Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Strains and Positive Clinical Samples
2.2. Collection of the Clinical Samples
2.3. Design of Primers and Probes
2.4. Extraction of Nucleic Acid
2.5. Construction of the Standard Plasmids
2.6. Optimization of the Reaction Parameters
2.7. Generation of the Standard Curves
2.8. Analytical Specificity Analysis
2.9. Analytical Sensitivity Analysis
2.10. Repeatability Analysis
2.11. Detection of RVs in Clinical Samples
2.12. Phylogenetic Analysis Based on RVH VP6 Gene
3. Results
3.1. Construction of the Standard Plasmids
3.2. Optimization of the Reaction Conditions
3.3. Generation of the Standard Curves
3.4. Specificity Analysis
3.5. Sensitivity Analysis
3.6. Repeatability Analysis
3.7. The Prevalence of RVs in Clinical Samples
3.8. Phylogenetic Analysis Based on RVH VP6 Gene Sequences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlasova, A.N.; Amimo, J.O.; Saif, L.J. Porcine rotaviruses: Epidemiology, immune responses and control strategies. Viruses 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.T. Rotavirus diversity and evolution in the post-vaccine world. Discov. Med. 2012, 13, 85–97. [Google Scholar]
- Matthijnssens, J.; Otto, P.H.; Ciarlet, M.; Desselberger, U.; Van Ranst, M.; Johne, R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch. Virol. 2012, 157, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Shepherd, F.K.; Springer, N.L.; Mwangi, W.; Marthaler, D.G. Rotavirus infection in swine: Genotypic diversity, immune responses, and role of gut microbiome in rotavirus immunity. Pathogens 2022, 11, 1078. [Google Scholar] [CrossRef] [PubMed]
- Rodger, S.M.; Craven, J.A.; Williams, I. Letter: Demonstration of reovirus-like particles in intestinal contents of piglets with diarrhoea. Aust. Vet. J. 1975, 51, 536. [Google Scholar] [CrossRef]
- Theil, K.W.; Saif, L.J.; Moorhead, P.D.; Whitmoyer, R.E. Porcine rotavirus-like virus (group B rotavirus): Characterization and pathogenicity for gnotobiotic pigs. J. Clin. Microbiol. 1985, 21, 340–345. [Google Scholar] [CrossRef]
- Saif, L.J.; Bohl, E.H.; Theil, K.W.; Cross, R.F.; House, J.A. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J. Clin. Microbiol. 1980, 12, 105–111. [Google Scholar] [CrossRef]
- Papp, H.; László, B.; Jakab, F.; Ganesh, B.; De Grazia, S.; Matthijnssens, J.; Ciarlet, M.; Martella, V.; Bányai, K. Review of group A rotavirus strains reported in swine and cattle. Vet. Microbiol. 2013, 165, 190–199. [Google Scholar] [CrossRef]
- Theuns, S.; Vyt, P.; Desmarets, L.M.B.; Roukaerts, I.D.M.; Heylen, E.; Zeller, M.; Matthijnssens, J.; Nauwynck, H.J. Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Res. 2016, 213, 172–183. [Google Scholar] [CrossRef]
- Niira, K.; Ito, M.; Masuda, T.; Saitou, T.; Abe, T.; Komoto, S.; Sato, M.; Yamasato, H.; Kishimoto, M.; Naoi, Y.; et al. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. Infect. Genet. Evol. 2016, 44, 106–113. [Google Scholar] [CrossRef]
- Roczo-Farkas, S.; Dunlop, R.H.; Donato, C.M.; Kirkwood, C.D.; McOrist, S. Rotavirus group C infections in neonatal and grower pigs in Australia. Vet. Rec. 2021, 188, e296. [Google Scholar] [CrossRef]
- Joshi, M.S.; Arya, S.A.; Shinde, M.S.; Ingle, V.C.; Birade, H.S.; Gopalkrishna, V. Rotavirus C infections in asymptomatic piglets in India, 2009–2013: Genotyping and phylogenetic analysis of all genomic segments. Arch. Virol. 2022, 167, 2665–2675. [Google Scholar] [CrossRef]
- Jiao, R.; Ji, Z.; Zhu, X.; Shi, H.; Chen, J.; Shi, D.; Liu, J.; Jing, Z.; Zhang, J.; Zhang, L.; et al. Genome analysis of the G6P6 genotype of porcine group C rotavirus in China. Animals 2022, 12, 2951. [Google Scholar] [CrossRef]
- Zhao, S.; Jin, X.; Zang, L.; Liu, Z.; Wen, X.; Ran, X. Global infection rate of rotavirus C during 1980–2022 and analysis of critical factors in the host range restriction of virus VP4. Viruses 2022, 14, 2826. [Google Scholar] [CrossRef] [PubMed]
- Chepngeno, J.; Diaz, A.; Paim, F.C.; Saif, L.J.; Vlasova, A.N. Rotavirus C: Prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Vet. Res. 2019, 50, 84. [Google Scholar] [CrossRef]
- Shepherd, F.K.; Murtaugh, M.P.; Chen, F.; Culhane, M.R.; Marthaler, D.G. Longitudinal surveillance of porcine rotavirus B strains from the United States and Canada and in silico identification of antigenically important sites. Pathogens 2017, 6, 64. [Google Scholar] [CrossRef]
- Molinari, B.L.D.; Alfieri, A.F.; Alfieri, A.A. Molecular characterization of a new G (VP7) genotype in group B porcine rotavirus. Intervirology 2018, 61, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Salogni, C.; Martella, V.; Alborali, G.L.; Scaburri, A.; Boniotti, M.B. Assessing the epidemiology of rotavirus A, B, C and H in diarrheic pigs of different ages in northern Italy. Pathogens 2022, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, K.P.; Penin, A.A.; Mukhin, A.N.; Khametova, K.M.; Grebennikova, T.V.; Yuzhakov, A.G.; Moskvina, A.S.; Musienko, M.I.; Raev, S.A.; Mishin, A.M.; et al. Genome characterization of a pathogenic porcine rotavirus B strain identified in Buryat Republic, Russia in 2015. Pathogens 2018, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Baumann, S.; Sydler, T.; Rosato, G.; Hilbe, M.; Kummerlen, D.; Sidler, X.; Bachofen, C. Frequent occurrence of simultaneous infection with multiple rotaviruses in Swiss pigs. Viruses 2022, 14, 1117. [Google Scholar] [CrossRef] [PubMed]
- Marthaler, D.; Suzuki, T.; Rossow, K.; Culhane, M.; Collins, J.; Goyal, S.; Tsunemitsu, H.; Ciarlet, M.; Matthijnssens, J. VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Vet. Microbiol. 2014, 172, 359–366. [Google Scholar] [PubMed]
- Lahon, A.; Ingle, V.C.; Birade, H.S.; Raut, C.G.; Chitambar, S.D. Molecular characterization of group B rotavirus circulating in pigs from India: Identification of a strain bearing a novel VP7 genotype, G21. Vet. Microbiol. 2014, 174, 342–352. [Google Scholar] [CrossRef]
- Marthaler, D.; Rossow, K.; Gramer, M.; Collins, J.; Goyal, S.; Tsunemitsu, H.; Kuga, K.; Suzuki, T.; Ciarlet, M.; Matthijnssens, J. Detection of substantial porcine group B rotavirus genetic diversity in the United States, resulting in a modified classification proposal for G genotypes. Virology 2012, 433, 85–96. [Google Scholar] [CrossRef]
- Molinari, B.L.; Possatti, F.; Lorenzetti, E.; Alfieri, A.F.; Alfieri, A.A. Unusual outbreak of post-weaning porcine diarrhea caused by single and mixed infections of rotavirus groups A, B, C, and H. Vet. Microbiol. 2016, 193, 125–132. [Google Scholar] [CrossRef]
- Miyabe, F.M.; Dall Agnol, A.M.; Leme, R.A.; Oliveira, T.E.S.; Headley, S.A.; Fernandes, T.; de Oliveira, A.G.; Alfieri, A.F.; Alfieri, A.A. Porcine rotavirus B as primary causative agent of diarrhea outbreaks in newborn piglets. Sci. Rep. 2020, 10, 22002. [Google Scholar] [CrossRef]
- Marthaler, D.; Rossow, K.; Culhane, M.; Goyal, S.; Collins, J.; Matthijnssens, J.; Nelson, M.; Ciarlet, M. Widespread rotavirus H in commercially raised pigs, United States. Emerg. Infect. Dis. 2014, 20, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Wakuda, M.; Ide, T.; Sasaki, J.; Komoto, S.; Ishii, J.; Sanekata, T.; Taniguchi, K. Porcine rotavirus closely related to novel group of human rotaviruses. Emerg. Infect. Dis. 2011, 17, 1491–1493. [Google Scholar] [CrossRef]
- Hull, J.J.A.; Qi, M.; Montmayeur, A.M.; Kumar, D.; Velasquez, D.E.; Moon, S.S.; Magana, L.C.; Betrapally, N.; Ng, T.F.F.; Jiang, B.; et al. Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States. PLoS ONE 2020, 15, e0244498. [Google Scholar] [CrossRef] [PubMed]
- Molinari, B.L.; Lorenzetti, E.; Otonel, R.A.; Alfieri, A.F.; Alfieri, A.A. Species H rotavirus detected in piglets with diarrhea, Brazil, 2012. Emerg. Infect. Dis. 2014, 20, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, M.M.; Peenze, I.; Potgieter, C.A.; Seheri, L.M.; Page, N.A.; Yinda, C.K.; Steele, A.D.; Matthijnssens, J.; Mphahlele, M.J. Complete genome analyses of the first porcine rotavirus group H identified from a South African pig does not provide evidence for recent interspecies transmission events. Infect. Genet. Evol. 2016, 38, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Puente, H.; Cortey, M.; de Nova, P.J.G.; Mencia-Ares, O.; Gomez-Garcia, M.; Diaz, I.; Arguello, H.; Martin, M.; Rubio, P.; Carvajal, A. First identification and characterization of rotavirus H in swine in Spain. Transbound. Emerg. Dis. 2021, 68, 3055–3069. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.V.T.; Anh, P.H.; Cuong, N.V.; Munnink, B.B.O.; van der Hoek, L.; My, P.T.; Tri, T.N.; Bryant, J.E.; Baker, S.; Thwaites, G.; et al. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol. 2016, 2, vew027. [Google Scholar] [CrossRef] [PubMed]
- Chasey, D.; Bridger, J.C.; McCrae, M.A. A new type of atypical rotavirus in pigs. Arch. Virol. 1986, 89, 235–243. [Google Scholar] [CrossRef]
- Hawkins, S.F.C.; Guest, P.C. Multiplex analyses using real-time quantitative PCR. Methods Mol. Biol. 2017, 1546, 125–133. [Google Scholar]
- Saijo, M.; Morikawa, S.; Kurane, I. Real-time quantitative polymerase chain reaction for virus infection diagnostics. Expert. Opin. Med. Diagn. 2008, 2, 1155–1171. [Google Scholar] [CrossRef] [PubMed]
- Marthaler, D.; Homwong, N.; Rossow, K.; Culhane, M.; Goyal, S.; Collins, J.; Matthijnssens, J.; Ciarlet, M. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples. J. Virol. Methods 2014, 209, 30–34. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Z.; Zhou, Z.; Sun, J.; Yan, S.; Gao, W.; Shao, Y.; Bai, Y.; Wu, Y.; Yan, Z.; et al. A TaqMan probe-based multiplex real-time PCR for simultaneous detection of porcine epidemic diarrhea virus subtypes G1 and G2, and porcine rotavirus groups A and C. Viruses 2022, 14, 1819. [Google Scholar] [CrossRef]
- Liu, H.; Shi, K.; Zhao, J.; Yin, Y.; Chen, Y.; Si, H.; Qu, S.; Long, F.; Lu, W. Development of a one-step multiplex qRT-PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. BMC Vet. Res. 2022, 18, 43. [Google Scholar] [CrossRef]
- Xue, R.; Tian, Y.; Zhang, Y.; Zhang, M.; Li, Z.; Chen, S.; Liu, Q. Diversity of group A rotavirus of porcine rotavirus in Shandong province China. Acta Virol. 2018, 62, 229–234. [Google Scholar] [CrossRef]
- Werid, G.M.; Zhang, H.; Ibrahim, Y.M.; Pan, Y.; Zhang, L.; Xu, Y.; Zhang, W.; Wang, W.; Chen, H.; Fu, L.; et al. Development of a multiplex RT-PCR assay for simultaneous detection of four potential zoonotic swine RNA viruses. Vet. Sci. 2022, 9, 176. [Google Scholar] [CrossRef]
- Ding, G.; Fu, Y.; Li, B.; Chen, J.; Wang, J.; Yin, B.; Sha, W.; Liu, G. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound. Emerg. Dis. 2020, 67, 678–685. [Google Scholar] [CrossRef]
- Tao, R.; Chang, X.; Zhou, J.; Zhu, X.; Yang, S.; Li, K.; Gu, L.; Zhang, X.; Li, B. Molecular epidemiological investigation of group A porcine rotavirus in East China. Front. Vet. Sci. 2023, 10, 1138419. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Y.; Opriessnig, T.; Gu, K.; Zhang, H.; Yang, Z. Detection and differentiation of five diarrhea related pig viruses utilizing a multiplex PCR assay. J. Virol. Methods 2019, 263, 32–37. [Google Scholar] [CrossRef]
- Nan, P.; Wen, D.; Opriessnig, T.; Zhang, Q.; Yu, X.; Jiang, Y. Novel universal primer-pentaplex PCR assay based on chimeric primers for simultaneous detection of five common pig viruses associated with diarrhea. Mol. Cell. Probes 2021, 58, 101747. [Google Scholar] [CrossRef]
- Suzuki, T.; Inoue, D. Full genome-based genotyping system for rotavirus H and detection of potential gene recombination in nonstructural protein 3 between porcine rotavirus H and rotavirus C. J. Gen. Virol. 2018, 99, 1582–1589. [Google Scholar] [CrossRef]
Primer/Probe | Sequence (5′→3′) | Position a | Genotype | Size/bp |
---|---|---|---|---|
RVA-VP6-F | AATATGACACCAGCAGTTGCAAA | 918–940 | I5 | 107 |
RVA-VP6-R | ACAGATTCACAAACTGCAGATTCAA | 1000–1024 | ||
RVA-VP6-P | CY5-CAAGCACCGCCATTTATATTTCATGCTACA-BHQ3 | 951–980 | ||
RVB-VP6-F | GTGTCYGCRTWTGCTGC | 1181–1197 | I6, I8, I10, I11, I12, I13 | 62 |
RVB-VP6-R | CCTYTCGAAGCACTYCC | 1227–1243 | ||
RVB-VP6-P | VIC-GGRAGCTGACGCCGGATCAGA-BHQ1 | 1203–1223 | ||
RVC-VP6-F | GTGAAGAGAATGGTGATGTAG | 1189–1209 | I1, I4, I5, I6, I7, I10, I11, I12, I13 | 157 |
RVC-VP6-R | GTTCACATTTCATCCTCCTG | 1324–1343 | ||
RVC-VP6-P | FAM-TAGCATGATTCACGAATGGGTTTAG-BHQ1 | 1255–1279 | ||
RVH-VP6-F | GGAAGAGCTACTGGAAAGATGG | 43–64 | I1, I3, I4, I5, I6 | 99 |
RVH-VP6-R | GACTCCTGAGCATGGTACTTTC | 120–141 | ||
RVH-VP6-P | Texas Red-CAGTTCAAGGCAGACCAGGAGGAA-BHQ2 | 77–100 |
No. | Strain | Accession No. | Date | Origin | Species |
---|---|---|---|---|---|
1 | ADRV-N | AY632080 | 1997 | China | Human |
2 | J19 | DQ113902 | 1997 | China | Human |
3 | SKA-1 | AB576626 | 1999 | Japan | Porcine |
4 | B219 | DQ168033 | 2002 | Bangladesh | Human |
5 | MRC-DPRU1575 | KT962031 | 2007 | South Africa | Porcine |
6 | KS9.5-3 | KF757285 | 2008 | USA | Porcine |
7 | OK.5.68 | MH230121 | 2008 | USA | Porcine |
8 | NC7.64-3 | KF757280 | 2008 | USA | Porcine |
9 | MN.9.65 | KU254587 | 2008 | USA | Porcine |
10 | AR7.10-1 | KF757289 | 2012 | USA | Porcine |
11 | BR59 | KF021619 | 2012 | Brazil | Porcine |
12 | BR61 | KM359479 | 2012 | Brazil | Porcine |
13 | VNM/12089_8 | KX362517 | 2012 | Vietnam | Porcine |
14 | VNM/14250_11 | KX362541 | 2012 | Vietnam | Porcine |
15 | VNM/12087_40 | KX362528 | 2012 | Vietnam | Porcine |
16 | VNM/14176_13 | KX362552 | 2012 | Vietnam | Porcine |
17 | NGS-3 | LC348471 | 2014 | Japan | Porcine |
18 | NGS-5 | LC348472 | 2014 | Japan | Porcine |
19 | NGS-6 | LC348473 | 2014 | Japan | Porcine |
20 | NGS-7 | LC348474 | 2014 | Japan | Porcine |
21 | NGS-16 | LC348478 | 2014 | Japan | Porcine |
22 | NGS-8 | LC348475 | 2015 | Japan | Porcine |
23 | NGS-9 | LC416253 | 2015 | Japan | Porcine |
24 | NGS-10 | LC348476 | 2015 | Japan | Porcine |
25 | NGS-18 | LC416273 | 2015 | Japan | Porcine |
26 | SP-VC29 | MT644979 | 2017 | Spain | Porcine |
27 | SP-VC36 | MT644980 | 2017 | Spain | Porcine |
28 | VIRES_HeB02_C1 | MK379308 | 2017 | China | Porcine |
29 | VIRES_SD01_C1 | MK379500 | 2017 | China | Porcine |
30 | RVH-GXBS-2021-01 | OR039733 | 2021 | China (This study) | Porcine |
31 | RVH-GXBS-2021-02 | OR039734 | 2021 | China (This study) | Porcine |
32 | RVH-GXBS-2021-03 | OR039735 | 2021 | China (This study) | Porcine |
33 | RVH-GXBS-2022-01 | OR039736 | 2022 | China (This study) | Porcine |
34 | RVH-GXBS-2022-02 | OR039737 | 2022 | China (This study) | Porcine |
35 | RVH-GXBS-2022-03 | OR039738 | 2022 | China (This study) | Porcine |
36 | RVH-GXBS-2022-04 | OR039739 | 2022 | China (This study) | Porcine |
37 | RVH-GXBS-2022-05 | OR039740 | 2022 | China (This study) | Porcine |
38 | RVH-GXBS-2022-06 | OR039741 | 2022 | China (This study) | Porcine |
39 | RVH-GXBS-2022-07 | OR039742 | 2022 | China (This study) | Porcine |
40 | RVH-GXBS-2022-08 | OR039743 | 2022 | China (This study) | Porcine |
41 | RVH-GXBS-2022-09 | OR039744 | 2022 | China (This study) | Porcine |
42 | RVH-GXBS-2022-10 | OR039745 | 2022 | China (This study) | Porcine |
43 | RVH-GXBS-2022-11 | OR039746 | 2022 | China (This study) | Porcine |
44 | RVH-GXBS-2022-12 | OR039747 | 2022 | China (This study) | Porcine |
45 | RVH-GXCZ-2021-01 | OR039748 | 2021 | China (This study) | Porcine |
46 | RVH-GXGG-2021-01 | OR039749 | 2021 | China (This study) | Porcine |
47 | RVH-GXGG-2022-01 | OR039750 | 2022 | China (This study) | Porcine |
48 | RVH-GXGG-2022-02 | OR039751 | 2022 | China (This study) | Porcine |
49 | RVH-GXLZ-2022-01 | OR039752 | 2022 | China (This study) | Porcine |
50 | RVH-GXLZ-2022-02 | OR039753 | 2022 | China (This study) | Porcine |
51 | RVH-GXNN-2021-01 | OR039754 | 2021 | China (This study) | Porcine |
52 | RVH-GXNN-2022-01 | OR039755 | 2022 | China (This study) | Porcine |
53 | RVH-GXQZ-2021-01 | OR039756 | 2021 | China (This study) | Porcine |
54 | RVH-GXQZ-2022-01 | OR039757 | 2022 | China (This study) | Porcine |
Reagent | Volume (µL) | Final Concentration (nM) |
---|---|---|
2× One Step RT-PCR Buffer III | 10.0 | / |
Ex Taq HS (5 U/µL) | 0.4 | / |
PrimeScript RT Enzyme Mix II | 0.4 | / |
RVA-VP6-F | 0.1 | 100 |
RVA-VP6-R | 0.1 | 100 |
RVA-VP6-P | 0.1 | 100 |
RVB-VP6-F | 0.3 | 300 |
RVB-VP6-R | 0.3 | 300 |
RVB-VP6-P | 0.1 | 100 |
RVC-VP6-F | 0.3 | 300 |
RVC-VP6-R | 0.3 | 300 |
RVC-VP6-P | 0.1 | 100 |
RVH-VP6-F | 0.2 | 200 |
RVH-VP6-R | 0.2 | 200 |
RVH-VP6-P | 0.2 | 200 |
Nucleic acid | 2.0 | / |
RNase Free Distilled Water | Up to 20.0 | / |
Plasmid | Concentration (Copies/µL) | Ct Value of Intra-Assay | Ct Value of Inter-Assay | ||||
---|---|---|---|---|---|---|---|
x | SD | CV (%) | x | SD | CV (%) | ||
p-RVA | 1.5 × 107 | 14.47 | 0.14 | 0.97 | 14.43 | 0.08 | 0.55 |
1.5 × 105 | 20.15 | 0.09 | 0.45 | 19.91 | 0.11 | 0.55 | |
1.5 × 103 | 26.18 | 0.04 | 0.15 | 26.21 | 0.05 | 0.19 | |
p-RVB | 1.5 × 107 | 14.90 | 0.17 | 1.14 | 14.77 | 0.09 | 0.61 |
1.5 × 105 | 21.15 | 0.18 | 0.85 | 21.17 | 0.09 | 0.43 | |
1.5 × 103 | 27.67 | 0.17 | 0.61 | 27.64 | 0.02 | 0.07 | |
p-RVC | 1.5 × 107 | 13.66 | 0.10 | 0.73 | 13.53 | 0.13 | 0.96 |
1.5 × 105 | 19.92 | 0.05 | 0.25 | 19.99 | 0.17 | 0.85 | |
1.5 × 103 | 26.56 | 0.21 | 0.79 | 26.73 | 0.09 | 0.34 | |
p-RVH | 1.5 × 107 | 14.02 | 0.11 | 0.78 | 13.93 | 0.06 | 0.43 |
1.5 × 105 | 20.36 | 0.06 | 0.29 | 20.26 | 0.06 | 0.30 | |
1.5 × 103 | 26.67 | 0.09 | 0.34 | 26.68 | 0.18 | 0.67 |
Region | Number | Number of Positive Sample | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RVA | RVB | RVC | RVH | A + B a | A + C | A + H | B + C | B + H | C + H | A + B + C | A + B + H | A + C + H | B + C + H | A + B + C + H | Single Infection | Co-Infection | ||
Chongzuo | 142 | 45 | 9 | 46 | 14 | 0 | 16 | 0 | 2 | 1 | 6 | 3 | 0 | 1 | 2 | 1 | 42 (29.58%) | 32 (22.54%) |
Baise | 594 | 336 | 183 | 266 | 80 | 22 | 54 | 25 | 11 | 2 | 6 | 128 | 2 | 30 | 3 | 2 | 128 (21.55%) | 285 (47.98%) |
Guigang | 205 | 66 | 47 | 84 | 30 | 2 | 32 | 0 | 2 | 3 | 4 | 14 | 0 | 1 | 2 | 16 | 26 (12.68%) | 76 (37.07%) |
Nanning | 254 | 91 | 67 | 145 | 12 | 0 | 39 | 3 | 33 | 2 | 2 | 26 | 0 | 2 | 0 | 2 | 65 (25.59) | 109 (42.91%) |
Hechi | 12 | 6 | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 3 (25.00%) | 3 (25.00%) |
Qinzhou | 67 | 13 | 35 | 22 | 8 | 0 | 1 | 0 | 6 | 4 | 0 | 8 | 0 | 3 | 0 | 1 | 19 (28.36%) | 23 (34.33%) |
Beihai | 37 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 (35.14%) | 0 (0%) |
Liuzhou | 111 | 59 | 36 | 42 | 34 | 9 | 3 | 3 | 1 | 0 | 6 | 3 | 2 | 8 | 0 | 8 | 56 (50.45%) | 43 (38.74%) |
Yulin | 25 | 2 | 10 | 14 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 11 (44.00%) | 8 (32.00%) |
Total | 1447 | 618 (42.71%) | 390 (26.95%) | 621 (42.92%) | 198 (13.68%) | 35 (2.42%) | 146 (10.09%) | 31 (2.14%) | 55 (3.80%) | 12 (0.83%) | 24 (1.66%) | 184 (12.72%) | 4 (0.28%) | 45 (3.11%) | 13 (0.90%) | 30 (2.07%) | 363 (25.09%) | 579 (40.01%) |
Method | Number of Positive Samples | |||
---|---|---|---|---|
RVA (%) | RVB (%) | RVC (%) | RVH (%) | |
The Developed Multiplex RT-qPCR | 618/1447 (42.71%) | 390/1447 (26.95%) | 621/1447 (42.92%) | 198/1447 (13.68%) |
The Reported Reference Method | 613/1447 (42.36%) | 388/1447 (26.81%) | 626/1447 (43.26%) | 198/1447 (13.68%) |
Agreements | 99.65% | 99.86% | 99.65% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Zhou, H.; Feng, S.; He, J.; Li, B.; Long, F.; Shi, Y.; Yin, Y.; Li, Z. Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China. Pathogens 2023, 12, 1091. https://doi.org/10.3390/pathogens12091091
Shi K, Zhou H, Feng S, He J, Li B, Long F, Shi Y, Yin Y, Li Z. Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China. Pathogens. 2023; 12(9):1091. https://doi.org/10.3390/pathogens12091091
Chicago/Turabian StyleShi, Kaichuang, Hongjin Zhou, Shuping Feng, Junxian He, Biao Li, Feng Long, Yuwen Shi, Yanwen Yin, and Zongqiang Li. 2023. "Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China" Pathogens 12, no. 9: 1091. https://doi.org/10.3390/pathogens12091091
APA StyleShi, K., Zhou, H., Feng, S., He, J., Li, B., Long, F., Shi, Y., Yin, Y., & Li, Z. (2023). Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China. Pathogens, 12(9), 1091. https://doi.org/10.3390/pathogens12091091