Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria for Study Participation
2.2. Study Location/Population
2.3. Sample Collection
2.4. Bacteria Isolation
2.5. DNA Extraction
2.6. Detection of Virulence Factors for DEC
2.7. Antibiotic Susceptibility Test
2.8. Over-Expression of Efflux Pump Activity in Multidrug Resistant (MDR) DEC Isolates
2.9. Statistical Analysis
3. Results
3.1. Isolation of Presumptive DEC
3.2. Prevalence of Hetero-Pathogenic and DEC Pathotypes among the Diarrheic Children
3.3. Distribution of Virulence Genes and DEC Pathotypes in Various Food and Environmental Sources
3.4. Socio-Demographic and Risk Factors of DEC Pathotypes
3.5. Antimicrobial Susceptibility and Multidrug Resistance Profiles of Selected DEC Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokomane, M.; Kasvosve, I.; Melo, E.D.; Pernica, J.M.; Goldfarb, D.M. The global problem of childhood diarrheal diseases: Emerging strategies in prevention and management. Ther. Adv. Infect. Dis. 2018, 5, 29–43. [Google Scholar] [PubMed]
- Olufunke, A.; Peter, A.K.; Akinniyi, A.P. Resistant Plasmid Profile Analysis of Shigella spp Isolated from Stool Samples of School Children from Selected Communities in Odeda Local Government, Ogun State. Int. J. Microbiol. Biotechnol. 2019, 4, 49. [Google Scholar] [CrossRef]
- Peter, A.K.; Umar, U. Combating diarrhea in Nigeria: The way forward. J. Microbiol. Exp. 2018, 6, 191–197. [Google Scholar]
- Kotloff, K.L. The burden and etiology of diarrheal illness in developing countries. Pediatr. Clin. N. Am. 2017, 64, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Baye, A.; Adane, M.; Sisay, T.; Hailemeskel, H.S. Priorities for intervention to prevent diarrhea among children aged 0–23 months in northeastern Ethiopia: A matched case-control study. BMC Pediatr. 2021, 21, 155. [Google Scholar] [CrossRef] [PubMed]
- Zelelie, T.Z.; Eguale, T.; Yitayew, B.; Abeje, D.; Alemu, A.; Seman, A.; Jass, J.; Mihret, A.; Abebe, T. Molecular epidemiology and antimicrobial susceptibility of diarrheagenic Escherichia coli isolated from children under age five with and without diarrhea in Central Ethiopia. PLoS ONE 2023, 18, e0288517. [Google Scholar] [CrossRef] [PubMed]
- Saka, H.K.; Dabo, N.T.; Muhammad, B.; García-Soto, S.; Ugarte-Ruiz, M.; Alvarez, J. Diarrheagenic Escherichia coli pathotypes from children younger than 5 years in Kano State, Nigeria. Front. Public Health 2019, 7, 348. [Google Scholar] [CrossRef]
- Pawłowska, B.; Sobieszczańska, B.M. Intestinal epithelial barrier: The target for pathogenic Escherichia coli. Adv. Clin. Exp. Med. 2017, 26, 1437–1445. [Google Scholar] [CrossRef]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrheal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Cabrera-Sosa, L.; Ochoa, T.J. Escherichia coli diarrhea. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–485. [Google Scholar]
- García, A.; Fox, J.G. A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts. Comp. Med. 2021, 71, 3–45. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.d.M.; Santos, F.F.; Silva, R.M.; Gomes, T.A.T. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect. Microbiol. 2020, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Foley, C.; Harvey, E.; Bidol, S.A.; Henderson, T.; Njord, R.; DeSalvo, T.; Haupt, T.; Mba-Jonas, A.; Bailey, C.; Bopp, C.; et al. Outbreak of Escherichia coli O104: H4 infections associated with sprout consumption—Europe and North America, May–July 2011. Morb. Mortal. Wkly. Rep. 2013, 62, 1029. [Google Scholar]
- Dutta, S.; Pazhani, G.P.; Nataro, J.P.; Ramamurthy, T. Heterogenic virulence in a diarrheagenic Escherichia coli: Evidence for an EPEC expressing heat-labile toxin of ETEC. Int. J. Med. Microbiol. 2015, 305, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; Santos, A.R.R.; Rocha, L.B.; Caetano, B.A.; Mitsunari, T.; Santos, L.I.; Polatto, J.M.; Horton, D.S.P.Q.; Guth, B.E.C.; dos Santos, L.F.; et al. Development and validation of Shiga toxin-producing Escherichia coli immunodiagnostic assay. Microorganisms 2019, 7, 276. [Google Scholar] [CrossRef] [PubMed]
- Onanuga, A.; Igbeneghu, O.; Lamikanra, A. A study of the prevalence of diarrheagenic Escherichia coli in children from Gwagwalada, Federal Capital Territory, Nigeria. Pan Afr. Med. J. 2014, 17, 146. [Google Scholar] [CrossRef]
- Canizalez-Roman, A.; Flores-Villaseñor, H.M.; Gonzalez-Nuñez, E.; Velazquez-Roman, J.; Vidal, J.E.; Muro-Amador, S.; Alapizco-Castro, G.; Díaz-Quiñonez, J.A.; León-Sicairos, N. Surveillance of diarrheagenic Escherichia coli strains isolated from diarrhea cases from children, adults and elderly at Northwest of Mexico. Front. Microbiol. 2016, 7, 1924. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Hou, H.; Lu, Y.; Yu, J.; Mao, L.; Mao, L.; Sun, Z. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: A hospital based study. BMC Infect. Dis. 2018, 18, 63. [Google Scholar] [CrossRef]
- Omolajaiye, S.A.; Afolabi, K.O.; Iweriebor, B.C. Pathotyping and antibiotic resistance profiling of Escherichia coli isolates from children with acute diarrhea in amatole district municipality of Eastern Cape, South Africa. BioMed Res. Int. 2020, 2020, 4250165. [Google Scholar] [CrossRef]
- Hazen, T.H.; Michalski, J.; Luo, Q.; Shetty, A.C.; Daugherty, S.C.; Fleckenstein, J.M.; Rasko, D.A. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli. Sci. Rep. 2017, 7, 3513. [Google Scholar] [CrossRef]
- Choo, E.; Jang, S.S.; Kim, K.; Lee, K.-G.; Heu, S.; Ryu, S. Prevalence and genetic diversity of Bacillus cereus in dried red pepper in Korea. J. Food Prot. 2007, 70, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Persson, S.; Olsen, K.E.; Scheutz, F.; Krogfelt, K.A.; Gerner-Smidt, P. A method for fast and simple detection of major diarrheagenic Escherichia coli in the routine diagnostic laboratory. Clin. Microbiol. Infect. 2007, 13, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, CLSI M100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Basak, S.; Singh, P.; Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 2016, 4065603. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; McCusker, M.P.; Viveiros, M.; Couto, I.; Fanning, S.; Pagès, J.-M.; Amaral, L. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J. 2013, 7, 72–82. [Google Scholar] [CrossRef]
- Humphries, R.M.; Linscottb, A.J. Practical Guidance for Clinical Microbiology Laboratories: Diagnosis of Bacterial Gastroenteritis. Clin. Microbiol. Rev. 2015, 28, 3–31. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Operario, D.J.; Houpt, E.R. Molecular Diagnosis of Diarrhea: Current Status and Future Potential. Curr. Infect. Dis. Rep. 2011, 14, 41–46. [Google Scholar] [CrossRef]
- Miliwebsky, E.; Schelotto, F.; Varela, G.; Luz, D.; Chinen, I.; Piazza, R.M.F. Human diarrheal infections: Diagnosis of diarrheagenic Escherichia coli pathotypes. In Escherichia coli in the Americas; Torres, A.G., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 343–369. [Google Scholar] [CrossRef]
- Okeke, I.N.; Lamikanra, A.; Steinrück, H.; Kaper, J.B. Characterization of Escherichia coli strains from cases of childhood diarrhea in provincial southwestern Nigeria. J. Clin. Microbiol. 2000, 38, 7–12. [Google Scholar] [CrossRef]
- Nweze, E.I. Aetiology of diarrhea and virulence properties of diarrheagenic Escherichia coli among patients and healthy subjects in southeast Nigeria. J. Health Popul. Nutr. 2010, 28, 245. [Google Scholar] [CrossRef]
- Ifeanyi, C.I.C.; Ikeneche, N.F.; Bassey, B.E.; Al-Gallas, N.; Ben Aissa, R.; Boudabous, A. Diarrheagenic Escherichia coli pathotypes isolated from children with diarrhea in the Federal Capital Territory Abuja, Nigeria. J. Infect. Dev. Ctries. 2015, 9, 165–174. [Google Scholar] [CrossRef]
- Odetoyin, B.W.; Hofmann, J.; Aboderin, A.O.; Okeke, I.N. Diarrheagenic Escherichia coli in mother-child pairs in ile-ife, Southwestern Nigeria. BMC Infect. Dis. 2015, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Moyo, S.J.; Maselle, S.Y.; I Matee, M.; Langeland, N.; Mylvaganam, H. Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania. BMC Infect. Dis. 2007, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Oundo, J.O.; Hibino, T.; Saidi, S.M.; Hinenoya, A.; Osawa, K.; Shirakawa, T.; Osawa, R.; Yamasaki, S. High prevalence of diarrheagenic Escherichia coli among children with diarrhea in Kenya. Jpn. J. Infect. Dis. 2017, 70, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Kathiiko, C.; Wada, A.; Odoyo, E.; Bundi, M.; Miringu, G.; Guyo, S.; Karama, M.; Ichinose, Y. Prevalence, seasonal variation, and antibiotic resistance pattern of enteric bacterial pathogens among hospitalized diarrheic children in suburban regions of central Kenya. Trop. Med. Health 2016, 44, 39. [Google Scholar] [CrossRef] [PubMed]
- Konaté, A.; Dembélé, R.; Kagambèga, A.; Soulama, I.; Kaboré, W.A.D.; Sampo, E.; Cissé, H.; Sanou, A.; Serme, S.; Zongo, S.; et al. Molecular characterization of diarrheagenic Escherichia coli in children less than 5 years of age with diarrhea in Ouagadougou, Burkina Faso. Eur. J. Microbiol. Immunol. 2017, 7, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.M.; Foster, M.A.; Iqbal, J.; Fonnesbeck, C.; Payne, D.C.; Zhang, C.; Chappell, J.D.; Halasa, N.; Gómez-Duarte, O.G. Diarrheagenic Escherichia coli and acute gastroenteritis in children in Davidson County, Tennessee, United States: A Case-control Study. Pediatr. Infect. Dis. J. 2018, 37, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Hartadi, E.B.; Effendi, M.H.; Plumeriastuti, H.; Sofiana, E.D.; Wibisono, F.M.; Hidayatullah, A.R. A review of enterotoxigenic Escherichia coli infection in piglets: Public health importance. Syst. Rev. Pharm. 2020, 11, 687–698. [Google Scholar]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef]
- Turunen, K.; Antikainen, J.; Lääveri, T.; Kirveskari, J.; Svennerholm, A.-M.; Kantele, A. Clinical aspects of heat-labile and heat-stable toxin-producing enterotoxigenic Escherichia coli: A prospective study among Finnish travellers. Travel Med. Infect. Dis. 2020, 38, 101855. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Luo, Q.; Davis, S.M.; Westra, C.; Vickers, T.J.; Fleckenstein, J.M. Molecular determinants of enterotoxigenic Escherichia coli heat-stable toxin secretion and delivery. Infect. Immun. 2018, 86, e00526-18. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed]
- Fröhlicher, E.; Krause, G.; Zweifel, C.; Beutin, L.; Stephan, R. Characterization of attaching and effacing Escherichia coli (AEEC) isolated from pigs and sheep. BMC Microbiol. 2008, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.A.; Yamamoto, D.; Vieira, M.A.; Hernandes, R.T. Atypical enteropathogenic Escherichia coli. In Escherichia coli in the Americas; Springer: Cham, Switzerland, 2016; pp. 77–96. [Google Scholar]
- Trabulsi, L.R.; Keller, R.; Gomes, T.A.T. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 2002, 8, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Bolukaoto, J.Y.; Singh, A.; Alfinete, N.; Barnard, T.G. Occurrence of Hybrid Diarrhoeagenic Escherichia coli Associated with Multidrug Resistance in Environmental Water, Johannesburg, South Africa. Microorganisms 2021, 9, 2163. [Google Scholar] [CrossRef]
- Enyi-Idoh, K.H.; Akwa, O.A.; Bassey, I.U.; Idim, V.D.; Egeonu, S.U. Prevalence and Antibiotic Susceptibility Patterns of Escherichia coli O157: H7 in Children 0–24 Months in Calabar South LGA of Cross River State, Nigeria. Prevalence 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Orth, D.; Würzner, R. What Makes an Enterohemorrhagic Escherichia coli? Clin. Infect. Dis. 2006, 43, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2012, 2, 90. [Google Scholar] [CrossRef]
- Spickler, A.R. Enterohemorrhagic Escherichia coli Infections. 2016. Available online: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php (accessed on 26 September 2022).
- Michelacci, V.; Prosseda, G.; Maugliani, A.; Tozzoli, R.; Sanchez, S.; Herrera-León, S.; Dallman, T.; Jenkins, C.; Caprioli, A.; Morabito, S. Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe. Clin. Microbiol. Infect. 2015, 22, 278.e11–287.e19. [Google Scholar] [CrossRef]
- Newitt, S.; MacGregor, V.; Robbins, V.; Bayliss, L.; Chattaway, M.A.; Dallman, T.; Ready, D.; Aird, H.; Puleston, R.; Hawker, J. Two linked enteroinvasive Escherichia coli outbreaks, Nottingham, UK, June 2014. Emerg. Infect. Dis. 2016, 22, 1178. [Google Scholar] [CrossRef]
- Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Bratoeva, M.P.; Wolf, M.K.; Marks, J.K.; Cantey, J.R. A case of diarrhea, bacteremia, and fever caused by a novel strain of Escherichia coli. J. Clin. Microbiol. 1994, 32, 1383–1386. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Garcia, F. Escherichia coli O104: H4 pathogenesis: An enteroaggregative E. coli/Shiga toxin-producing E. coli explosive cocktail of high virulence. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli; American Society for Microbiology: Washington, DC, USA, 2015; pp. 503–529. [Google Scholar]
- Kessler, R.; Nisa, S.; Hazen, T.H.; Horneman, A.; Amoroso, A.; Rasko, D.A.; Donnenberg, M.S. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes. Pathog. Dis. 2015, 73, ftv076. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.W.; Bouts, A.H.; Rossen, J.W.; Van der Kuip, M.; Van Heerde, M.; Bökenkamp, A. Diarrhea, urosepsis and hemolytic uremic syndrome caused by the same heteropathogenic Escherichia coli strain. Pediatr. Infect. Dis. J. 2016, 35, 1045–1047. [Google Scholar] [CrossRef]
- Soysal, N.; Mariani-Kurkdjian, P.; Smail, Y.; Liguori, S.; Gouali, M.; Loukiadis, E.; Fach, P.; Bruyand, M.; Blanco, J.; Bidet, P.; et al. Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg. Infect. Dis. 2016, 22, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Wijnsma, K.L.; Schijvens, A.M.; Rossen, J.W.A.; Kooistra-Smid, A.M.D.; Schreuder, M.F.; van de Kar, N.C.A.J. Unusual severe case of hemolytic uremic syndrome due to Shiga toxin 2d-producing E. coli O80:H2. Pediatr. Nephrol. 2017, 32, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Reuben, C.R.; Makut, M.D. Occurrence of Escherichia coli O157: H7 in vegetables grown and sold in Lafia metropolis, Nigeria. World J. Microbiol. 2014, 1, 017–021. [Google Scholar]
- Moses, A.E.; James, R.A.; Ekanem, U.S. Prevalence of Escherichia coli O157 in fruits, vegetables and animal feacal waste used as manure in farms of some communities of Akwa Ibom State-Nigeria. Central Afr. J. Public Health 2016, 1, 22–27. [Google Scholar]
- Maikai, B.; Akubo, D. Coliform count and isolation of Escherichia coli in fresh fruits and vegetables sold at retail outlets in Samaru, Kaduna State, Nigeria. Niger. Veter-J. 2019, 39, 327. [Google Scholar] [CrossRef]
- Ehim, N.H.; Muk, M.F.; Salisu, N. Prevalence of bacterial loads on some fruits and vegetables sold in kaduna central market, Northwestern Nigeria. J. Appl. Sci. 2018, 19, 20–24. [Google Scholar] [CrossRef]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef]
- A Shetty, V.; Kumar, S.H.; Shetty, A.K.; Karunasagar, I.; Karunasagar, I. Prevalence and characterization of diarrheagenic Escherichia coli isolated from adults and children in Mangalore, India. J. Lab. Physicians 2012, 4, 024–029. [Google Scholar] [CrossRef] [PubMed]
- Vilchez, S.; Reyes, D.; Paniagua, M.; Bucardo, F.; Möllby, R.; Weintraub, A. Prevalence of diarrheagenic Escherichia coli in children from Leon, Nicaragua. J. Med. Microbiol. 2009, 58, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Garcia, T.; Cerna, J.F.; Thompson, M.R.; Lopez-Saucedo, C. Faecal contamination and enterotoxigenic Escherichia coli in street-vended chili sauces in Mexico and its public health relevance. Epidemiology Infect. 2002, 129, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Nasrin, N.; Rizwan, F.; Nahar, L.; Bhowmik, A.; Esha, S.A.; Talukder, K.A.; Akter, M.; Roy, A.; Ahmed, M. Microbial contamination of street vended foods from a university campus in Bangladesh. Southeast Asian J. Trop. Med. Public Health 2015, 46, 480–485. [Google Scholar] [PubMed]
- Ugboko, H.U.; Fatoki, T.H.; Nwinyi, O.C.; Ibraheem, O.; Omonhinmin, C.A.; Fatoki, J.M.; Adetuyi, O.Y. Computational Study of 16S rRNA of Microbe Cluster Implicated in Diarrheal: Phylogeny, Docking, and Dynamics. Res. Sq. 2021, 1–19. [Google Scholar] [CrossRef]
- Adenodi, S.; Oyejide, N.; Fayemi, S.; Ayoade, F. Prevalence of Antibiotic-Resistant Strains of Escherichia coli in Drinking Water Samples from Mowe Metropolis, Ogun State, Nigeria. Afr. J. Clin. Exp. Microbiol. 2014, 15, 69. [Google Scholar] [CrossRef]
- Ivbade, A.; Ojo, O.E.; Dipeolu, M.A. Shiga toxin-producing Escherichia coli O157:H7 in milk and milk products in Ogun State, Nigeria. Vet. Ital. 2014, 50, 185–191. [Google Scholar] [CrossRef]
- Odumosu, B.; Akintimehin, A. Occurrence of extended-spectrum beta-lactamase producing Enterobacteriaceae isolates in communal water sources in Ogun State, Nigeria. Afr. J. Clin. Exp. Microbiol. 2014, 16, 28. [Google Scholar] [CrossRef]
- Akpan, S.N.; Odeniyi, O.A.; Adebowale, O.O.; Alarape, S.A.; Adeyemo, O.K. Antibiotic resistance profile of Gram-negative bacteria isolated from Lafenwa abattoir effluent and its receiving water (Ogun River) in Abeokuta, Ogun state, Nigeria. Onderstepoort J. Veter-Res. 2020, 87, 8. [Google Scholar] [CrossRef]
- Efunshile, A.M.; Ezeanosike, O.; Nwangwu, C.C.; König, B.; Jokelainen, P.; Robertson, L.J. Apparent overuse of antibiotics in the management of watery diarrhea in children in Abakaliki, Nigeria. BMC Infect. Dis. 2019, 19, 275. [Google Scholar] [CrossRef]
- Ogunsola, F.T.; Jewoola, O.O.; Bode-Sojobi, I.O.; Okonji, P. High carriage rates of extended-spectrum beta-lactamase-producing enterobacteriaceae in children at admission into paediatric wards of a university teaching hospital in Lagos, Nigeria. Niger. Postgrad. Med. J. 2020, 27, 136–142. [Google Scholar] [CrossRef]
- Msolo, L.; Iweriebor, B.C.; I Okoh, A. Antimicrobial Resistance Profiles of Diarrheagenic E. coli (DEC) and Salmonella Species Recovered from Diarrheal Patients in Selected Rural Communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect. Drug Resist. 2020, 13, 4615–4626. [Google Scholar] [CrossRef]
- Mabika, R.M.; Liabagui, S.L.O.; Moundounga, H.K.; Mounioko, F.; Souza, A.; Yala, J.F. Molecular Prevalence and Epidemiological Characteristics of Diarrheagenic E. coli in Children under 5 Years Old in the City of Koula-Moutou, East-Central Gabon. Open J. Med. Microbiol. 2021, 11, 157–175. [Google Scholar] [CrossRef]
- Papkou, A.; Hedge, J.; Kapel, N.; Young, B.; MacLean, R.C. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat. Commun. 2020, 11, 3970. [Google Scholar] [CrossRef]
Primer | Gene Target | Virulence Factor/Gene | Primer Sequence (5′-3′) | Final Conc. (µM) | Amplicon Size (bp) |
---|---|---|---|---|---|
StFh | Human estA | ST1h | TTTCGCTCAGGATGCTAAACCAG | 0.4 | 151 |
StRh | CAGGATTACAACACAATTCACAGCAGTA | ||||
StFp | Porcine estA | ST1p | CTTTCCCCTCTTTTAGTCAGTCAACTG | 0.4 | 160 |
StRp | CAGGATTACAACAAAGTTCACAGCAG | ||||
PS3 | vtx1 | VT1 | GTTTGCAGTTGATGTCAGAGGGA | 0.25 | 260 |
PS4 | CAACGAATGGCGATTTATCTGC | ||||
PS5 | Eae | Intimin | GGYCAGCGTTTTTTCCTTCCTG | 0.15 | 377 |
PS6 | TCGTCACCARAGGAATCGGAG | ||||
PS7 | vtx2 | VT2 | GCCTGTCGCCAGTTATCTGACA | 0.5 | 420 |
PS8 | GGAATGCAAATCAGTCGTCACTC | ||||
PS9 | eltA | LTI | AAACCGGCTTTGTCAGATATGATGA | 0.45 | 479 |
PS10 | TGTGCTCAGATTCTGGGTCTCCT | ||||
PS11 | ipaH | IpaH | TTGACCGCCTTTCCGATACC | 0.1 | 647 |
PS12 | ATCCGCATCACCGCTCAGAC |
Virulence Genes | DEC Pathotypes | Hetero-Pathogenic DEC Pathotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ipaH | vtx1 | vtx2 | eae | eltA | estA-h | estA-p | ETEC | EPEC | ETEC/EPEC | ETEC/EIEC | ETEC/VTEC |
- | + | - | - | - | + | + | - | - | - | - | 1 (0.7) * |
- | - | + | - | - | + | - | - | - | - | - | 1 (0.7) |
- | + | + | - | - | + | - | - | - | - | - | 1(0.7) |
- | + | + | - | - | - | + | - | - | - | - | 1 (0.7) |
- | - | - | + | - | - | + | - | - | 6 (4.3) | - | - |
+ | - | - | - | - | + | + | - | - | - | 1 (0.7) | - |
- | - | - | + | - | - | - | - | 7 (5.0) | - | - | - |
- | - | - | - | - | + | - | 13 (9.4) | - | - | - | - |
- | - | - | - | - | - | + | 96 (69.1) | - | - | - | - |
- | - | - | - | - | + | + | 12 (8.6) | - | - | - | - |
TOTAL | 121 (87.1) | 7 (5.0) | 6 (4.6) | 1 (0.7) | 4 (2.9) |
Pathotypes | Number of Child Cases | % Prevalence |
---|---|---|
ETEC | 49 | 21.05 |
EPEC | 1 | 0.44 |
DEC Hetero-pathotypes | ||
VTEC-ETEC | 3 | 1.32 |
ETEC-EPEC | 5 | 2.13 |
ETEC-EIEC | 1 | 0.44 |
Total | 59 | 25.88 |
Virulence Genes | Food Sources (n = 362) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DEC Pathotypes | Hetero-Pathogenic DEC | |||||||||||||
ipaH | vtx1 | vtx2 | eae | eltA | estA-h | estA-p | ETEC | VTEC | EPEC | EIEC | ETEC-VTEC | ETEC-EIEC | ETEC-EPEC | ETEC-EPEC-VTEC |
- | - | - | - | - | + | - | 40 (11.1) * | - | - | - | - | - | - | - |
- | - | - | - | - | - | + | 23 (6.4) | - | - | - | - | - | - | - |
- | - | - | - | - | + | + | 17 (4.7) | - | - | - | - | - | - | - |
- | + | + | - | - | - | - | - | 2 (0.6) | - | - | - | - | - | - |
- | + | - | - | - | - | - | - | 4 (1.1) | - | - | - | - | - | - |
- | - | + | - | - | - | - | - | 1 (0.3) | - | - | - | - | - | - |
+ | - | - | - | - | - | - | - | - | - | 2 (0.6) | - | - | - | - |
- | - | - | + | - | - | - | - | - | 2 (0.6) | - | - | - | - | - |
- | + | - | - | - | + | + | - | - | - | - | 2 (0.6) | - | - | - |
+ | - | - | - | - | + | + | - | - | - | - | - | 2 (0.6) | - | - |
- | + | - | - | - | - | + | - | - | - | - | 1 (0.3) | - | - | - |
- | - | - | + | - | + | - | - | - | - | - | - | - | 2 (0.6) | - |
- | + | - | - | - | + | - | - | - | - | - | 5 (1.4) | - | - | - |
- | - | - | + | - | + | + | - | - | - | - | - | - | 1 (0.3) | - |
- | + | - | + | - | - | + | - | - | - | - | - | - | - | 1 (0.3) |
TOTAL | 80 (22.1) | 7 (1.9) | 2 (0.6) | 2 (0.6) | 8 (2.2) | 2 (0.6) | 3 (0.8) | 1 (0.3) |
Sources | Positive Samples for DEC Pathotypes | ||||||||
---|---|---|---|---|---|---|---|---|---|
ETEC | EPEC | VTEC | EIEC | ETEC-VTEC | ETEC-EIEC | ETEC-EPEC | ETEC-EPEC-VTEC | ||
Food | Leftover food (n = 18) | 1 (5.6) * | - | - | - | 1 (5.6) | - | - | - |
Fresh produce (n = 252) | 73 (29.0) | 2 (0.8) | 5 (2.0) | 2 (0.8) | 6 (2.4) | 2 (0.8) | 3 (1.2) | 1 (0.4) | |
Drinking water (n = 92) | 2 (2.2) | - | 2 (2.2) | - | 1 (1.1) | - | - | - | |
Wastewater (n = 183) | 4 (2.2) | - | - | - | - | - | - | - | |
Total | 80 | 2 | 7 | 2 | 8 | 2 | 3 | 1 |
Number of Positive Samples (% Positive) * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sources | Number of Samples | ETEC | EPEC | VTEC | EIEC | ETEC-VTEC | ETEC-EIEC | ETEC-EPEC | ETEC-EPEC-VTEC | Total DEC | |
Fresh farm produce | Cabbage | 36 | 17 (47.2) * | 1 (2.8) | 2 (5.6) | 1 (2.8) | 2 (5.6) | 1 (2.8) | 1 (2.8) | 1 (2.8) | 26 (72.2) |
Carrot | 36 | 15 (41.7) | - | 1 (2.8) | 1 (2.8) | 2 (5.6) | 1 (2.8) | - | - | 20 (55.6) | |
Cucumber | 36 | 11 (30.6) | - | 1 (2.8) | - | 1 (2.8) | - | - | - | 13 (36.1) | |
Watermelon | 36 | 6 (16.7) | - | - | - | - | - | - | - | 6 (16.7) | |
Pineapple | 36 | 10 (27.8) | - | - | - | - | - | 1 (2.8) | - | 11 (30.6) | |
Lettuce | 36 | 9 (25) | - | 1 (2.8) | - | 1 (2.8) | - | - | - | 11 (30.6) | |
Pawpaw | 36 | 5 (13.9) | 1 (2.8) | - | - | - | - | 1 (2.8) | - | 7 (19.4) | |
Total | 252 | 73 (29.0) | 2 (0.8) | 5 (2.0) | 2 (0.8) | 6 (2.4) | 2 (0.8) | 3 (1.2) | 1 (0.4) |
Variable | Total No. | Cases with DEC | Percentage (%) | OR (95% CI) | p Value |
---|---|---|---|---|---|
Gender | |||||
Female | 110 | 25 | 22.73 | 1 | |
Male | 118 | 34 | 28.81 | 1.5 (0.8–2.5) | 0.37 |
Age (year) | |||||
2–5 | 131 | 31 | 23.66 | 1 | |
Less than 2 | 97 | 28 | 28.87 | 0.8 (0.4–1.4) | 0.46 |
Fever | |||||
Absent | 98 | 21 | 21.43 | 1 | |
Present | 130 | 38 | 29.23 | 1.5 (0.8–2.8) | 0.24 |
Vomiting | |||||
No | 143 | 37 | 25.87 | 1 | |
Yes | 85 | 22 | 25.88 | 1.0 (0.5–1.9) | 1 |
Appetite | |||||
Yes | 134 | 33 | 24.63 | 1 | |
No | 94 | 26 | 27.66 | 2.3 (1.2–4.1) | 0.012 * |
Nausea | |||||
No | 193 | 49 | 25.39 | 1 | |
Yes | 35 | 10 | 28.57 | 1.2 (0.5–2.6) | 0.85 |
Abdominal pain | |||||
Absent | 169 | 36 | 21.3 | 1 | |
Present | 59 | 23 | 38.98 | 2.4 (1.3–4.5) | 0.013 * |
ORS before Hospital presentation | 23.02 | ||||
No | 126 | 29 | 29.41 | 1 | |
Yes | 102 | 30 | 1.4 (0.8–2.5) | 0.35 | |
Self-prescribed antibiotic | 25.73 | ||||
No | 206 | 53 | 27.27 | 1 | |
Yes | 22 | 6 | 1.1 (0.4–2.9) | 1 | |
Site of enrollment | |||||
School/daycare | 167 | 18 | 10.78 | 1 | |
Others | 60 | 41 | 68.33 | 1.3 (0.7–2.5) | 0.51 |
Other siblings with similar symptoms | 26.92 | ||||
Yes | 26 | 7 | 25.74 | 1 | |
No | 202 | 52 | 1.1 (0.42–2.7) | 1 | |
Feeding Type | |||||
Breastfeeding | 38 | 11 | 28.95 | 1 | |
Breastfeeding + Infant formula | 38 | 9 | 23.68 | 0.8 (0.3–2.1) | |
Breastfeeding + Infant formula + Solid food | 53 | 16 | 30.19 | 1.1 (0.4–2.7) | |
Infant formula + weaning food | 27 | 7 | 25.93 | 0.9 (0.3–2.6) | |
Solid food | 71 | 16 | 22.54 | 0.7 (0.3–1.8) | |
Street food consumption | |||||
Absent | 168 | 37 | 22.02 | 1 | |
Present | 60 | 22 | 36.67 | 2.1 (1.1–3.9) | 0.04 * |
Type of toilet used | |||||
Water closet | 194 | 51 | 26.29 | 1 | |
Pit Latrine | 11 | 4 | 36.36 | 1.6 (0.5–5.7) | |
Potty | 23 | 4 | 17.39 | 0.6 (0.2–1.8) | |
Source of drinking water | |||||
Sachet water | 68 | 8 | 11.76 | 1 | |
Bottled water | 41 | 12 | 29.27 | 0.6 (0.1–2.4) | |
Private well/borehole | 107 | 26 | 24.3 | 1.2 (0.3–5.4) | |
Community tap | 10 | 3 | 30 | 0.9 (0.2–3.6) | |
Occupation of caregiver | |||||
Merchant/trader | 104 | 24 | 23.08 | 1 | |
Artisan/craftsman | 42 | 7 | 16.67 | 0.5 (0.2–1.2) | |
Office worker | 54 | 15 | 27.78 | 1.1 (0.6–2.3) | |
Teacher | 10 | 2 | 20 | 0.6 (0.1–3.1) | |
Housewife | 16 | 1 | 6.25 | 0.6 (0.2–2.1) |
DEC Pathotypes Isolates | |||||
---|---|---|---|---|---|
ETEC, n = 40 | EPEC, n = 6 | ETEC- VTEC, n = 3 | ETEC- EIEC, n = 1 | ||
Single antimicrobial resistance phenotype | CAZ | 34 (85) * | 6 (100) | 3 (100) | 1 (100) |
CRX | 34 (85) | 5 (83) | 3 (100) | 1 (100) | |
GEN | 31 (77.5) | 5 (83) | 2 (66.7) | 1 (100) | |
CXM | 34 (85) | 5 (83) | 2 (66.7) | 1 (100) | |
OFL | 28 (70) | 5 (83) | 2 (66.7) | 1 (100) | |
AUG | 38 (95) | 5 (83) | 3 (100) | 1 (100) | |
NIT | 12 (30) | 1 (16.7) | - | - | |
CPR | 23 (57.5) | 5 (83) | 2 (66.7) | 1 (100) | |
MDR phenotype | CAZ, CRX, GEN, CXM, OFL, AUG, NIT, CPR, | 10 (25) | 1 (16.7) | - | - |
CAZ, CRX, GEN, CXM, OFL, AUG, CPR | 13 (32.5) | 3 (50) | 2 (66.7) | 1 (100) | |
CAZ, CRX, GEN, CXM, OFL, AUG | - | 1 (16.7) | - | - | |
CAZ, CRX, CXM, OFL, AUG, CPR, | 1 (2.5) | - | - | - | |
CAZ, CRX, GEN, CXM, AUG | 8 (20) | - | - | - | |
Efflux pump expression | Expressed | 9 (22.5) | 2 (33.3) | - | - |
Not expressed | 23 (57.5) | 3 (50) | 3 (100) | 1 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunbiyi, T.S.; Fayemi, O.E.; Akanni, G.B.; Ayolabi, C.I.; Hald, T. Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria. Pathogens 2023, 12, 1358. https://doi.org/10.3390/pathogens12111358
Ogunbiyi TS, Fayemi OE, Akanni GB, Ayolabi CI, Hald T. Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria. Pathogens. 2023; 12(11):1358. https://doi.org/10.3390/pathogens12111358
Chicago/Turabian StyleOgunbiyi, Tosin Segun, Olanrewaju Emmanuel Fayemi, Gabriel Bidemi Akanni, Christianah Idowu Ayolabi, and Tine Hald. 2023. "Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria" Pathogens 12, no. 11: 1358. https://doi.org/10.3390/pathogens12111358
APA StyleOgunbiyi, T. S., Fayemi, O. E., Akanni, G. B., Ayolabi, C. I., & Hald, T. (2023). Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria. Pathogens, 12(11), 1358. https://doi.org/10.3390/pathogens12111358