Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future
Abstract
:1. Introduction: Antibiotic Resistance, Where Are We Now?
2. Biofilms/Tolerance of Biofilm Cells Derived from the Social Behavior
2.1. Biofilm Formation and Dynamics
2.2. Antibiofilm Strategies
3. Resistance, Virulence and Bacterial Fitness
4. Drugs as Antibiotic Alternatives or Complements
4.1. Antimicrobial Peptides and Enzymes
4.2. Bacteriocins
4.3. Bacteriophages
4.4. Competition—Probiotics
4.5. Predatorism
4.6. Plant Extracts with Antimicrobial, Antibiofilm and Antipathogenic Effects
4.6.1. Essential Oils (EOs)
4.6.2. Polyphenols
4.7. Combination-Based Antipathogenic Therapies
4.8. Vaccines and Immunotherapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goel, S. Antibiotics in the Environment: A Review. In Emerging Micro-Pollutants in the Environment: Occurrence, Fate, and Distribution; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; Volume 1198, pp. 19–42. [Google Scholar] [CrossRef]
- Gillings, M.R. Evolutionary Consequences of Antibiotic Use for the Resistome, Mobilome and Microbial Pangenome. Front. Microbiol. 2013, 4, 4. [Google Scholar] [CrossRef]
- Baquero, F.; Tedim, A.P.; Coque, T.M. Antibiotic Resistance Shaping Multi-Level Population Biology of Bacteria. Front. Microbiol. 2013, 4, 15. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Chorianopoulos, N.; Lazar, V.; Di Ciccio, P. Bioactive Natural Products 2018. Biomed Res. Int. 2018, 2018, 5063437. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Pneumococcal Conjugate Vaccines in Infants and Children under 5 Years of Age: WHO Position Paper—February 2019—Vaccins Antipneumococciques Conjugués Chez les Nourrissons et les Enfants de Moins de 5 ans: Note de Synthèse de l’OMS—Février 2019. Weekly Epidemiological Record = Relevé Épidémiologique Hebdomadaire, 94 (08), 85–103. Available online: https://apps.who.int/iris/handle/10665/310970 (accessed on 27 February 2023).
- Glasner, C.; Albiger, B.; Buist, G.; Tambić Andrašević, A.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; et al. Carbapenemase-Producing Enterobacteriaceae in Europe: A Survey among National Experts from 39 Countries, February 2013. Eurosurveillance 2013, 18, 20525. [Google Scholar] [CrossRef]
- Schroeder, M.; Brooks, B.; Brooks, A. The Complex Relationship between Virulence and Antibiotic Resistance. Genes 2017, 8, 39. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Cepas, V.; Soto, S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics 2020, 9, 719. [Google Scholar] [CrossRef]
- Akbari, R.; Hakemi-Vala, M.; Pashaie, F.; Bevalian, P.; Hashemi, A.; Pooshang Bagheri, K. Highly Synergistic Effects of Melittin with Conventional Antibiotics Against Multidrug-Resistant Isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb. Drug Resist. 2019, 25, 193–202. [Google Scholar] [CrossRef]
- Levy, S.B. The Antibiotic Paradox; Springer: Boston, MA, USA, 1992; ISBN 978-0-306-44331-2. [Google Scholar]
- Lazar, V.; Colta, T.; Marutescu, L.; Ditu, L.-M.; Chifiriuc, M.C. New Antiinfectious Strategy Based on Antimicrobial and Quorum Sensing Inhibitors from Vegetal Extracts and Propolis. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; FORMATEX Research Center: Badajoz, Spain, 2013; pp. 1209–1219. ISBN 8493984396, 9788493984397. [Google Scholar]
- Lazar, V.; Holban, A.M.; Curutiu, C.; Chifiriuc, M.C. Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Front. Microbiol. 2021, 12, 676510. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Lazar, V. Quorum Sensing in Biofilms—How to Destroy the Bacterial Citadels or Their Cohesion/Power? Anaerobe 2011, 17, 280–285. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm Exacerbates Antibiotic Resistance: Is This a Current Oversight in Antimicrobial Stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Salinas, N.; Povolotsky, T.L.; Landau, M.; Kolodkin-Gal, I. Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol. Mol. Biol. Rev. 2021, 85, e00062-20. [Google Scholar] [CrossRef]
- Aguilar, C.; Vlamakis, H.; Losick, R.; Kolter, R. Thinking about Bacillus Subtilis as a Multicellular Organism. Curr. Opin. Microbiol. 2007, 10, 638–643. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Stoodley, P. Evolving Concepts in Biofilm Infections. Cell. Microbiol. 2009, 11, 1034–1043. [Google Scholar] [CrossRef]
- Stewart, P.S.; William Costerton, J. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Hamilton, W.A.; Characklis, W.G. Relative activities of cells in suspension and biofilms. In Structure and Function of Biofilms; Characklis, W.A., Wielderer, P.A., Eds.; John Wiley & Sons: New York, NY, USA, 1993; pp. 199–219. [Google Scholar]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and Resistance of Pseudomonas Aeruginosa Biofilms to Antimicrobial Agents—How P. aeruginosa Can Escape Antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic Resistance of Bacterial Biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef]
- Povolotsky, T.L.; Keren-Paz, A.; Kolodkin-Gal, I. Metabolic Microenvironments Drive Microbial Differentiation and Antibiotic Resistance. Trends Genet. 2021, 37, 4–8. [Google Scholar] [CrossRef]
- Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Control of Biofilm-Associated Infections by Signaling Molecules and Nanoparticles. Int. J. Pharm. 2016, 510, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science 1998, 280, 295–298. [Google Scholar] [CrossRef]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum Sensing in Bacteria: The LuxR-LuxI Family of Cell Density-Responsive Transcriptional Regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef]
- Shapiro, J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 1998, 52, 81–104. [Google Scholar] [CrossRef] [PubMed]
- Bryers, J.D. The Biotechnology of Interfaces. J. Appl. Bacteriol. 1993, 74, 98S–109S. [Google Scholar] [CrossRef]
- Cegelski, L.; Pinkner, J.S.; Hammer, N.D.; Cusumano, C.K.; Hung, C.S.; Chorell, E.; Åberg, V.; Walker, J.N.; Seed, P.C.; Almqvist, F.; et al. Small-Molecule Inhibitors Target Escherichia Coli Amyloid Biogenesis and Biofilm Formation. Nat. Chem. Biol. 2009, 5, 913–919. [Google Scholar] [CrossRef]
- Williams, P.; Winzer, K.; Chan, W.C.; Cámara, M. Look Who’s Talking: Communication and Quorum Sensing in the Bacterial World. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1119–1134. [Google Scholar] [CrossRef]
- Perlman, R.L. Life Histories of Pathogen Populations. Int. J. Infect. Dis. 2009, 13, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Alby-Laurent, F.; Lambe, C.; Ferroni, A.; Salvi, N.; Lebeaux, D.; Le Gouëz, M.; Castelle, M.; Moulin, F.; Nassif, X.; Lortholary, O.; et al. Salvage Strategy for Long-Term Central Venous Catheter-Associated Staphylococcus aureus Infections in Children. Front. Pediatr. 2019, 6, 427. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.E.; Wardenburg, J.B. Igniting the Fire: Staphylococcus aureus Virulence Factors in the Pathogenesis of Sepsis. PLoS Pathog. 2014, 10, e1003871. [Google Scholar] [CrossRef]
- Paharik, A.E.; Horswill, A.R. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiol. Spectr. 2016, 4, 529–566. [Google Scholar] [CrossRef] [PubMed]
- Geraci, J.; Neubauer, S.; Pöllath, C.; Hansen, U.; Rizzo, F.; Krafft, C.; Westermann, M.; Hussain, M.; Peters, G.; Pletz, M.W.; et al. The Staphylococcus aureus Extracellular Matrix Protein (Emp) Has a Fibrous Structure and Binds to Different Extracellular Matrices. Sci. Rep. 2017, 7, 13665. [Google Scholar] [CrossRef] [PubMed]
- Schenck, L.P.; Surette, M.G.; Bowdish, D.M.E. Composition and Immunological Significance of the Upper Respiratory Tract Microbiota. FEBS Lett. 2016, 590, 3705–3720. [Google Scholar] [CrossRef] [PubMed]
- Parsek, M.R.; Singh, P.K. Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Annu. Rev. Microbiol. 2003, 57, 677–701. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Givskov, M. Quorum Sensing Inhibitors: A Bargain of Effects. Microbiology 2006, 152, 895–904. [Google Scholar] [CrossRef]
- Francolini, I.; Donelli, G. Prevention and Control of Biofilm-Based Medical-Device-Related Infections. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. [Google Scholar] [CrossRef]
- Bouguénec, C. Le Adhesins and Invasins of Pathogenic Escherichia Coli. Int. J. Med. Microbiol. 2005, 295, 471–478. [Google Scholar] [CrossRef]
- Vukotic, G.; Obradovic, M.; Novovic, K.; Di Luca, M.; Jovcic, B.; Fira, D.; Neve, H.; Kojic, M.; McAuliffe, O. Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-Resistant Acinetobacter Baumannii. Front. Med. 2020, 7, 426. [Google Scholar] [CrossRef]
- Landlinger, C.; Tisakova, L.; Oberbauer, V.; Schwebs, T.; Muhammad, A.; Latka, A.; Van Simaey, L.; Vaneechoutte, M.; Guschin, A.; Resch, G.; et al. Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo. Pathogens 2021, 10, 54. [Google Scholar] [CrossRef]
- Shahed-Al-Mahmud, M.; Roy, R.; Sugiokto, F.G.; Islam, M.N.; Lin, M.-D.; Lin, L.-C.; Lin, N.-T. Phage ΦAB6-Borne Depolymerase Combats Acinetobacter Baumannii Biofilm Formation and Infection. Antibiotics 2021, 10, 279. [Google Scholar] [CrossRef]
- Molham, F.; Khairalla, A.S.; Azmy, A.F.; El-Gebaly, E.; El-Gendy, A.O.; AbdelGhani, S. Anti-Proliferative and Anti-Biofilm Potentials of Bacteriocins Produced by Non-Pathogenic Enterococcus sp. Probiotics Antimicrob. Proteins 2021, 13, 571–585. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B.; Suganya, P.; Gurushankar, K. Antimicrobial, Anti-Biofilm, Antioxidant and Cytotoxic Effects of Bacteriocin by Lactococcus lactis Strain CH3 Isolated from Fermented Dairy Products—An In Vitro and In Silico Approach. Int. J. Biol. Macromol. 2022, 220, 291–306. [Google Scholar] [CrossRef]
- Lu, Y.; Aizhan, R.; Yan, H.; Li, X.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Characterization, Modes of Action, and Application of a Novel Broad-Spectrum Bacteriocin BM1300 Produced by Lactobacillus Crustorum MN047. Braz. J. Microbiol. 2020, 51, 2033–2048. [Google Scholar] [CrossRef]
- Lopes, B.S.; Hanafiah, A.; Nachimuthu, R.; Muthupandian, S.; Md Nesran, Z.N.; Patil, S. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance. Molecules 2022, 27, 2995. [Google Scholar] [CrossRef]
- Mergoni, G.; Manfredi, M.; Bertani, P.; Ciociola, T.; Conti, S.; Giovati, L. Activity of Two Antimicrobial Peptides against Enterococcus faecalis in a Model of Biofilm-Mediated Endodontic Infection. Antibiotics 2021, 10, 1220. [Google Scholar] [CrossRef]
- Krishnan, M.; Choi, J.; Jang, A.; Kim, Y. A Novel Peptide Antibiotic, Pro10-1D, Designed from Insect Defensin Shows Antibacterial and Anti-Inflammatory Activities in Sepsis Models. Int. J. Mol. Sci. 2020, 21, 6216. [Google Scholar] [CrossRef]
- Casciaro, B.; Loffredo, M.R.; Cappiello, F.; Fabiano, G.; Torrini, L.; Mangoni, M.L. The Antimicrobial Peptide Temporin G: Anti-Biofilm, Anti-Persister Activities, and Potentiator Effect of Tobramycin Efficacy Against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 9410. [Google Scholar] [CrossRef]
- Jung, C.-J.; Liao, Y.-D.; Hsu, C.-C.; Huang, T.-Y.; Chuang, Y.-C.; Chen, J.-W.; Kuo, Y.-M.; Chia, J.-S. Identification of Potential Therapeutic Antimicrobial Peptides against Acinetobacter baumannii in a Mouse Model of Pneumonia. Sci. Rep. 2021, 11, 7318. [Google Scholar] [CrossRef]
- Cebrián, R.; Xu, C.; Xia, Y.; Wu, W.; Kuipers, O.P. The Cathelicidin-Derived Close-to-Nature Peptide D-11 Sensitises Klebsiella pneumoniae to a Range of Antibiotics In Vitro, Ex Vivo and In Vivo. Int. J. Antimicrob. Agents 2021, 58, 106434. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Turner, K.L.; Crockett, T.M.; Lu, X.; Morris, C.F.; Konkel, M.E. Inhibitory Effect of Puroindoline Peptides on Campylobacter Jejuni Growth and Biofilm Formation. Front. Microbiol. 2021, 12, 702762. [Google Scholar] [CrossRef]
- Ko, S.J.; Park, E.; Asandei, A.; Choi, J.-Y.; Lee, S.-C.; Seo, C.H.; Luchian, T.; Park, Y. Bee Venom-Derived Antimicrobial Peptide Melectin Has Broad-Spectrum Potency, Cell Selectivity, and Salt-Resistant Properties. Sci. Rep. 2020, 10, 10145. [Google Scholar] [CrossRef]
- Shamim, A.; Ali, A.; Iqbal, Z.; Mirza, M.A.; Aqil, M.; Kawish, S.M.; Siddiqui, A.; Kumar, V.; Naseef, P.P.; Alshadidi, A.A.F.; et al. Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics 2023, 12, 299. [Google Scholar] [CrossRef]
- Somrani, M.; Debbabi, H.; Palop, A. Antibacterial and Antibiofilm Activity of Essential Oil of Clove against Listeria monocytogenes and Salmonella enteritidis. Food Sci. Technol. Int. 2022, 28, 331–339. [Google Scholar] [CrossRef]
- Van, L.T.; Hagiu, I.; Popovici, A.; Marinescu, F.; Gheorghe, I.; Curutiu, C.; Ditu, L.M.; Holban, A.-M.; Sesan, T.E.; Lazar, V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. Plants 2022, 11, 2003. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Mizan, M.F.R.; Ha, A.J.; Park, S.H.; Ha, S.-D. Antibacterial and Antibiofilm Mechanism of Eugenol against Antibiotic Resistance Vibrio parahaemolyticus. Food Microbiol. 2020, 91, 103500. [Google Scholar] [CrossRef]
- Tapia-Rodriguez, M.R.; Bernal-Mercado, A.T.; Gutierrez-Pacheco, M.M.; Vazquez-Armenta, F.J.; Hernandez-Mendoza, A.; Gonzalez-Aguilar, G.A.; Martinez-Tellez, M.A.; Nazzaro, F.; Ayala-Zavala, J.F. Virulence of Pseudomonas aeruginosa Exposed to Carvacrol: Alterations of the Quorum Sensing at Enzymatic and Gene Levels. J. Cell Commun. Signal. 2019, 13, 531–537. [Google Scholar] [CrossRef]
- Samoilova, Z.; Tyulenev, A.; Muzyka, N.; Smirnova, G.; Oktyabrsky, O. Tannic and Gallic Acids Alter Redox-Parameters of the Medium and Modulate Biofilm Formation. AIMS Microbiol. 2019, 5, 379–392. [Google Scholar] [CrossRef]
- Kannappan, A.; Durgadevi, R.; Srinivasan, R.; Lagoa, R.J.L.; Packiavathy, I.A.S.V.; Pandian, S.K.; Veera Ravi, A. 2-Hydroxy-4-Methoxybenzaldehyde from Hemidesmus indicus Is Antagonistic to Staphylococcus epidermidis Biofilm Formation. Biofouling 2020, 36, 549–563. [Google Scholar] [CrossRef]
- Shehabeldine, A.M.; Ashour, R.M.; Okba, M.M.; Saber, F.R. Callistemon Citrinus Bioactive Metabolites as New Inhibitors of Methicillin-Resistant Staphylococcus aureus Biofilm Formation. J. Ethnopharmacol. 2020, 254, 112669. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, N.; Zhang, S.; Zhang, L.; Liu, Q. Phloretin Inhibited the Pathogenicity and Virulence Factors against Candida albicans. Bioeng. 2021, 12, 2420–2431. [Google Scholar] [CrossRef]
- Kerkoub, N.; Panda, S.K.; Yang, M.-R.; Lu, J.-G.; Jiang, Z.-H.; Nasri, H.; Luyten, W. Bioassay-Guided Isolation of Anti-Candida Biofilm Compounds from Methanol Extracts of the Aerial Parts of Salvia officinalis (Annaba, Algeria). Front. Pharmacol. 2018, 9, 1418. [Google Scholar] [CrossRef]
- Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics 2020, 9, 637. [Google Scholar] [CrossRef]
- Matilla-Cuenca, L.; Gil, C.; Cuesta, S.; Rapún-Araiz, B.; Žiemytė, M.; Mira, A.; Lasa, I.; Valle, J. Antibiofilm Activity of Flavonoids on Staphylococcal Biofilms through Targeting BAP Amyloids. Sci. Rep. 2020, 10, 18968. [Google Scholar] [CrossRef]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Future Pharmacol. 2022, 2, 460–498. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, H.; Yu, H.; Dai, Q.; Xiong, J.; Sheng, H.; Qiu, J.; Jiang, L.; Peng, J.; He, X.; et al. Allicin Inhibits Pseudomonas aeruginosa Virulence by Suppressing the Rhl and Pqs Quorum-Sensing Systems. Can. J. Microbiol. 2019, 65, 563–574. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The Antimicrobial Potential of Cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Ceylan, O.; Cârâc, G.; Talla, E.; Dinica, R.M. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022, 27, 4872. [Google Scholar] [CrossRef]
- Ilie, C.-I.; Oprea, E.; Geana, E.-I.; Spoiala, A.; Buleandra, M.; Gradisteanu Pircalabioru, G.; Badea, I.A.; Ficai, D.; Andronescu, E.; Ficai, A.; et al. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants 2022, 11, 959. [Google Scholar] [CrossRef]
- Mirzaei, R.; Esmaeili Gouvarchin Ghaleh, H.; Ranjbar, R. Antibiofilm Effect of Melittin Alone and in Combination with Conventional Antibiotics toward Strong Biofilm of MDR-MRSA and-Pseudomonas aeruginosa. Front. Microbiol. 2023, 14, 1030401. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V.; Holban, A.-M.; Curutiu, C.; Ditu, L.M. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front. Nutr. 2022, 9, 920413. [Google Scholar] [CrossRef]
- Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing Natural Products as Potential Anti-Biofilm Agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef]
- Qais, F.A.; Ahmad, I.; Altaf, M.; Alotaibi, S.H. Biofabrication of Gold Nanoparticles Using Capsicum annuum Extract and Its Antiquorum Sensing and Antibiofilm Activity against Bacterial Pathogens. ACS Omega 2021, 6, 16670–16682. [Google Scholar] [CrossRef]
- Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; et al. Antibiofilm and Antivirulence Potential of Silver Nanoparticles against Multidrug-Resistant Acinetobacter Baumannii. Sci. Rep. 2021, 11, 10751. [Google Scholar] [CrossRef]
- Geissel, F.J.; Platania, V.; Gogos, A.; Herrmann, I.K.; Belibasakis, G.N.; Chatzinikolaidou, M.; Sotiriou, G.A. Antibiofilm Activity of Nanosilver Coatings against Staphylococcus aureus. J. Colloid Interface Sci. 2022, 608, 3141–3150. [Google Scholar] [CrossRef]
- Yang, G.; Wang, D.-Y.; Liu, Y.; Huang, F.; Tian, S.; Ren, Y.; Liu, J.; An, Y.; van der Mei, H.C.; Busscher, H.J.; et al. In-Biofilm Generation of Nitric Oxide Using a Magnetically-Targetable Cascade-Reaction Container for Eradication of Infectious Biofilms. Bioact. Mater. 2022, 14, 321–334. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Yuan, K.; Ji, F.; Gao, J.; Zhang, Z.; Du, X.; Tian, Y.; Wang, Q.; Zhang, L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15, 5056–5067. [Google Scholar] [CrossRef]
- Grumezescu, V.; Holban, A.M.; Iordache, F.; Socol, G.; Mogoşanu, G.D.; Grumezescu, A.M.; Ficai, A.; Vasile, B.Ş.; Truşcă, R.; Chifiriuc, M.C.; et al. MAPLE Fabricated Magnetite@eugenol and (3-Hidroxybutyric Acid-Co-3-Hidroxyvaleric Acid)–Polyvinyl Alcohol Microspheres Coated Surfaces with Anti-Microbial Properties. Appl. Surf. Sci. 2014, 306, 16–22. [Google Scholar] [CrossRef]
- Siddhardha, B.; Pandey, U.; Kaviyarasu, K.; Pala, R.; Syed, A.; Bahkali, A.H.; Elgorban, A.M. Chrysin-Loaded Chitosan Nanoparticles Potentiates Antibiofilm Activity against Staphylococcus Aureus. Pathogens 2020, 9, 115. [Google Scholar] [CrossRef]
- Sharma, K.; Nirbhavane, P.; Chhibber, S.; Harjai, K. Sustained Release of Zingerone from Polymeric Nanoparticles: An Anti-Virulence Strategy against Pseudomonas Aeruginosa. J. Bioact. Compat. Polym. 2020, 35, 538–553. [Google Scholar] [CrossRef]
- Ma, S.; Moser, D.; Han, F.; Leonhard, M.; Schneider-Stickler, B.; Tan, Y. Preparation and Antibiofilm Studies of Curcumin Loaded Chitosan Nanoparticles against Polymicrobial Biofilms of Candida albicans and Staphylococcus aureus. Carbohydr. Polym. 2020, 241, 116254. [Google Scholar] [CrossRef]
- Permana, A.D.; Mir, M.; Utomo, E.; Donnelly, R.F. Bacterially Sensitive Nanoparticle-Based Dissolving Microneedles of Doxycycline for Enhanced Treatment of Bacterial Biofilm Skin Infection: A Proof of Concept Study. Int. J. Pharm. X 2020, 2, 100047. [Google Scholar] [CrossRef]
- Thorn, C.R.; de Souza Carvalho-Wodarz, C.; Horstmann, J.C.; Lehr, C.; Prestidge, C.A.; Thomas, N. Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms. Small 2021, 17, 2100531. [Google Scholar] [CrossRef]
- Coaguila-Llerena, H.; Ordinola-Zapata, R.; Staley, C.; Dietz, M.; Chen, R.; Faria, G. Multispecies Biofilm Removal by a Multisonic Irrigation System in Mandibular Molars. Int. Endod. J. 2022, 55, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Retsas, A.; Dijkstra, R.J.B.; van der Sluis, L.; Boutsioukis, C. The Effect of the Ultrasonic Irrigant Activation Protocol on the Removal of a Dual-Species Biofilm from Artificial Lateral Canals. J. Endod. 2022, 48, 775–780. [Google Scholar] [CrossRef]
- Akhtar, F.; Khan, A.U.; Misba, L.; Akhtar, K.; Ali, A. Antimicrobial and Antibiofilm Photodynamic Therapy against Vancomycin Resistant Staphylococcus Aureus (VRSA) Induced Infection In Vitro and In Vivo. Eur. J. Pharm. Biopharm. 2021, 160, 65–76. [Google Scholar] [CrossRef]
- Giordani, B.; Naldi, M.; Croatti, V.; Parolin, C.; Erdoğan, Ü.; Bartolini, M.; Vitali, B. Exopolysaccharides from Vaginal Lactobacilli Modulate Microbial Biofilms. Microb. Cell Fact. 2023, 22, 45. [Google Scholar] [CrossRef]
- Argandoña Valdez, R.M.; ann Ximenez-Fyvie, L.; Caiaffa, K.S.; Rodrigues dos Santos, V.; Gonzales Cervantes, R.M.; Almaguer-Flores, A.; Duque, C. Antagonist Effect of Probiotic Bifidobacteria on Biofilms of Pathogens Associated with Periodontal Disease. Microb. Pathog. 2021, 150, 104657. [Google Scholar] [CrossRef] [PubMed]
- Lacotte, P.-A.; Simons, A.; Bouttier, S.; Malet-Villemagne, J.; Nicolas, V.; Janoir, C. Inhibition of In Vitro Clostridioides difficile Biofilm Formation by the Probiotic Yeast Saccharomyces boulardii CNCM I-745 through Modification of the Extracellular Matrix Composition. Microorganisms 2022, 10, 1082. [Google Scholar] [CrossRef]
- Bratanis, E.; Andersson, T.; Lood, R.; Bukowska-Faniband, E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front. Microbiol. 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Wucher, B.R.; Elsayed, M.; Adelman, J.S.; Kadouri, D.E.; Nadell, C.D. Bacterial Predation Transforms the Landscape and Community Assembly of Biofilms. Curr. Biol. 2021, 31, 2643–2651.e3. [Google Scholar] [CrossRef]
- Iebba, V.; Totino, V.; Santangelo, F.; Gagliardi, A.; Ciotoli, L.; Virga, A.; Ambrosi, C.; Pompili, M.; De Biase, R.V.; Selan, L.; et al. Bdellovibrio Bacteriovorus Directly Attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic Fibrosis Isolates. Front. Microbiol. 2014, 5, 280. [Google Scholar] [CrossRef]
- Parrino, B.; Schillaci, D.; Carnevale, I.; Giovannetti, E.; Diana, P.; Cirrincione, G.; Cascioferro, S. Synthetic Small Molecules as Anti-Biofilm Agents in the Struggle against Antibiotic Resistance. Eur. J. Med. Chem. 2019, 161, 154–178. [Google Scholar] [CrossRef]
- Claudel, M.; Schwarte, J.V.; Fromm, K.M. New Antimicrobial Strategies Based on Metal Complexes. Chemistry 2020, 2, 849–899. [Google Scholar] [CrossRef]
- Das, M.C.; Sandhu, P.; Gupta, P.; Rudrapaul, P.; De, U.C.; Tribedi, P.; Akhter, Y.; Bhattacharjee, S. Attenuation of Pseudomonas aeruginosa Biofilm Formation by Vitexin: A Combinatorial Study with Azithromycin and Gentamicin. Sci. Rep. 2016, 6, 23347. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, H.; Misba, L.; Ahmad, S.; Khan, A.U. Curcumin Induced Photodynamic Therapy Mediated Suppression of Quorum Sensing Pathway of Pseudomonas aeruginosa: An Approach to Inhibit Biofilm In Vitro. Photodiagn. Photodyn. Ther. 2020, 30, 101645. [Google Scholar] [CrossRef]
- Dickey, J.; Perrot, V. Adjunct Phage Treatment Enhances the Effectiveness of Low Antibiotic Concentration against Staphylococcus Aureus Biofilms In Vitro. PLoS ONE 2019, 14, e0209390. [Google Scholar] [CrossRef]
- Sosa, B.R.; Niu, Y.; Turajane, K.; Staats, K.; Suhardi, V.; Carli, A.; Fischetti, V.; Bostrom, M.; Yang, X. 2020 John Charnley Award: The Antimicrobial Potential of Bacteriophage-Derived Lysin in a Murine Debridement, Antibiotics, and Implant Retention Model of Prosthetic Joint Infection. Bone Jt. J. 2020, 102-B, 3–10. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Zhang, P.; Xu, M.; Yuan, W.; Bian, L.; Liu, Y.; Xia, J.; Leung, S.S.Y. Phage-Derived Depolymerase as an Antibiotic Adjuvant Against Multidrug-Resistant Acinetobacter baumannii. Front. Microbiol. 2022, 13, 845500. [Google Scholar] [CrossRef]
- Sivaranjani, M.; Liu, F.; White, A.P. Synergistic Activity of Tetrasodium EDTA, Ethanol and Chlorhexidine Hydrochloride against Planktonic and Biofilm Cells of Clinically Relevant Pathogens. J. Glob. Antimicrob. Resist. 2021, 24, 148–157. [Google Scholar] [CrossRef]
- Nabawy, A.; Makabenta, J.M.; Schmidt-Malan, S.; Park, J.; Li, C.-H.; Huang, R.; Fedeli, S.; Chattopadhyay, A.N.; Patel, R.; Rotello, V.M. Dual Antimicrobial-Loaded Biodegradable Nanoemulsions for Synergistic Treatment of Wound Biofilms. J. Control. Release 2022, 347, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Front. Microbiol. 2017, 8, 2409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, E.; Cheng, Y.; Mahmood, T.; Ge, F.; Zhou, K.; Bao, M.; Lv, L.; Li, L.; Yi, J.; et al. Is Combined Medication with Natural Medicine a Promising Therapy for Bacterial Biofilm Infection? Biomed. Pharmacother. 2020, 128, 110184. [Google Scholar] [CrossRef]
- Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial Resistance and Virulence: A Successful or Deleterious Association in the Bacterial World? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef]
- Madigan, M.; Martinko, J.; Dunlap, P.; Clark, D. Brock Biology of Microorganisms: International Edition; Pearson: London, UK, 2009. [Google Scholar]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Pereira, S.G.; Rosa, A.C.; Cardoso, O. Virulence Factors as Predictive Tools for Drug Resistance in Pseudomonas Aeruginosa. Virulence 2015, 6, 679–683. [Google Scholar] [CrossRef]
- Viveiros, M.; Dupont, M.; Rodrigues, L.; Couto, I.; Davin-Regli, A.; Martins, M.; Pagès, J.-M.; Amaral, L. Antibiotic Stress, Genetic Response and Altered Permeability of E. coli. PLoS ONE 2007, 2, e365. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Huang, H.; Huang, W.; Chen, Y.; McGarvey, P.B.; Wu, C.H.; Arighi, C.N. A Crowdsourcing Open Platform for Literature Curation in UniProt. PLoS Biol. 2021, 19, e3001464. [Google Scholar] [CrossRef]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence Factors of Pseudomonas aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- Baquero, M.-R.; Galán, J.C.; del Carmen Turrientes, M.; Cantón, R.; Coque, T.M.; Martínez, J.L.; Baquero, F. Increased Mutation Frequencies in Escherichia Coli Isolates Harboring Extended-Spectrum β-Lactamases. Antimicrob. Agents Chemother. 2005, 49, 4754–4756. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V.; Chifiriuc, M. Medical Significance and New Therapeutical Strategies for Biofilm Associated Infections. Rom. Arch. Microbiol. Immunol. 2010, 69, 125–138. [Google Scholar]
- Simanek, K.A.; Paczkowski, J.E. Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022, 10, 1247. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; He, S. Quorum Sensing Inhibition or Quenching in Acinetobacter baumannii: The Novel Therapeutic Strategies for New Drug Development. Front. Microbiol. 2021, 12, 558003. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Du, F.; Huang, Q.; Wei, D.; Mei, Y.; Long, D.; Liao, W.; Wan, L.; Liu, Y.; Zhang, W. Prevalence of Carbapenem-Resistant Klebsiella pneumoniae Co-Harboring BlaKPC-Carrying Plasmid and PLVPK-Like Virulence Plasmid in Bloodstream Infections. Front. Cell. Infect. Microbiol. 2021, 10, 556654. [Google Scholar] [CrossRef] [PubMed]
- Askoura, M.; Hegazy, W.A.H. Ciprofloxacin Interferes with Salmonella Typhimurium Intracellular Survival and Host Virulence through Repression of Salmonella Pathogenicity Island-2 (SPI-2) Genes Expression. Pathog. Dis. 2020, 78, ftaa011. [Google Scholar] [CrossRef]
- Askoura, M.; Almalki, A.J.; Lila, A.S.A.; Almansour, K.; Alshammari, F.; Khafagy, E.-S.; Ibrahim, T.S.; Hegazy, W.A.H. Alteration of Salmonella enterica Virulence and Host Pathogenesis through Targeting SdiA by Using the CRISPR-Cas9 System. Microorganisms 2021, 9, 2564. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.E.; O’toole, G.A. Microbial Biofilms: From Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef]
- Xu, J.; Koizumi, N.; Nakamura, S. Crawling Motility on the Host Tissue Surfaces Is Associated with the Pathogenicity of the Zoonotic Spirochete Leptospira. Front. Microbiol. 2020, 11, 1886. [Google Scholar] [CrossRef]
- Krzyzek, P.; Gosciniak, G. A Proposed Role for Diffusible Signal Factors in the Biofilm Formation and Morphological Transformation of Helicobacter pylori. Turk. J. Gastroenterol. 2018, 29, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Krzyżek, P.; Grande, R.; Migdał, P.; Paluch, E.; Gościniak, G. Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020, 9, 1062. [Google Scholar] [CrossRef]
- Krzyżek, P.; Migdał, P.; Grande, R.; Gościniak, G. Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated with Resistance to Clarithromycin. Front. Cell. Infect. Microbiol. 2022, 12, 351. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Das, R.; Romi, W.; Das, R.; Sharma, H.K.; Thakur, D. Antimicrobial Potentiality of Actinobacteria Isolated from Two Microbiologically Unexplored Forest Ecosystems of Northeast India. BMC Microbiol. 2018, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, X.; Han, L.; Zhao, L.; Miao, C.; Huang, X.; Chen, Y.; Li, P.; Li, Y. Two New Phenazine Metabolites with Antimicrobial Activities from Soil-Derived Streptomyces Species. J. Antibiot. 2019, 72, 574–577. [Google Scholar] [CrossRef]
- Weslati, I.; Simões, L.; Teixeira, A.; Parpot, P.; Raies, A.; Oliveira, R. Antibacterial and Antioxidant Activities of Streptomyces sp. Strain FR7 Isolated from Forest Soil. Lett. Appl. Microbiol. 2023, 76, ovad036. [Google Scholar] [CrossRef]
- Singh, R.; Ali, M.; Dubey, A.K. Anti-Candida Attributes and in-Silico Drug-Likeness Properties of Phenyl 2′β, 6′β-Trimethyl Cyclohexyl Ketone and Phenyl Nonanyl Ether Produced by Streptomyces chrestomyceticus ADP4. J. Appl. Microbiol. 2023, 134, lxac024. [Google Scholar] [CrossRef]
- Tistechok, S.; Roman, I.; Fedorenko, V.; Luzhetskyy, A.; Gromyko, O. Diversity and Bioactive Potential of Actinomycetia from the Rhizosphere Soil of Juniperus excelsa. Folia Microbiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Chen, X.; Zhang, W.; Guo, Y.; Liu, G. Nonribosomal Antibacterial Peptides Isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microb. Cell Fact. 2023, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Meng-Xi, L.I.; Hui-Bin, H.; Jie-Yun, L.; Jing-Xiao, C.A.O.; Zhen-Wang, Z. Antibacterial Performance of a Streptomyces spectabilis Strain Producing Metacycloprodigiosin. Curr. Microbiol. 2021, 78, 2569–2576. [Google Scholar] [CrossRef]
- Yang, F.-X.; Hou, G.-X.; Luo, J.; Yang, J.; Yan, Y.; Huang, S.-X. New Phenoxazinone-Related Alkaloids from Strain Streptomyces sp. KIB-H1318. J. Antibiot. 2018, 71, 1040–1043. [Google Scholar] [CrossRef]
- Balachandran, C.; Al-Dhabi, N.A.; Duraipandiyan, V.; Ignacimuthu, S. Bluemomycin, a New Naphthoquinone Derivative from Streptomyces sp. with Antimicrobial and Cytotoxic Properties. Biotechnol. Lett. 2021, 43, 1005–1018. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, B.; Adpressa, D.A.; Rudolf, J.D.; Loesgen, S. Discovery and Biosynthesis of a Structurally Dynamic Antibacterial Diterpenoid. Angew. Chem. Int. Ed. 2021, 60, 14163–14170. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Li, X.-M.; Chen, X.-D.; Li, X.; Wang, B.-G. Three New α -Pyrone Derivatives from the Soil-Derived Fungus Penicillium herquei MA-370. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Heldt Manica, L.A.; Cohen, P.R. Staphylococcus Lugdunensis Infections of the Skin and Soft Tissue: A Case Series and Review. Dermatol. Ther. 2017, 7, 555–562. [Google Scholar] [CrossRef]
- Zipperer, A.; Konnerth, M.C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N.A.; Slavetinsky, C.; Marschal, M.; et al. Human Commensals Producing a Novel Antibiotic Impair Pathogen Colonization. Nature 2016, 535, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Scillato, M.; Spitale, A.; Mongelli, G.; Privitera, G.F.; Mangano, K.; Cianci, A.; Stefani, S.; Santagati, M. Antimicrobial Properties of Lactobacillus Cell-free Supernatants against Multidrug-resistant Urogenital Pathogens. Microbiologyopen 2021, 10, e1173. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from Human Skin Commensal Bacteria Protect against Staphylococcus aureus and Are Deficient in Atopic Dermatitis. Sci. Transl. Med. 2017, 9, eaah4680. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, E.; Mayer, M.J.; Cotter, P.D.; Narbad, A. Gut Microbiota as a Source of Novel Antimicrobials. Gut Microbes 2019, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Athar, B.; Merwin, N.J.; Magarvey, N.A. Antibiotics and Specialized Metabolites from the Human Microbiota. Nat. Prod. Rep. 2017, 34, 1302–1331. [Google Scholar] [CrossRef]
- Saggese, A.; Culurciello, R.; Casillo, A.; Corsaro, M.; Ricca, E.; Baccigalupi, L. A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Mar. Drugs 2018, 16, 180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shu, C.; Lian, X.; Zhang, Z. New Antibacterial Bagremycins F and G from the Marine-Derived Streptomyces sp. ZZ745. Mar. Drugs 2018, 16, 330. [Google Scholar] [CrossRef]
- Back, C.R.; Stennett, H.L.; Williams, S.E.; Wang, L.; Ojeda Gomez, J.; Abdulle, O.M.; Duffy, T.; Neal, C.; Mantell, J.; Jepson, M.A.; et al. A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge. Mar. Drugs 2021, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Rodrigues, G.R.; Lima, L.F.; dos Reis, M.C.G.; Cunha, N.B.; Dias, S.C.; Franco, O.L. Advances and Perspectives for Antimicrobial Peptide and Combinatory Therapies. Front. Bioeng. Biotechnol. 2022, 10, 1051456. [Google Scholar] [CrossRef]
- Drayton, M.; Deisinger, J.P.; Ludwig, K.C.; Raheem, N.; Müller, A.; Schneider, T.; Straus, S.K. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int. J. Mol. Sci. 2021, 22, 11172. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host Defense Antimicrobial Peptides as Antibiotics: Design and Application Strategies. Curr. Opin. Chem. Biol. 2017, 38, 87–96. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Beuerman, R.W.; Dua, H.S.; Lakshminarayanan, R.; Mohammed, I. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Front. Immunol. 2020, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Elibe Mba, I.; Innocent Nweze, E. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J. Biol. Med. 2022, 95, 445–463. [Google Scholar]
- An, J.; Tsopmejio, I.S.N.; Wang, Z.; Li, W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023, 28, 908. [Google Scholar] [CrossRef]
- Abdi, M.; Mirkalantari, S.; Amirmozafari, N. Bacterial Resistance to Antimicrobial Peptides. J. Pept. Sci. 2019, 25, e3210. [Google Scholar] [CrossRef]
- Katsipis, G.; Pantazaki, A.A. Serrapeptase Impairs Biofilm, Wall, and Phospho-Homeostasis of Resistant and Susceptible Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2023, 107, 1373–1389. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Sternberg, C.; Molin, S. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents. Molecules 2010, 15, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Jafra, S. Quenching of Acyl-Homoserine Lactone-Dependent Quorum Sensing by Enzymatic Disruption of Signal Molecules. Acta Biochim. Pol. 2009, 56, 1–16. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.A.P.; Omar, N.B.; Gálvez, A. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef]
- Blanco-Cabra, N.; Paetzold, B.; Ferrar, T.; Mazzolini, R.; Torrents, E.; Serrano, L.; LLuch-Senar, M. Characterization of Different Alginate Lyases for Dissolving Pseudomonas aeruginosa Biofilms. Sci. Rep. 2020, 10, 9390. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.; Margina, D.; Zanfirescu, A.; Olaru, O.T.; Nitulescu, G.M. Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals 2021, 14, 415. [Google Scholar] [CrossRef]
- Kattke, M.D.; Chan, A.H.; Duong, A.; Sexton, D.L.; Sawaya, M.R.; Cascio, D.; Elliot, M.A.; Clubb, R.T. Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS ONE 2016, 11, e0167763. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Liu, G.; Jensen, E.R.; Lenoy, E.; Schneewind, O. Staphylococcus aureus Sortase Mutants Defective in the Display of Surface Proteins and in the Pathogenesis of Animal Infections. Proc. Natl. Acad. Sci. USA 2000, 97, 5510–5515. [Google Scholar] [CrossRef]
- Oh, K.-B.; Kim, S.-H.; Lee, J.; Cho, W.-J.; Lee, T.; Kim, S. Discovery of Diarylacrylonitriles as a Novel Series of Small Molecule Sortase A Inhibitors. J. Med. Chem. 2004, 47, 2418–2421. [Google Scholar] [CrossRef]
- Plotniece, A.; Sobolev, A.; Supuran, C.T.; Carta, F.; Björkling, F.; Franzyk, H.; Yli-Kauhaluoma, J.; Augustyns, K.; Cos, P.; De Vooght, L.; et al. Selected Strategies to Fight Pathogenic Bacteria. J. Enzyme Inhib. Med. Chem. 2023, 38, 2155816. [Google Scholar] [CrossRef]
- Abutaleb, N.S.; Elkashif, A.; Flaherty, D.P.; Seleem, M.N. In Vivo Antibacterial Activity of Acetazolamide. Antimicrob. Agents Chemother. 2021, 65, e01715–e01720. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Cao, X.; Abutaleb, N.S.; Elkashif, A.; Graboski, A.L.; Krabill, A.D.; AbdelKhalek, A.H.; An, W.; Bhardwaj, A.; Seleem, M.N.; et al. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus. J. Med. Chem. 2020, 63, 9540–9562. [Google Scholar] [CrossRef]
- Abutaleb, N.S.; Elhassanny, A.E.M.; Flaherty, D.P.; Seleem, M.N. In Vitro and In Vivo Activities of the Carbonic Anhydrase Inhibitor, Dorzolamide, against Vancomycin-Resistant Enterococci. PeerJ 2021, 9, e11059. [Google Scholar] [CrossRef]
- Sebastián, M.; Anoz-Carbonell, E.; Gracia, B.; Cossio, P.; Aínsa, J.A.; Lans, I.; Medina, M. Discovery of Antimicrobial Compounds Targeting Bacterial Type FAD Synthetases. J. Enzyme Inhib. Med. Chem. 2018, 33, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wong, C.-H.; Ma, C. Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. ACS Infect. Dis. 2019, 5, 1493–1504. [Google Scholar] [CrossRef]
- Smith, R.; Paxman, J.; Scanlon, M.; Heras, B. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules 2016, 21, 811. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Teng, K.; Liu, Y.; Cao, Y.; Wang, T.; Ma, C.; Zhang, J.; Zhong, J. Bacteriocins: Potential for Human Health. Oxid. Med. Cell. Longev. 2021, 2021, 5518825. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.; Hill, C. Potential of Bacteriocin-Producing Lactic Acid Bacteria for Improvements in Food Safety and Quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Delves-Broughton, J. Nisin and Its Application as a Food Preservative. Int. J. Dairy Technol. 1990, 43, 73–76. [Google Scholar] [CrossRef]
- Pedersen, P.B.; Bjørnvad, M.E.; Rasmussen, M.D.; Petersen, J.N. Cytotoxic Potential of Industrial Strains of Bacillus sp. Regul. Toxicol. Pharmacol. 2002, 36, 155–161. [Google Scholar] [CrossRef]
- Sumi, C.D.; Yang, B.W.; Yeo, I.-C.; Hahm, Y.T. Antimicrobial Peptides of the Genus Bacillus: A New Era for Antibiotics. Can. J. Microbiol. 2015, 61, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, J.K.; Virgin, H.W. Transkingdom Control of Viral Infection and Immunity in the Mammalian Intestine. Science 2016, 351, aad5872. [Google Scholar] [CrossRef]
- Cann, A. Principles of Molecular Virology, 4th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; ISBN 978-0-12-088790-3. [Google Scholar]
- Ling, H.; Lou, X.; Luo, Q.; He, Z.; Sun, M.; Sun, J. Recent Advances in Bacteriophage-Based Therapeutics: Insight into the Post-Antibiotic Era. Acta Pharm. Sin. B 2022, 12, 4348–4364. [Google Scholar] [CrossRef]
- Abedon, S.T.; Danis-Wlodarczyk, K.M.; Wozniak, D.J. Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth. Pharmaceuticals 2021, 14, 1019. [Google Scholar] [CrossRef]
- Dąbrowska, K.; Abedon, S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol. Mol. Biol. Rev. 2019, 83, e00012–e00019. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary Rationale for Phages as Complements of Antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef]
- Abedon, S.T. Phage-Antibiotic Combination Treatments: Antagonistic Impacts of Antibiotics on the Pharmacodynamics of Phage Therapy? Antibiotics 2019, 8, 182. [Google Scholar] [CrossRef] [PubMed]
- Kincaid, R. Treatment and Prevention of Bacterial Infections Using Bacteriophages: Perspectives on the Renewed Interest in the United States. In Phage Therapy: A Practical Approach; Springer International Publishing: Cham, Switzerland, 2019; pp. 169–187. [Google Scholar]
- Wright, R.C.T.; Friman, V.-P.; Smith, M.C.M.; Brockhurst, M.A. Cross-Resistance Is Modular in Bacteria–Phage Interactions. PLoS Biol. 2018, 16, e2006057. [Google Scholar] [CrossRef]
- Bagińska, N.; Harhala, M.A.; Cieślik, M.; Orwat, F.; Weber-Dąbrowska, B.; Dąbrowska, K.; Górski, A.; Jończyk-Matysiak, E. Biological Properties of 12 Newly Isolated Acinetobacter Baumannii-Specific Bacteriophages. Viruses 2023, 15, 231. [Google Scholar] [CrossRef]
- Shen, Y.; Mitchell, M.; Donovan, D.; Nelson, D. Bacteriophages in Health and Disease. In Bacteriophages in Health and Disease; Hyman, P., Abedon, S., Eds.; CAB International: Wallingford, UK, 2012; pp. 217–239. ISBN 978-1-84593-984-7. [Google Scholar]
- Danis-Wlodarczyk, K.M.; Wozniak, D.J.; Abedon, S.T. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics 2021, 10, 1497. [Google Scholar] [CrossRef]
- Wang, F.; Ji, X.; Li, Q.; Zhang, G.; Peng, J.; Hai, J.; Zhang, Y.; Ci, B.; Li, H.; Xiong, Y.; et al. TSPphg Lysin from the Extremophilic Thermus Bacteriophage TSP4 as a Potential Antimicrobial Agent against Both Gram-Negative and Gram-Positive Pathogenic Bacteria. Viruses 2020, 12, 192. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, Y.; Xiao, Y.; Han, J.; Deng, X.; Lin, L. MMPphg from the Thermophilic Meiothermus Bacteriophage MMP17 as a Potential Antimicrobial Agent against Both Gram-Negative and Gram-Positive Bacteria. Virol. J. 2020, 17, 130. [Google Scholar] [CrossRef]
- São-José, C.; Costa, A.R.; Melo, L.D.R. Editorial: Bacteriophages and Their Lytic Enzymes as Alternative Antibacterial Therapies in the Age of Antibiotic Resistance. Front. Microbiol. 2022, 13, 978. [Google Scholar] [CrossRef]
- FAO. Probiotics in Food Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper; FAO: Rome, Italy, 2006. [Google Scholar]
- Mikelsaar, M.; Lazar, V.; Onderdonk, A.; Donelli, G. Do Probiotic Preparations for Humans Really Have Efficacy? Microb. Ecol. Health Dis. 2011, 22, 10128. [Google Scholar] [CrossRef]
- Van Zyl, W.F.; Deane, S.M.; Dicks, L.M.T. Molecular Insights into Probiotic Mechanisms of Action Employed against Intestinal Pathogenic Bacteria. Gut Microbes 2020, 12, 1831339. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, T.; Lu, J.; Wei, K.; Tian, H.; Liu, W.; Xu, T.; Wang, X.; Wang, S.; Yang, R.; et al. Adjuvant Treatment and Molecular Mechanism of Probiotic Compounds in Patients with Gastric Cancer after Gastrectomy. Food Funct. 2021, 12, 6294–6308. [Google Scholar] [CrossRef]
- Chifiriuc, M.; Veronica, L.; Dracea, O.; Ditu, L.-M.; Smarandache, D.; Bucur, M.; Larion, C.; Ramona, C.; Sasarman, E. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic Acid (PLA). Int. J. Mol. Sci. 2007, 8, 583–592. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Latvala, S.; Lehtinen, M.J. Role of Probiotics in Stimulating the Immune System in Viral Respiratory Tract Infections: A Narrative Review. Nutrients 2020, 12, 3163. [Google Scholar] [CrossRef]
- Gao, M.; Wang, H.; Luo, H.; Sun, Y.; Wang, L.; Ding, S.; Ren, H.; Gang, J.; Rao, B.; Liu, S.; et al. Characterization of the Human Oropharyngeal Microbiomes in SARS-CoV-2 Infection and Recovery Patients. Adv. Sci. 2021, 8, 2102785. [Google Scholar] [CrossRef]
- Sabahi, S.; Homayouni Rad, A.; Aghebati-Maleki, L.; Sangtarash, N.; Ozma, M.A.; Karimi, A.; Hosseini, H.; Abbasi, A. Postbiotics as the New Frontier in Food and Pharmaceutical Research. Crit. Rev. Food Sci. Nutr. 2022, 1–28. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics Produced by Lactic Acid Bacteria: The next Frontier in Food Safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S.; Szajewska, H. Postbiotics: The Concept and Their Use in Healthy Populations. Front. Nutr. 2022, 9, 1002213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, W.; Feng, C.; Kwok, L.-Y.; He, Q.; Sun, Z. Stronger Gut Microbiome Modulatory Effects by Postbiotics than Probiotics in a Mouse Colitis Model. npj Sci. Food 2022, 6, 53. [Google Scholar] [CrossRef]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Rokutan, K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef]
- Satomi, S.; Waki, N.; Arakawa, C.; Fujisawa, K.; Suzuki, S.; Suganuma, H. Effects of Heat-Killed Levilactobacillus brevis KB290 in Combination with β-Carotene on Influenza Virus Infection in Healthy Adults: A Randomized Controlled Trial. Nutrients 2021, 13, 3039. [Google Scholar] [CrossRef] [PubMed]
- Stolp, H.; Starr, M.P. Bdellovibrio bacteriovorus Gen. et sp. n., a Predatory, Ectoparasitic, and Bacteriolytic Microorganism. Antonie Van Leeuwenhoek 1963, 29, 217–248. [Google Scholar] [CrossRef]
- Cavallo, F.M.; Jordana, L.; Friedrich, A.W.; Glasner, C.; van Dijl, J.M. Bdellovibrio bacteriovorus: A Potential ‘Living Antibiotic’ to Control Bacterial Pathogens. Crit. Rev. Microbiol. 2021, 47, 630–646. [Google Scholar] [CrossRef]
- Van Essche, M.; Quirynen, M.; Sliepen, I.; Van Eldere, J.; Teughels, W. Bdellovibrio bacteriovorus Attacks Aggregatibacter Actinomycetemcomitans. J. Dent. Res. 2009, 88, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Harini, K.; Ajila, V.; Hegde, S. Bdellovibrio bacteriovorus: A Future Antimicrobial Agent? J. Indian Soc. Periodontol. 2013, 17, 823. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to Manage Pseudomonas aeruginosa Infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef]
- Saviuc, C.; Grumezescu, A.; Bleotu, C.; Holban, A.; Chifiriuc, M.; Balaure, P.; Predan, G.; Lazar, V. Culture Methods versus Flow Cytometry for the Comparative Assessment OF the Antifungal Activity of Eugenia caryophyllata Thunb. (Myrtaceae) Essential Oil. Farmacia 2013, 61, 912–919. [Google Scholar]
- Marinas, I.C.; Oprea, E.; Chifiriuc, M.C.; Badea, I.A.; Buleandra, M.; Lazar, V. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania. Chem. Biodivers. 2015, 12, 1554–1564. [Google Scholar] [CrossRef]
- Holban, A.; Lazar, V. Inter-Kingdom Cross-Talk: The Example of Prokaryotes-Eukaryotes Communication Biointerface Research in Applied Chemistry. Biointerface Res. Appl. Chem. 2011, 1, 095–110. [Google Scholar]
- Hentzer, M.; Givskov, M. Pharmacological Inhibition of Quorum Sensing for the Treatment of Chronic Bacterial Infections. J. Clin. Investig. 2003, 112, 1300–1307. [Google Scholar] [CrossRef]
- Grumezescu, V.; Holban, A.M.; Grumezescu, A.M.; Socol, G.; Ficai, A.; Vasile, B.S.; Truscă, R.; Bleotu, C.; Lazar, V.; Chifiriuc, C.M.; et al. Usnic Acid-Loaded Biocompatible Magnetic PLGA-PVA Microsphere Thin Films Fabricated by MAPLE with Increased Resistance to Staphylococcal Colonization. Biofabrication 2014, 6, 035002. [Google Scholar] [CrossRef]
- Chifiriuc, M.; Grumezescu, A.; Lazar, V. Quorum Sensing Inhibitors from the Sea: Lessons from Marine Symbiotic Relationships. Curr. Org. Chem. 2014, 18, 823–839. [Google Scholar] [CrossRef]
- Lazar, V.; Saviuc, C.-M.; Carmen Chifiriuc, M. Periodontitis and Periodontal Disease—Innovative Strategies for Reversing the Chronic Infectious and Inflammatory Condition by Natural Products. Curr. Pharm. Des. 2015, 22, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Issac Abraham, S.V.P.; Palani, A.; Ramaswamy, B.R.; Shunmugiah, K.P.; Arumugam, V.R. Antiquorum Sensing and Antibiofilm Potential of Capparis spinosa. Arch. Med. Res. 2011, 42, 658–668. [Google Scholar] [CrossRef]
- Salini, R.; Pandian, S.K. Interference of Quorum Sensing in Urinary Pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 2015, 73, ftv038. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.H.; Rukayadi, Y.; Hwang, J.-K. Inhibition of Bacterial Quorum Sensing by Vanilla Extract. Lett. Appl. Microbiol. 2006, 060421055900002. [Google Scholar] [CrossRef] [PubMed]
- Aldawsari, M.; Khafagy, E.-S.; Saqr, A.; Alalaiwe, A.; Abbas, H.; Shaldam, M.; Hegazy, W.; Goda, R. Tackling Virulence of Pseudomonas Aeruginosa by the Natural Furanone Sotolon. Antibiotics 2021, 10, 871. [Google Scholar] [CrossRef]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; et al. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016, 21, 1069. [Google Scholar] [CrossRef]
- Chorianopoulos, N.G.; Giaouris, E.D.; Skandamis, P.N.; Haroutounian, S.A.; Nychas, G.-J.E. Disinfectant Test against Monoculture and Mixed-Culture Biofilms Composed of Technological, Spoilage and Pathogenic Bacteria: Bactericidal Effect of Essential Oil and Hydrosol of Satureja thymbra and Comparison with Standard Acid–Base Sanitizers. J. Appl. Microbiol. 2008, 104, 1586–1596. [Google Scholar] [CrossRef]
- Vetas, D.; Dimitropoulou, E.; Mitropoulou, G.; Kourkoutas, Y.; Giaouris, E. Disinfection Efficiencies of Sage and Spearmint Essential Oils against Planktonic and Biofilm Staphylococcus aureus Cells in Comparison with Sodium Hypochlorite. Int. J. Food Microbiol. 2017, 257, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rubini, D.; Banu, S.F.; Nisha, P.; Murugan, R.; Thamotharan, S.; Percino, M.J.; Subramani, P.; Nithyanand, P. Essential Oils from Unexplored Aromatic Plants Quench Biofilm Formation and Virulence of Methicillin Resistant Staphylococcus aureus. Microb. Pathog. 2018, 122, 162–173. [Google Scholar] [CrossRef]
- Liakos, I.; Grumezescu, A.; Holban, A.; Florin, I.; D’Autilia, F.; Carzino, R.; Bianchini, P.; Athanassiou, A. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals 2016, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Liakos, I.; Holban, A.; Carzino, R.; Lauciello, S.; Grumezescu, A. Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomaterials 2017, 7, 84. [Google Scholar] [CrossRef]
- Oprea, E.; Rǎdulescu, V.; Balotescu, C.; Lazar, V.; Bucur, M.; Mladin, P.; Farcasanu, I.C. Chemical and Biological Studies of Ribes Nigrum L. Buds Essential Oil. BioFactors 2008, 34, 3–12. [Google Scholar] [CrossRef]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The Natural Plant Compound Carvacrol as an Antimicrobial and Anti-Biofilm Agent: Mechanisms, Synergies and Bio-Inspired Anti-Infective Materials. Biofouling 2018, 34, 630–656. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phyther. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Burt, S.A.; Ojo-Fakunle, V.T.A.; Woertman, J.; Veldhuizen, E.J.A. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations. PLoS ONE 2014, 9, e93414. [Google Scholar] [CrossRef]
- Rúa, J.; del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of Carvacrol and Thymol: Antimicrobial Activity Against Staphylococcus aureus and Antioxidant Activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Nayeri Fasaei, B. Selected Plant Essential Oils Inhibit Biofilm Formation and LuxS-and Pfs-mediated Quorum Sensing by Escherichia coli O157:H7. Lett. Appl. Microbiol. 2022, 74, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green Tea Catechin, Epigallocatechin-3-Gallate (EGCG): Mechanisms, Perspectives and Clinical Applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef]
- Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the Antibacterial Action of Epigallocatechin Gallate (EGCg) on Bacillus Subtilis. Biosci. Biotechnol. Biochem. 2015, 79, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Al Razqan, G.S.; Kwon, D.H. Antibacterial Activity of Epigallocatechin-3-Gallate (EGCG) and Its Synergism with β-Lactam Antibiotics Sensitizing Carbapenem-Associated Multidrug Resistant Clinical Isolates of Acinetobacter baumannii. Phytomedicine 2017, 24, 49–55. [Google Scholar] [CrossRef]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-Infective Properties of Epigallocatechin-3-Gallate (EGCG), a Component of Green Tea. Br. J. Pharmacol. 2013, 168, 1059–1073. [Google Scholar] [CrossRef]
- Ishii, T.; Mori, T.; Tanaka, T.; Mizuno, D.; Yamaji, R.; Kumazawa, S.; Nakayama, T.; Akagawa, M. Covalent Modification of Proteins by Green Tea Polyphenol (–)-Epigallocatechin-3-Gallate through Autoxidation. Free Radic. Biol. Med. 2008, 45, 1384–1394. [Google Scholar] [CrossRef]
- Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG Redirects Amyloidogenic Polypeptides into Unstructured, off-Pathway Oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566. [Google Scholar] [CrossRef]
- Lorenzen, N.; Nielsen, S.B.; Yoshimura, Y.; Vad, B.S.; Andersen, C.B.; Betzer, C.; Kaspersen, J.D.; Christiansen, G.; Pedersen, J.S.; Jensen, P.H.; et al. How Epigallocatechin Gallate Can Inhibit α-Synuclein Oligomer Toxicity in Vitro. J. Biol. Chem. 2014, 289, 21299–21310. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef]
- Jayaraman, A.; Wood, T.K. Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease. Annu. Rev. Biomed. Eng. 2008, 10, 145–167. [Google Scholar] [CrossRef]
- Tyers, M.; Wright, G.D. Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Cui, Y.; Kim, S.H.; Kim, H.; Yeom, J.; Ko, K.; Park, W.; Park, S. AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli. PLoS ONE 2012, 7, e48880. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.W.; Hornsey, M.; Higgins, P.G.; Lucassen, K.; Wille, J.; Salguero, F.J.; Seifert, H.; La Ragione, R.M. Restoring the Activity of the Antibiotic Aztreonam Using the Polyphenol Epigallocatechin Gallate (EGCG) against Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Motta, S.; Aldana, M. Adaptive Resistance to Antibiotics in Bacteria: A Systems Biology Perspective. WIREs Syst. Biol. Med. 2016, 8, 253–267. [Google Scholar] [CrossRef]
- Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum Sensing Inhibitors Increase the Susceptibility of Bacterial Biofilms to Antibiotics In Vitro and In Vivo. Antimicrob. Agents Chemother. 2011, 55, 2655–2661. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.-L.; Zhang, Z.-W.; Ravindar, L.; Rakesh, K.P. Antibacterial Activities with the Structure-Activity Relationship of Coumarin Derivatives. Eur. J. Med. Chem. 2020, 207, 112832. [Google Scholar] [CrossRef]
- Nelson, D.; Loomis, L.; Fischetti, V.A. Prevention and Elimination of Upper Respiratory Colonization of Mice by Group A Streptococci by Using a Bacteriophage Lytic Enzyme. Proc. Natl. Acad. Sci. USA 2001, 98, 4107–4112. [Google Scholar] [CrossRef]
- Knecht, L.E.; Veljkovic, M.; Fieseler, L. Diversity and Function of Phage Encoded Depolymerases. Front. Microbiol. 2020, 10, 2949. [Google Scholar] [CrossRef] [PubMed]
- Sy, C.L.; Chen, P.-Y.; Cheng, C.-W.; Huang, L.-J.; Wang, C.-H.; Chang, T.-H.; Chang, Y.-C.; Chang, C.-J.; Hii, I.-M.; Hsu, Y.-L.; et al. Recommendations and Guidelines for the Treatment of Infections Due to Multidrug Resistant Organisms. J. Microbiol. Immunol. Infect. 2022, 55, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Rezzoagli, C.; Archetti, M.; Mignot, I.; Baumgartner, M.; Kümmerli, R. Combining Antibiotics with Antivirulence Compounds Can Have Synergistic Effects and Reverse Selection for Antibiotic Resistance in Pseudomonas aeruginosa. PLoS Biol. 2020, 18, e3000805. [Google Scholar] [CrossRef]
- Umemura, T.; Kato, H.; Hagihara, M.; Hirai, J.; Yamagishi, Y.; Mikamo, H. Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses. Antibiotics 2022, 11, 524. [Google Scholar] [CrossRef]
- Khayyat, A.N.; Abbas, H.A.; Khayat, M.T.; Shaldam, M.A.; Askoura, M.; Asfour, H.Z.; Khafagy, E.-S.; Abu Lila, A.S.; Allam, A.N.; Hegazy, W.A.H. Secnidazole Is a Promising Imidazole Mitigator of Serratia Marcescens Virulence. Microorganisms 2021, 9, 2333. [Google Scholar] [CrossRef]
- Askoura, M.; Saleh, M.; Abbas, H. An Innovative Role for Tenoxicam as a Quorum Sensing Inhibitor in Pseudomonas aeruginosa. Arch. Microbiol. 2020, 202, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Al Saqr, A.; Aldawsari, M.F.; Khafagy, E.-S.; Shaldam, M.A.; Hegazy, W.A.H.; Abbas, H.A. A Novel Use of Allopurinol as A Quorum-Sensing Inhibitor in Pseudomonas aeruginosa. Antibiotics 2021, 10, 1385. [Google Scholar] [CrossRef]
- Hegazy, W.A.H.; Rajab, A.A.H.; Abu Lila, A.S.; Abbas, H.A. Anti-Diabetics and Antimicrobials: Harmony of Mutual Interplay. World J. Diabetes 2021, 12, 1832–1855. [Google Scholar] [CrossRef] [PubMed]
- Cavalu, S.; Elbaramawi, S.S.; Eissa, A.G.; Radwan, M.F.; Ibrahim, T.S.; Khafagy, E.-S.; Lopes, B.S.; Ali, M.A.M.; Hegazy, W.A.H.; Elfaky, M.A. Characterization of the Anti-Biofilm and Anti-Quorum Sensing Activities of the β-Adrenoreceptor Antagonist Atenolol against Gram-Negative Bacterial Pathogens. Int. J. Mol. Sci. 2022, 23, 13088. [Google Scholar] [CrossRef]
- Domenico, P.; Salo, R.J.; Cross, A.S.; Cunha, B.A. Polysaccharide Capsule-Mediated Resistance to Opsonophagocytosis in Klebsiella pneumoniae. Infect. Immun. 1994, 62, 4495–4499. [Google Scholar] [CrossRef]
- Opoku-Temeng, C.; Kobayashi, S.D.; DeLeo, F.R. Klebsiella pneumoniae Capsule Polysaccharide as a Target for Therapeutics and Vaccines. Comput. Struct. Biotechnol. J. 2019, 17, 1360–1366. [Google Scholar] [CrossRef]
- Nielsen, T.B.; Yan, J.; Slarve, M.; Li, R.; Junge, J.A.; Luna, B.M.; Wilkinson, I.; Yerramalla, U.; Spellberg, B. Development of a Bispecific Antibody Targeting Clinical Isolates of Acinetobacter baumannii. J. Infect. Dis. 2023, 227, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
Antibiofilm Strategies (Short Description) | Tested Strains | References (Selection) |
---|---|---|
Bacteriophages | ||
vB_AbaM_ISTD—phage isolated from Belgrade wastewaters | Nosocomial carbapenem-resistant Acinetobacter baumannii (6 h after biofilm treatment, not 24 h) | [46] |
PM-477 (engineered lysin) phage strain— disruption of biofilm without affecting the remaining vaginal microbiome | Gardnerella sp. (biofilm-forming bacteria) from bacterial vaginosis patients | [47] |
Recombinant tailspike protein (TSP, showed enzymatic activity) of φAB6 phage | Acinetobacter baumannii (inhibit biofilm formation and degrade formed biofilm) | [48] |
Bacteriocins | ||
Bacteriocins produced by Enterococcus faecium (crude supernatants of non-pathogenic strains) | Streptococcus mutans ATCC 25175-associated preformed biofilms | [49] |
Purified bacteriocin (100 μg/mL) from L. lactis strain CH3 | S. aureus; S. flexneri; K. pneumoniae; S. pyogenes; C. albicans; A. fumigatus, 24 h biofilms | [50] |
BM1300—produced by Lactobacillus crustorum MN047 | S. aureus; E. coli, 24 h biofilms (crystal violet assay) | [51] |
Antimicrobial peptides (AMPs) | [52] | |
KP and L18R (antifungal peptides) | Enterococcus faecalis | [53] |
Pro10-1D, a potent AMP that inhibits biofilm formation, could be considered with an insect source (synthesis based on AMP structures previously isolated from a beetle defensin—Protaetia brevitarsis) | E. coli; A. baumannii (including MDR strains) | [54] |
Temporin G (FFPVIGRILNGIL-NH2)—animal origin (isolated from Rana temporaria) | Preformed S. aureus biofilms | [55] |
Cathelicidin peptide SMAP-29 (sheep myeloid AMP) | Acinetobacter baumannii | [56] |
Cathelicidin-derived peptide D-11 | Klebsiella pneumoniae | [57] |
Puroindoline | Campylobacter spp. | [58] |
Melectin, the first peptide identified in the solitary bee venom, a cationic amphipathic peptide with rich hydrophobic and basic amino acid residues and a proline | S. aureus; P. aeruginosa | [59] |
Natural extracts [60] | ||
Plant extracts: Essential oils (EOs) and components Clove (Eugenia caryophyllata) EOs | Listeria monocytogenes, Salmonella enteritidis | [61] |
Eucalyptus (Eucalyptus globulus Labillardiere), sage (Salvia officinalis) EOs | P. aeruginosa (hospital-acquired and wastewater strains), 24h biofilms | [62] |
Eugenol (0.4%) | Antibiotic-resistant Vibrio parahaemolyticus (time-kill assay—on surface of crab shells) | [63] |
Carvacrol (1.9 mM) | P. aeruginosa (by numbering attached cells on stainless steel and by fluorescence microscopy) | [64] |
Phenolic compounds: | ||
Gallic acid Tannic acid | E. coli (csgA mutant biofilm) E. coli (pgaA and recA mutant biofilms) | [65] |
2-hydroxy-4-methoxybenzaldehyde (from Hemidesmus indicus) | Staphylococcus epidermidis | [66] |
Pulverulentone A (from Callistemon citrinus) | MSSA and MRSA | [67] |
Phloretin (37.28, 74.55, or 149.10 μg/mL) | C. albicans, 24 h biofilms (by crystal violet assay) | [68] |
12-methoxy-trans-carnosic acid and carnosol (from Salvia officinalis L.) | Candida sp. | [69] |
Emodin (an anthraquinone from Polygonum cuspidatum) | Candida sp. | [70] |
Quercetin, myricetin and scutellarein | Specifically inhibited Bap-mediated biofilm formation 1 of S. aureus and other staphylococci | [71] |
Pure rutin and rutin in combination with gentamicin | MDR strains of P. aeruginosa | [72] |
Other natural compounds | ||
L-homoserine lactone, ajoene, allicin (from garlic, Allium sativum L.) | P. aeruginosa | [73] |
Cannabidiol | MSSA and MRSA | [74] |
Bee products—compound source | ||
|
| [75] |
Bee pollen ethanol extracts | S. aureus ATCC 25,422; P. aeruginosa ATCC 25,853; C. glabrata | [76] |
Melittin | Effective alone against the strong biofilm of MDR pathogens (S. aureus; P. aeruginosa) | [77] |
Nanoparticles (NPs) | ||
NPs—antimicrobial, antibiofilm, antipathogenic | Bacteria (including MDR strains), microfungi protozoa, viruses | [78] |
Hordenine-AuNPs | P. aeruginosa PAO1 | [79] |
AuNP Capsicum annuum extract | Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 | [80] |
Silver nanoparticles (AgNPs) | MDR strains of Acinetobacter baumannii, 24 h biofilms (by crystal violet assay) | [81] |
AgSiO2 nanoparticles | Staphylococcus aureus | [82] |
Mesoporous Fe3O4@SiO2 NPs containing glucose-oxidase and l-arginine produce NO by a cascade reaction | vancomycin-resistant S. aureus biofilms in vivo (in mice) | [83] |
A magnetic microswarm based on porous nanocatalysts (mesoporous Fe3O4) could eliminate biofilms by generating ROS 2 | E. coli; B. cereus | [84] |
Nanobioactive surface based on magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres | Staphylococcus aureus; Pseudomonas aeruginosa | [85] |
Chrysin-loaded chitosan NPs | Staphylococcus aureus | [86] |
Zingerone-loaded chitosan NPs | Pseudomonas aeruginosa | [87] |
Curcumin-loaded chitosan NPs | Staphylococcus aureus; Candida albicans | [88] |
NP-based dissolving microneedles with doxycycline | Staphylococcus aureus; Pseudomonas aeruginosa | [89] |
Lipid-based NPs: monoolein with tobramycin | Pseudomonas aeruginosa (cystic fibrosis-related) | [90] |
Physical modern methods based on light or ultrasound for biofilm removal | ||
Multisonic/ultrasonic protocols with various applications in restorative dentistry and endodontics | Multispecies biofilm removal | [91,92] |
Antibiofilm photodynamic therapy | Vancomycin-resistant Staphylococcus aureus (VRSA)—induced infection (in vitro and in vivo) | [93] |
Biological methods based on interspecific antagonism | ||
Competition/probiotics | ||
Lactobacilli-derived exopolysaccharides (Lactobacillus crispatus and Lactobacillus gasseri) | Stimulating the biofilm formation of lactobacilli and preventing, at the same time, the biofilm formation of Escherichia coli; Staphylococcus spp.; Enterococcus spp.; Streptococcus agalactiae; Candida spp. | [94] |
Bifidobacterium lactis and Bifidobacterium infantis—antagonist effect (alone or in combination) | Porphyromonas gingivalis; Fusobacterium nucleatum | [95] |
Probiotic yeast Saccharomyces boulardii CNCM I-745 through modification of the extracellular matrix composition | Clostridioides difficile biofilm formation (in vitro) | [96] |
Predatorism Bdellovibrio and similar organisms (with an obligatory predatory lifestyle) could be from Micavibrio genus (a-proteobacteria) or Bdellovibrionaceae, Bacteriovoraceae, Peredibacteraceae, Halobacteriovoraceae and Pseudobacteriovoracaceae family (d-proteobacteria) |
| [97,98] |
Bdellovibrio bacteriovorus | Pseudomonas aeruginosa or Staphylococcus aureus (collected from sputa of two cystic fibrosis patients) biofilms | [99] |
New synthetic chemical compounds | ||
Small organic molecules—derivatives of the following: Imidazoles; 2-aminoimidazoles/triazoles; Pyrazoles; Indole and carbazoles; 2-phenylhydrazineylidenes; Pyrroles; Phenazines and quinolines; Cynnamides. | P. aeruginosa MRSA; A. baumannii; V. cholera; P. aeruginosa S. aureus; S. epidermidis E. coli O157:H7; P. aeruginosa S. aureus S. aureus; S. epidermidis S. aureus; E. faecium; S. epidermidis P. aeruginosa | [100] |
Metal compounds with Ga (III)—simple salts or complexes Gallium Meso- and Protoporphyrin IX | P. aeruginosa biofilm formation in vitro and in murine lung infection models Biofilms of MDR strains of Acinetobacter baumannii | [101] |
FN075 (with ring-fused 2-pyridones) blocks biogenesis of curli and type 1 pili and presents unique antibiofilm properties | Uropathogenic Escherichia coli (UPEC) | [34] |
Combined drug therapy | ||
Vitexin (flavonoid) with azithromycin and gentamicin | [102] | |
Curcumin treatment followed by light irradiation (10 J/cm2)—photodynamic therapy | Pseudomonas aeruginosa | [103] |
Gentamicin (GEN), vancomycin (VAN), tetracycline (TET), ciprofloxacin (CIP), daptomycin (DAP), erythromycin (ERM) and linezolid (LIN) showed a significantly increased efficacy at 2× MIC against phage-treated biofilms compared with intact biofilms | S. aureus Newman (72 h biofilm) | [104] |
PlySs2 (phage) and vancomycin reduced (92%) the number of CFUs on the implant surface (when used together) in vivo | S. aureus (murine tibial implant) | [105] |
Depolymerase Dpo71 (from a bacteriophage specific for Acinetobacter baumannii) alone and in combination with colistin | Inhibits formation and disrupts preformed biofilms; combination enhances the antibiofilm activity and improves the survival rate of Galleria mellonella (infected with A. baumannii) | [106] |
Melittin synergism with doripenem and ceftazidime (as topical drug) Melittin synergism with gentamicin, ciprofloxacin, vancomycin, and rifampin | Acinetobacter baumannii; Pseudomonas aeruginosa Effective against the strong biofilm of MDR pathogens (S. aureus and P. aeruginosa) | [11,77] |
Tetrasodium EDTA, ethanol and chlorhexidine hydrochloride | S. aureus; S. epidermidis; P. aeruginosa; P. mirabilis; E. coli (MBEC Assay) | [107] |
Encapsulation of eugenol and triclosan into polymeric nanoemulsions acts synergistically. | Murine model of mature MDR wound biofilm infections (in vivo) | [108] |
TB_KKG6A and TB_L1FK (AMPs) and EDTA | Pseudomonas aeruginosa; Staphylococcus aureus | [109] |
Monoclonal antibodies target PNAG 3 and Aap 4 | S. aureus biofilms | [110] |
Chelating agents | ||
Ethylenediaminetetraacetic acid (EDTA) | Prevent the biofilm formation by Listeria monocytogenes and Staphylococcus epidermidis strains; kill Pseudomonas aeruginosa biofilm-embedded cells | [111] |
Taxonomic Affiliation | Producer Microorganisms | New Antimicrobial Metabolites | References (Selection) |
---|---|---|---|
Soil Microbiota | |||
Bacteria | Bacillus subtilis group | Ribosomal peptides, volatile compounds, polyketides (PKs), nonribosomal peptides (NRPs), and hybrids between PKs and NRPs | [133] |
Streptomyces spp. | Main metabolites: phenolic compounds and benzeneacetic acid. Other compounds: 1-nonadecene, nalidixic acid, a pyrrolizidine, etc., antimicrobial activity against S. aureus MTCC * 96 and E. coli MTCC 40 | [134] | |
Streptomyces diastaticus subsp. ardesiacus strain YIM PH20246 | New phenazine metabolites: 6-hydroxyphenazine-1-carboxamide and methyl 6-carbamoylphenazine-1-carboxylate—antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Staphylococcus albus (ATCC 10231) | [135] | |
Streptomyces sp. strain FR7 | Polyketides (with methylsalicylic acid component)—antimicrobial activity against Micrococcus luteus, S. aureus, L. monocytogenes and P. aeruginosa | [136] | |
Streptomyces chrestomyceticus ADP4 | Phenyl 2′α, 2′β, 6′β-trimethyl cyclohexyl ketone and phenyl nonanyl ether—inhibiting biofilm formed by C. albicans ATCC 10231 | [137] | |
Streptomyces sp. Je 1–651 | spiramycins, stambomycins and unidentified compounds—antimicrobial activity against many bacteria and yeast strains | [138] | |
Streptomyces agglomeratus 5-1-3 | Nonribosomal peptide echinomycin showed excellent anti-MRSA activity | [139] | |
Streptomyces spectabilis | Metacycloprodigiosin—antimicrobial activity against eight clinically common pathogens: S. aureus, B. subtilis, E. coli, S. pyogenes, P. aeruginosa, B. typhi, C. albicans and Trichophyton rubrum | [140] | |
Streptomyces sp. KIB-H1318 | Three new phenoxazinone-related alkaloids—minor antibacterial activity against E. coli ATCC 8099, B. subtilis ATCC 6633 and S. aureus ATCC 6538 | [141] | |
Streptomyces sp. (ERINLG-201) | Bluemomycin, a new naphthoquinone derivative—antimicrobial properties against Gram-negative bacteria | [142] | |
Streptomyces sp. (CL12-4) | New bicyclic diterpenoid, benditerpenoic acid—exhibits moderate antibacterial activity against methicillin- and multidrug-resistant S. aureus. | [143] | |
Fungi | Penicillium herquei MA-370 | α-pyrone derivatives—antimicrobial activity against P. aeruginosa and E. coli | [144] |
Human Normal Microbiota | |||
Bacteria | Staphylococcus lugdunensis (nasal microbiota) | Lugdunin (nonribosomally synthesized cyclic peptide) | [145,146] |
L. gasseri 1A-TV, L. fermentum 18A-TV, and L. crispatus 35A-TV (vaginal microbiota) | Metabolites produced by cell-free supernatants (CFSs) and their combination—strong bactericidal effect on the tested multidrug-resistant urogenital pathogens (S. agalactiae, E. coli, KPC-producing K. pneumoniae, S. aureus, P. aeruginosa, P. mirabilis, P. vulgaris) | [147] | |
Coagulase-negative Staphylococcus (CoNS) including S. epidermidis and S. taphylococcus hominis isolates (healthy skin) | Antimicrobial peptides (AMPs)—antibacterial activity against S. aureus | [148] | |
Gut microbiota | The microbial metabolites include amino acids, nonribosomal peptides and ribosomally synthesized post-translationally modified peptides, lipids, glycolipids, oligosaccharides, terpenoids, polyketides and others—antimicrobial activities | [149,150] | |
Archaea | Methanobrevibacter smithii (intestinal microbiota) | Archaebiotics (probiotics of archaeal origin)—potential antagonists against gut pathogens | [149] |
Deep Sea Water Microbiota | |||
Bacteria | Bacillus pumilus | Pumilacidin active against Staphylococcus aureus | [151] |
Streptomyces sp. ZZ745 (isolated from marine mud, collected from a coastal area) | Bagremycins F and G showed antibacterial activity against Escherichia coli | [152] | |
Fungi | New Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge | Kosinostatin and isoquinocycline B (isolated from 28ISP2-46T fermentation broths) exhibit antibiotic properties against many MDR clinical isolates | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, V.; Oprea, E.; Ditu, L.-M. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future. Pathogens 2023, 12, 746. https://doi.org/10.3390/pathogens12050746
Lazar V, Oprea E, Ditu L-M. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future. Pathogens. 2023; 12(5):746. https://doi.org/10.3390/pathogens12050746
Chicago/Turabian StyleLazar, Veronica, Eliza Oprea, and Lia-Mara Ditu. 2023. "Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future" Pathogens 12, no. 5: 746. https://doi.org/10.3390/pathogens12050746
APA StyleLazar, V., Oprea, E., & Ditu, L. -M. (2023). Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future. Pathogens, 12(5), 746. https://doi.org/10.3390/pathogens12050746