Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Antibodies
2.3. Samples and Quantitative PCR (qPCR)
2.4. Equipment
2.5. Synthesis of Surface Active Maghemite Nanoparticles (SAMNs)
2.6. AuNPs’ Preparation
2.7. SAMNs/AuNPs Hybrid Preparation (SAMN@MPA@AuNPs)
3. Results and Discussion
3.1. Determining the Ideal γ-Fe2O3 Nanoparticles’ Concentration
3.2. Preparing the Immunomagnetic Colorimetric System
3.3. Colorimetric Analysis of Dilutions
3.4. PCV-2 Detection
3.5. Transmission Electron Microscopy and Negative Controls
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bi, M.; Li, X.; Zhai, W.; Yin, B.; Tian, K.; Mo, X. Structural insight into the type-specific epitope of porcine circovirus type 3. Biosci. Rep. 2020, 40, BSR20201109. [Google Scholar] [CrossRef]
- Segalés, J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhang, X.; Liu, X.; Ren, L. Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Opriessnig, T.; Karuppannan, A.K.; Castro, A.M.M.G.; Xiao, C.T. Porcine circoviruses: Current status, knowledge gaps and challenges. Virus Res. 2020, 286, 198044. [Google Scholar] [CrossRef]
- Ren, L.; Chen, X.; Ouyang, H. Interactions of porcine circovirus 2 with its hosts. Virus Genes 2016, 52, 437–444. [Google Scholar] [CrossRef]
- Saporiti, V.; Huerta, E.; Correa-Fiz, F.; Grosse Liesner, B.; Duran, O.; Segalés, J.; Sibila, M. Detection and genotyping of Porcine circovirus 2 (PCV-2) and detection of Porcine circovirus 3 (PCV-3) in sera from fattening pigs of different European countries. Transbound. Emerg. Dis. 2020, 67, 2521–2531. [Google Scholar] [CrossRef]
- Franzo, G.; Legnardi, M.; Centelleghe, C.; Tucciarone, C.M.; Cecchinato, M.; Cortey, M.; Segalés, J.; Drigo, M. Development and validation of direct PCR and quantitative PCR assays for the rapid, sensitive, and economical detection of porcine circovirus 3. J. Vet. Diagn. Investig. 2018, 30, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Cruz, T.F.; Kanashiro, T.M.; de Castro, A.M.M.G.; Baldin, C.M.; Richtzenhain, L.J.; Araujo, J.P. A double-antibody sandwich ELISA based on the porcine circovirus type 2 (PCV2) propagated in cell culture for antibody detection. Pesqui. Vet. Bras. 2016, 36, 1171–1177. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Li, C.; Wang, J.; Cheng, Y.; Ghonaim, A.H.; Sun, Q.; Yu, X.; Niu, W.; Fan, S.; He, Q. Development of an indirect immunofluorescence assay for PCV3 antibody detection based on capsid protein. Anim. Dis. 2021, 1, 11. [Google Scholar] [CrossRef]
- Kim, J.; Chae, C. A comparison of virus isolation, polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine circovirus 2 and porcine parvovirus in experimentally and naturally coinfected pigs. J. Vet. Diagnostic Investig. 2004, 16, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jiang, D.; Xiao, L.; Zhang, P.; Luo, Y.; Yang, Z.; Yao, X.; Wang, Y.; Wu, X. Development of a real-time TaqMan PCR assay for the detection of porcine circovirus 4. J. Vet. Res. 2022, 66, 29–33. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, H.; Shi, L.; Li, L. Sensitive detection of porcine circovirus 3 by droplet digital PCR. J. Vet. Diagnostic Investig. 2019, 31, 604–607. [Google Scholar] [CrossRef]
- Franzo, G.; Segalés, J. Porcine circovirus 2 genotypes, immunity and vaccines: Multiple genotypes but one single serotype. Pathogens 2020, 9, 1049. [Google Scholar] [CrossRef]
- Basso, C.R.; Cruz, T.F.; Silva, B.L.; Pedrosa, V.A.; Araújo, J.P. A methodology for porcine circovirus 2 (PCV-2) quantification based on gold nanoparticles. Materials 2020, 13, 1087. [Google Scholar] [CrossRef] [Green Version]
- Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Liu, G.; Lu, M.; Huang, X.; Li, T.; Xu, D. Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors 2018, 18, 4166. [Google Scholar] [CrossRef] [Green Version]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar]
- Pashchenko, O.; Shelby, T.; Banerjee, T.; Santra, S. A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis. ACS Infect. Dis. 2018, 4, 1162–1178. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar]
- Lee, S.H.; Sung, J.H.; Park, T.H. Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng. 2012, 40, 1384–1397. [Google Scholar] [CrossRef]
- Leonardo, S.; Toldrà, A.; Campàs, M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmentalmonitoring. Sensors 2021, 21, 602. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, H.; Sun, X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens. Bioelectron. 2019, 126, 389–404. [Google Scholar] [CrossRef]
- Bruijns, B.; van Asten, A.; Tiggelaar, R.; Gardeniers, H. Microfluidic devices for forensic DNA analysis: A review. Biosensors 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Bonaiuto, E.; Magro, M.; Fasolato, L.; Novelli, E.; Shams, S.; Piccirillo, A.; Bakhshi, B.; Moghadam, T.T.; Baratella, D.; Vianello, F. Versatile nano-platform for tailored immuno-magnetic carriers. Anal. Bioanal. Chem. 2018, 410, 7575–7589. [Google Scholar] [CrossRef]
- Johnstone, A.; Thorpe, R. Production of antibodies. In Immunochemistry in Practice; Blackwell’s Science Inc.: Malden, MA, USA, 1996; pp. 34–58. [Google Scholar]
- Ladekjær-Mikkelsen, A.S.; Nielsen, J.; Stadejek, T.; Storgaard, T.; Krakowka, S.; Ellis, J.; McNeilly, F.; Allan, G.; Bøtner, A. Reproduction of postweaning multisystemic wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-old piglets experimentally infected with porcine circovirus type 2 (PCV2). Vet. Microbiol. 2002, 89, 97–114. [Google Scholar] [CrossRef]
- Cruz, T.F.; Yamatogi, R.S.; Okuda, E.H.; Tsunemi, M.H.; Araujo Junior, J.P. Diminuição da carga viral do circovírus suíno após vacinação com Circumvent PCV em uma granja comercial. A Hora Veterinária 2014, 33, 22–26. [Google Scholar]
- Magro, M.; Sinigaglia, G.; Nodari, L.; Tucek, J.; Polakova, K.; Marusak, Z.; Cardillo, S.; Salviulo, G.; Russo, U.; Stevanato, R.; et al. Charge binding of rhodamine derivative to OH- stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012, 8, 2068–2076. [Google Scholar] [CrossRef]
- Magro, M.; Molinari, S.; Venerando, A.; Baratella, D.; Zoppellaro, G.; Salviulo, G.; Zboril, R.; Vianello, F. Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties. Appl. Surf. Sci. 2020, 534, 147567. [Google Scholar] [CrossRef]
- Baratella, D.; Magro, M.; Jakubec, P.; Bonaiuto, E.; De Almeida Roger, J.; Gerotto, E.; Zoppellaro, G.; Tucek, J.; Safarova, K.C.; Zbořil, R.; et al. Electrostatically stabilized hybrids of carbon and maghemite nanoparticles: Electrochemical study and application. Phys. Chem. Chem. Phys. 2017, 19, 11668–11677. [Google Scholar] [CrossRef]
- Magro, M.; Faralli, A.; Baratella, D.; Bertipaglia, I.; Giannetti, S.; Salviulo, G.; Zboril, R.; Vianello, F. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Langmuir 2012, 28, 15392–15401. [Google Scholar] [CrossRef]
- Basso, C.R.; Crulhas, B.P.; Magro, M.; Vianello, F.; Pedrosa, V.A. A new immunoassay of hybrid nanomater conjugated to aptamers for the detection of dengue virus. Talanta 2019, 197, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.R.; Tozato, C.C.; Junior, J.P.A.; Pedrosa, V.A. A fast and highly sensitive method for the detection of canine distemper virus by the naked eye. Anal. Methods 2015, 7, 2264–2267. [Google Scholar] [CrossRef]
- Basso, C.R.; Tozato, C.C.; Crulhas, B.P.; Castro, G.R.; Junior, J.P.A.; Pedrosa, V.A. An easy way to detect dengue virus using nanoparticle-antibody conjugates. Virology 2018, 513, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Reth, M. Matching cellular dimensions with molecular sizes. Nat. Immunol. 2013, 14, 765–767. [Google Scholar] [CrossRef]
- Gava, D.; Serrão, V.H.B.; Fernandes, L.T.; Cantão, M.E.; Ciacci-Zanella, J.R.; Morés, N.; Schaefer, R. Structure analysis of capsid protein of Porcine circovirus type 2 from pigs with systemic disease. Brazilian J. Microbiol. 2018, 49, 351–357. [Google Scholar] [CrossRef]
- Nawagitgul, P.; Morozov, I.; Bolin, S.R.; Harms, P.A.; Sorden, S.D.; Paul, P.S. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J. Gen. Virol. 2000, 81, 2281–2287. [Google Scholar] [CrossRef]
- Kulanayake, S.; Tikoo, S.K. Adenovirus core proteins: Structure and function. Viruses 2021, 13, 388. [Google Scholar] [CrossRef]
- Mietzsch, M.; Pénzes, J.J.; Agbandje-Mckenna, M. Twenty-five years of structural parvovirology. Viruses 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
Sample Identification | Quantification (Copies/µL) | Log10 |
---|---|---|
SO12178 (1) | 102.76 (1.0 × 102) | 2.01 |
SO2G3 (2) | 243.53 (2.4 × 102) | 2.39 |
SO10754 (3) | 261.17 (2.6 × 102) | 2.41 |
SO3G3 (4) | 258.51 (2.5 × 102) | 2.41 |
SO12669 (5) | 372.85 (3.7 × 102) | 2.57 |
SO10765 (6) | 421.87 (4.2 × 102) | 2.62 |
SO12166 (7) | 427.69 (4.2 × 102) | 2.63 |
SO11948 (8) | 524.12 (5.2 × 102) | 2.71 |
SO12670 (9) | 744.71 (7.4 × 102) | 2.87 |
SO6G3 (10) | 924.35 (9.2 × 102) | 2.97 |
SO8783 (11) | 1053.00 (1.0 × 103) | 3.02 |
SO10768 (12) | 1048.94 (1.0 × 103) | 3.02 |
SO12659 (13) | 1433.95 (1.4 × 103) | 3.15 |
SO10782 (14) | 1606.38 (1.6 × 103) | 3.20 |
SO8791 (15) | 2654.20 (2.6 × 103) | 3.42 |
SO10767 (16) | 3638.10 (3.6 × 103) | 3.56 |
SO8808 (17) | 4194.48 (4.1 × 103) | 3.62 |
SO8786 (18) | 5222.79 (5.2 × 103) | 3.71 |
SO10774 (19) | 5320.76 (5.3 × 103) | 3.72 |
SO10779 (20) | 6998.65 (6.9 × 103) | 3.84 |
SO8819 (21) | 10,021.12 (1.0 × 104) | 4.00 |
SO8777 (22) | 15,282.53 (1.5 × 104) | 4.18 |
SO7G1 (23) | 15,617.45 (1.5 × 104) | 4.19 |
SO8797 (24) | 25,536.00 (2.5 × 104) | 4.41 |
SO8803 (25) | 31,019.83 (3.1 × 104) | 4.49 |
SO8798 (26) | 48,457.79 (4.8 × 104) | 4.68 |
SO8823 (27) | 54,500.54 (5.4 × 104) | 4.73 |
SO5G1 (28) | 63,113.80 (6.3 × 104) | 4.80 |
SO8810 (29) | 67,447.09 (6.7 × 104) | 4.82 |
SO11974 (30) | 88,895.16 (8.8 × 104) | 4.94 |
SO12479 (31) | 11,2631.20 (1.1 × 105) | 5.05 |
SO8820 (32) | 112,741.70 (1.1 × 105) | 5.05 |
SO12468 (33) | 124,190.49 (1.2 × 105) | 5.09 |
SO8799 (34) | 128,539.20 (1.2 × 105) | 5.10 |
SO8800 (35) | 151,231.50 (1.5 × 105) | 5.17 |
SO8790 (36) | 186,290.20 (1.8 × 105) | 5.27 |
SO8788 (37) | 241,207.80 (2.4 × 105) | 5.38 |
SO8802 (38) | 377,181.30 (3.7 × 105) | 5.57 |
SO8787 (39) | 824,489.50 (8.2 × 105) | 5.91 |
SO8795 (40) | 909,932.00 (9.0 × 105) | 5.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, C.R.; Yamakawa, A.C.; Cruz, T.F.; Pedrosa, V.A.; Magro, M.; Vianello, F.; Araújo Júnior, J.P. Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens 2022, 11, 570. https://doi.org/10.3390/pathogens11050570
Basso CR, Yamakawa AC, Cruz TF, Pedrosa VA, Magro M, Vianello F, Araújo Júnior JP. Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens. 2022; 11(5):570. https://doi.org/10.3390/pathogens11050570
Chicago/Turabian StyleBasso, Caroline Rodrigues, Ana Carolina Yamakawa, Taís Fukuta Cruz, Valber Albuquerque Pedrosa, Massimiliano Magro, Fabio Vianello, and João Pessoa Araújo Júnior. 2022. "Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis" Pathogens 11, no. 5: 570. https://doi.org/10.3390/pathogens11050570
APA StyleBasso, C. R., Yamakawa, A. C., Cruz, T. F., Pedrosa, V. A., Magro, M., Vianello, F., & Araújo Júnior, J. P. (2022). Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens, 11(5), 570. https://doi.org/10.3390/pathogens11050570