trop. Dis. Parasitol. 2011, 9, 227–228. [Google Scholar]
- Wang, S.; He, X.; Zhou, Y. Demand for and the Development of Detection Techniques for Source of Schistosome Infection in China. Chin. J. Parasitol. Parasit. Dis. 2015, 33, 456–460. [Google Scholar]
- Zhou, X.; Bergquist, R.; Leonardo, L.; Yang, G.; Yang, K.; Sudomo, M.; Olveda, R. Schistosomiasis japonica: Control and Research Needs. Advances in Parasitology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 145–178. [Google Scholar]
- Zhou, X.; Xu, J.; Chen, H.; Wang, T.; Huang, X.; Lin, D.; Wang, Q.; Tang, L.; Guo, J.; Wu, X. Tools to support policy decisions related to treatment strategies and surveillance of Schistosomiasis japonica towards elimination. PLoS Negl. Trop. Dis. 2011, 5, e1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wang, L.; Wu, L.; Li, Y.; Zhang, L.; Lu, S.; Xu, J. Diagnostic value of nucleic acid detection in Schistosomiasis japonica: A meta-analysis. Chin. J. Schistosomiasis Control 2020, 32, 15–22. [Google Scholar]
- Yan, Z.; Dong, H.; Jiang, M.; Zhao, Q. Progress of molecular detection of Schistosoma. Chin. J. Schistosomiasis Control 2017, 29, 798–801. [Google Scholar]
- Curto de Casas, S.I.; Carcavallo, R.U. Climate change and vector-borne diseases distribution. Soc. Sci. Med. 1995, 40, 1437–1440. [Google Scholar] [CrossRef]
- Alkishe, A.A.; Peterson, A.T.; Samy, A.M. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS ONE 2017, 12, e0189092. [Google Scholar] [CrossRef]
- Bergquist, R. Climate and the distribution of vector-borne diseases: What’s in store? Geospat. Health 2017, 12, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavia, M.E.; Malone, J.B.; Hale, L.; Dantas, A.; Marroni, L.; Reis, R. Use of thermal and vegetation index data from earth observing satellites to evaluate the risk of schistosomiasis in Bahia, Brazil. Acta Trop. 2001, 79, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Xia, S.; Lü, S.; Zhang, Y.; Zhou, X. Construction of a forecast system for prediction of schistosomiasis risk in China based on the flood information. Chin. J. Schistosomiasis Control 2021, 33, 133–137. [Google Scholar]
- Xue, J.; Xia, S.; Zhang, L.; Abe, E.; Zhou, J.; Li, Y.; Hao, Y.; Wang, Q.; Xu, J.; Li, S.Z.; et al. High-resolution remote sensing-based spatial modeling for the prediction of potential risk areas of schistosomiasis in the Dongting Lake area, China. Acta Trop. 2019, 199, 105102. [Google Scholar] [CrossRef]
- Yang, G.J.; Vounatsou, P.; Tanner, M.; Zhou, X.N.; Utzinger, J. Remote sensing for predicting potential habitats of Oncomelania Hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China. Geospat. Health 2006, 1, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Wang, X.H.; Yang, G.J.; Wu, X.H.; Qi, Y.L.; Li, H.J.; Zhou, X.N. An integrated approach to identify distribution of Oncomelania Hupensis, the intermediate host of Schistosoma Japonicum, in a mountainous region in China. Int. J. Parasitol. 2008, 38, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhu, Y.; Xue, Z. Implementation of Oncomelania Hupensis monitoring system based on Baidu Map. Chin. J. Schistosomiasis Control 2017, 29, 795–797. [Google Scholar]
- Chen, Z.H.; Zhu, Y.S.; Xue, Z.; Li, X.; Ding, Y.; Bi, L.; Gao, K.; Zhang, Y. Application of electronic fence technology based on GIS in Oncomelania Hupensis snail monitoring. Chin. J. Schistosomiasis Control 2017, 29, 615–618. [Google Scholar]
- Zhang, Z.; Xu, D.; Zhou, X.; Zhou, Y.; Liu, S. Remote sensing and spatial statistical analysis to predict the distribution of Oncomelania Hupensis in the marshlands of China. Acta Trop. 2005, 96, 205–212. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. In Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Shi, L.; Xiong, C.; Liu, M.; Wei, X.; Zhang, J.; Wang, X.; Wang, T.; Hang, D.; Yang, H.; Yang, K. Evaluation of efficacy of visual intelligent recognition model for Oncomelania Hupensis based on deep learning technology. Chin. J. Parasitol. Parasit. Dis. 2021, 39, 764–770. [Google Scholar]
- Zhang, L.; Xu, Z.; Qian, Y.; Dang, H.; Lu, S.; Xu, J.; Li, S.; Zhou, X. Endemic status of schistosomiasis in China in 2016. Chin. J. Schistosomiasis Control 2017, 29, 669–677. [Google Scholar]
- Liu, L.; Yang, G.; Zhu, H.; Yang, K.; Ai, L. Knowledge of, attitudes towards, and practice relating to schistosomiasis in two subtypes of a mountainous region of China. Infect. Dis. Poverty 2014, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Zhang, J.; Li, Y.; Luo, H.; Zuo, Y.; Xu, M.; Wang, H. Analysis on Surveillance Results of Schistosomiasis Transmission Risks in Wuhan City From 2017 to 2019. Parasitoses Infect. Dis. 2021, 19, 1–5. [Google Scholar]
Technology | Applicable Risk Factors | Common Methods | Advantages | Limitations |
---|---|---|---|---|
Pathogen biology technologies | Epidemiological factors (patients, sick animals, live O. hupensis or cercariae) | Kato–Katz (KK), thick smear, egg hatch assay, tissue biopsy, etc. | Widely used in the field and considered the gold standard for the diagnosis of schistosomiasis | Time-consuming and laborious, and manual identification leads to errors due to subjectivity |
Immunological technologies | Epidemiological factors (patients, sick animals, live O. hupensis or cercariae) | Hemagglutination test (IHA), enzyme-linked immunosorbent assay (ELISA), colloidal dye test strip method (DDIA), etc. | Low cost, convenient operation, convenient sampling, and quantitative identification of epidemics in different epidemic areas | Performs poorly in early diagnosis and specificity and ineffective for detection of low intensity infections |
Imaging technologies | Epidemiological factors (schistosomiasis patients) | Computed tomography (CT), ultrasonography (US), magnetic resonance imaging (MRI), etc. | Auxiliary recognition of schistosomiasis is applied for the recognition of patients with schistosomiasis and liver disease | Accuracy is affected by the skill level of staff, and results of different observers often disagree |
Molecular biology technologies | Epidemiological factors (patients, sick animals, live O. hupensis or cercariae) | Polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), recombinase-mediated isothermal amplification (RAA), etc. | Highly specific and sensitive, basis for early risk screening in endemic areas with low schistosomiasis infection rates or low infectious snail densities | Cost and technical requirements are high, detection time is long, and applications are limited |
3S technologies | Environmental factors | Geographic information system (GIS), remote sensing (RS), and global positioning system (GPS) | Provides multiple methods for data collection, sorting, and analysis of schistosomiasis. Spatial data update speeds are fast, and study periods are short. Results are easily visualized, and schistosomiasis epidemic characteristics are directly expressed. Provides a wealth of geographical and environmental data for accurate mathematical modeling of populations and areas at risk for schistosomiasis. | Technical operations requires skilled professionals |
Mathematical modeling | Epidemiological, environmental, and socio-economic factors | Hierarchical structure modeling, regression modeling, spatial autocorrelation modeling, spatial scanning modeling, geographic weighted regression modeling, geographically and temporally weighted regression modeling, Bayesian modeling, niche modeling, etc. | Used to study relationships between disease occurrence and other factors and to predict at-risk populations and areas | Difficulties in data collection for different risk factors |
Big data and AI | Epidemiological, environmental, and socio-economic factors | Machine learning, image identification, deep learning, etc. | Accurately and quickly identifies risk factors and reduces labor costs, technical difficulties, and human judgment errors caused by subjectivity | Data demands are large, and identification reliability and accuracy need to be improved |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Zhang, J.-F.; Li, W.; Yang, K. Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China. Pathogens 2022, 11, 224. https://doi.org/10.3390/pathogens11020224
Shi L, Zhang J-F, Li W, Yang K. Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China. Pathogens. 2022; 11(2):224. https://doi.org/10.3390/pathogens11020224
Chicago/Turabian StyleShi, Liang, Jian-Feng Zhang, Wei Li, and Kun Yang. 2022. "Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China" Pathogens 11, no. 2: 224. https://doi.org/10.3390/pathogens11020224
APA StyleShi, L., Zhang, J. -F., Li, W., & Yang, K. (2022). Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China. Pathogens, 11(2), 224. https://doi.org/10.3390/pathogens11020224