Epidemiology of Bacteremia in Patients with Hematological Malignancies and Hematopoietic Stem Cell Transplantation and the Impact of Antibiotic Resistance on Mortality: Data from a Multicenter Study in Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
2.3. Microbiological Studies
2.4. Statistical Analysis
3. Results
3.1. Microbiological Characteristics and Antibiotic Resistance Patterns
3.2. Clinical Characteristics, Treatment, and Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuderer, N.M.; Dale, D.C.; Crawford, J.; Cosler, L.E.; Lyman, G.H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006, 106, 2258–2266. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.M.; Smeets, L.S.; Dumay, I.; de Jonge, E. Bloodstream infections in patients with or without cancer in a large community hospital. Infection 2013, 41, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Dandoy, C.E.; Ardura, M.I.; Papanicolaou, G.A.; Auletta, J. Bacterial bloodstream infections in the allogeneic hematopoietic cell transplant patient: New considerations for a persistent nemesis. Bone Marrow Transplant. 2017, 52, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Viasus, D.; Puerta-Alcalde, P.; Cardozo, C.; Suárez-Lledó, M.; Rodríguez-Núñez, O.; Morata, L.; Fehér, C.; Marco, F.; Chumbita, M.; Moreno-García, E.; et al. Predictors of multidrug-resistant Pseudomonas aeruginosa in neutropenic patients with bloodstream infection. Clin. Microbiol. Infect. 2020, 26, 345–350. [Google Scholar] [CrossRef]
- Martinez-Nadal, G.; Puerta-Alcalde, P.; Gudiol, C.; Cardozo, C.; Albasanz-Puig, A.; Marco, F.; Laporte-Amargós, J.; Moreno-García, E.; Domingo-Doménech, E.; Chumbita, M.; et al. Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients with Bacteremia in the Era of Multidrug Resistance. Clin. Infect. Dis. 2020, 70, 1068–1074. [Google Scholar] [CrossRef]
- Rabagliati, R.; Salazar, G.; Pérez-Lazo, G.; Iturrieta, M.P.; Portillo, D.; Soria-Segarra, C.; Ojeda, M.J.; Flores, J.; Galarza, M.; Sandoval-Ahumada, R.; et al. An Emergent Change in Epidemiologic and Microbiological Characteristics of Bloodstream Infections in Adults with Febrile Neutropenia Resulting from Chemotherapy for Acute Leukemia and Lymphoma at Reference Centers in Chile, Ecuador, and Peru. Open Forum Infect. Dis. 2024, 11, ofae052. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Giuliano, G.; Cattaneo, C.; Ballanti, S.; Criscuolo, M.; Candoni, A.; Marchesi, F.; Laurino, M.; Dargenio, M.; Fanci, R.; et al. Bloodstream infections due to Gram-negative bacteria in patients with hematologic malignancies: Updated epidemiology and risk factors for multidrug-resistant strains in an Italian perspective survey. Int. J. Antimicrob. Agents 2023, 61, 106806. [Google Scholar] [CrossRef]
- Averbuch, D.; Tridello, G.; Hoek, J.; Mikulska, M.; Akan, H.; Yanez San Segundo, L.; Pabst, T.; Özçelik, T.; Klyasova, G.; Donnini, I.; et al. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients: Intercontinental Prospective Study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin. Infect. Dis. 2017, 65, 1819–1828. [Google Scholar] [CrossRef]
- Cruz-Vargas, S.A.; García-Muñoz, L.; Cuervo-Maldonado, S.I.; Álvarez-Moreno, C.A.; Saavedra-Trujillo, C.H.; Álvarez-Rodríguez, J.C.; Arango-Gutiérrez, A.; Gómez-Rincón, J.C.; García-Guzman, K.; Leal, A.L.; et al. Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms 2023, 11, 359. [Google Scholar] [CrossRef]
- Amanati, A.; Sajedianfard, S.; Khajeh, S.; Ghasempour, S.; Mehrangiz, S.; Nematolahi, S.; Shahhosein, Z. Bloodstream infections in adult patients with malignancy, epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance. BMC Infect. Dis. 2021, 21, 636. [Google Scholar] [CrossRef]
- Paprocka, P.; Durnaś, B.; Mańkowska, A.; Król, G.; Wollny, T.; Bucki, R. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Pagano, L.; Martino, B.; Candoni, A.; Di Blasi, R.; Nadali, G.; Fianchi, L.; Delia, M.; Sica, S.; Perriello, V.; et al. Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: Clinical impact of carbapenem resistance in a multicentre prospective survey. Am. J. Hematol. 2016, 91, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Chumbita, M.; Puerta-Alcalde, P.; Yáñez, L.; Angeles Cuesta, M.; Chinea, A.; Español-Morales, I.; Fernandez-Abellán, P.; Gudiol, C.; González-Sierra, P.; Rojas, R.; et al. High Rate of Inappropriate Antibiotics in Patients with Hematologic Malignancies and Pseudomonas aeruginosa Bacteremia following International Guideline Recommendations. Microbiol. Spectr. 2023, 11, e0067423. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Jung, Y.J.; Lee, H.J.; Kim, H.J.; Maeng, C.H.; Baek, S.K.; Han, J.J.; Jeon, W.; Kim, D.Y.; Lee, Y.M.; et al. Impact of multidrug resistance on outcomes in hematologic cancer patients with bacterial bloodstream infections. Sci. Rep. 2024, 14, 15622. [Google Scholar] [CrossRef]
- Herrera, F.; Torres, D.; Laborde, A.; Berruezo, L.; Jordán, R.; Rossi, I.R.; Valledor, A.; Costantini, P.; Dictar, M.; Nenna, A.; et al. Development of a Clinical Score to Stratify the Risk for Carbapenem-Resistant Enterobacterales Bacteremia in Patients with Cancer and Hematopoietic Stem Cell Transplantation. Antibiotics 2023, 12, 226. [Google Scholar] [CrossRef]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics 2020, 9, 50. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R. Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, 56–93. [Google Scholar] [CrossRef]
- Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. ECIL4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: Summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 2013, 98, 1826–1835, Erratum in Haematologica 2014, 99, 400. [Google Scholar] [CrossRef]
- Averbuch, D.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Orasch, C.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. ECIL4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: Guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica 2013, 98, 1836–1847. [Google Scholar] [CrossRef]
- Friedman, N.D.; Kaye, K.S.; Stout, J.E.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L. Health care-associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Nesher, L.; Rolston, K.V. Neutropenic enterocolitis, a growing concern in the era of widespread use of aggressive chemotherapy. Clin. Infect. Dis. 2013, 56, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients with E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994, Erratum in JAMA 2019, 321, 2370. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Perez, F.; Adachi, J.; Bonomo, R.A. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin. Infect. Dis. 2014, 59, 335–339. [Google Scholar] [CrossRef]
- Protocolos de PCR-Multiplex Para Gram Negativos. Available online: http://antimicrobianos.com.ar/2023/06/protocolo-de-pcr-para-la-deteccion-del-gen-ctx-m/ (accessed on 6 September 2024).
- Zimmer, A.J.; Stohs, E.; Meza, J.; Arnold, C.; Baddley, J.W.; Chandrasekar, P.; El Boghdadly, Z.; Gomez, C.A.; Maziarz, E.K.; Montoya, J.G.; et al. Bloodstream Infections in Hematologic Malignancy Patients with Fever and Neutropenia: Are Empirical Antibiotic Therapies in the United States Still Effective? Open Forum Infect. Dis. 2022, 9, ofac240. [Google Scholar] [CrossRef]
- Bergas, A.; Albasanz-Puig, A.; Fernández-Cruz, A.; Machado, M.; Novo, A.; van Duin, D.; Garcia-Vidal, C.; Hakki, M.; Ruiz-Camps, I.; Del Pozo, J.L.; et al. Real-Life Use of Ceftolozane/Tazobactam for the Treatment of Bloodstream Infection Due to Pseudomonas aeruginosa in Neutropenic Hematologic Patients: A Matched Control Study (ZENITH Study). Microbiol. Spectr. 2022, 10, e0229221. [Google Scholar] [CrossRef]
- Herrera, F.; Torres, D.; Laborde, A.; Jordán, R.; Mañez, N.; Berruezo, L.; Lambert, S.; Suchowiercha, N.; Costantini, P.; Nenna, A.; et al. Ceftazidime-Avibactam Improves Outcomes in High-Risk Neutropenic Patients with Klebsiella pneumoniae Carbapenemase-Producing Enterobacterales Bacteremia. Microorganisms 2024, 12, 195. [Google Scholar] [CrossRef]
- Sakagianni, A.; Koufopoulou, C.; Feretzakis, G.; Kalles, D.; Verykios, V.S.; Myrianthefs, P.; Fildisis, G. Using Machine Learning to Predict Antimicrobial Resistance—A Literature Review. Antibiotics 2023, 12, 452. [Google Scholar] [CrossRef]
- de la Lastra, J.M.P.; Wardell, S.J.T.; Pal, T.; de la Fuente-Nunez, C.; Pletzer, D. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance—A Comprehensive Review. J. Med. Syst. 2024, 48, 71. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Ding, S.; Chen, J.; Chen, X.; Xu, Y.; Xu, Z.; Huang, M. Prediction of carbapenem-resistant gram-negative bacterial bloodstream infection in intensive care unit based on machine learning. BMC Med. Inform. Decis. Mak. 2024, 24, 123. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Puerta-Alcalde, P.; Cardozo, C.; Orellana, M.A.; Besanson, G.; Lagunas, J.; Marco, F.; Del Rio, A.; Martínez, J.A.; Chumbita, M.; et al. ID-INNOVATION study group. Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients. Infect. Dis. Ther. 2021, 10, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Trecarichi, E.M.; Caira, M.; Candoni, A.; Pastore, D.; Cattaneo, C.; Fanci, R.; Nosari, A.; Spadea, A.; Busca, A.; et al. Derivation and validation of a scoring system to identify patients with bacteremia and hematological malignancies at higher risk for mortality. PLoS ONE 2012, 7, 51612. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Fligou, F.; Bartzavali, C.; Zotou, A.; Spyropoulou, A.; Koutsileou, K.; Vamvakopoulou, S.; Sioulas, N.; Karamouzos, V.; Anastassiou, E.D.; et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: Risk factors and predictors of mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1125–1131. [Google Scholar] [CrossRef]
- Albasanz-Puig, A.; Gudiol, C.; Puerta-Alcalde, P.; Ayaz, C.M.; Machado, M.; Herrera, F.; Martín-Dávila, P.; Laporte-Amargós, J.; Cardozo, C.; Akova, M.; et al. Impact of the Inclusion of an Aminoglycoside to the Initial Empirical Antibiotic Therapy for Gram-Negative Bloodstream Infections in Hematological Neutropenic Patients: A Propensity-Matched Cohort Study (AMINOLACTAM Study). Antimicrob. Agents Chemother. 2021, 65, e0004521. [Google Scholar] [CrossRef]
- Chumbita, M.; Puerta-Alcalde, P.; Gudiol, C.; Garcia-Pouton, N.; Laporte-Amargós, J.; Ladino, A.; Albasanz-Puig, A.; Helguera, C.; Bergas, A.; Grafia, I.; et al. Impact of Empirical Antibiotic Regimens on Mortality in Neutropenic Patients with Bloodstream Infection Presenting with Septic Shock. Antimicrob. Agents Chemother. 2022, 66, e0174421. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tien, F.M.; Sheng, W.H.; Huang, S.Y.; Yao, M.; Tang, J.L.; Tsay, W.; Tien, H.F.; Hsueh, P.R. Clinical and microbiological characteristics of bloodstream infections among patients with haematological malignancies with and without neutropenia at a medical centre in northern Taiwan, 2008–2013. Int. J. Antimicrob. Agents 2017, 49, 272–281. [Google Scholar] [CrossRef]
Variables | HM n = 920 n (%) | HSCT n = 357 n (%) | p * |
---|---|---|---|
Age (years) (median, IQR) | 53 (37–64) | 50 (37–59) | 0.002 |
Male gender | 508 (55.2) | 235 (65.8) | 0.001 |
Charlson comorbidity index ≥3 | 210 (22.8) | 50 (14.1) | <0.001 |
Hematological diseases | |||
Acute leukemia | 486 (52.8) | 112 (31.4) | <0.0001 |
Lymphoma | 278 (30.2) | 117 (32.8) | 0.37 |
Multiple myeloma | 65 (7.1) | 94 (26.3) | <0.0001 |
Myelodysplastic syndrome | 47 (5.1) | 26 (7.3) | 0.13 |
CML/CLL | 44 (4.8) | 8 (2.2) | 0.03 |
Stage of underlying cancer | |||
Recently diagnosed | 379 (41.2) | 11 (3.1) | <0.0001 |
Complete remission | 124 (13.5) | 209 (58.1) | <0.0001 |
Partial remission | 85 (9.2) | 57 (16) | 0.001 |
Refractory | 95 (10.3) | 26 (7.3) | 0.09 |
Relapse | 237 (25.8) | 55 (15.4) | <0.0001 |
Treatment of the underlying disease | |||
Chemotherapy (1 month prior to bacteremia) | 663 (72.1) | 227 (63.6) | 0.003 |
Radiotherapy (1 month prior to bacteremia) | 20 (2.2) | 30 (8.4) | <0.0001 |
High dose of corticosteroids | 316 (34.3) | 133 (37.3) | 0.32 |
Biological agents/anti-lymphocyte drugs | 110 (12) | 66 (18.5) | 0.002 |
Recent hospitalization (1 month prior to bacteremia) | 501 (54.5) | 137 (3.4) | <0.0001 |
Neutropenia | 638 (69.3) | 286 (80.1) | <0.0001 |
High-risk neutropenia by their MASCC score | 565 (88.5) | 261 (91.2) | 0.21 |
Neutropenia duration (days) (median, IQR) | 14 (8–26) | 13 (10–18) | 0.48 |
Neutropenia > 10 days | 406 (63.64) | 211 (73.78) | 0.002 |
Previous antibiotic use | 437 (47.4) | 168 (47.1) | 0.88 |
Fluoroquinolone prophylaxis | 113 (12.3) | 95 (26.6) | <0.0001 |
Previous colonization by KPC-PE | 59 (6.4) | 39 (10.9) | 0.05 |
Recent colonization by KPC-PE | 53 (5.7) | 33 (9.2) | <0.001 |
Duration of hospitalization until bacteremia (days) (median, IQR) | 4 (0–14) | 11 (5–15) | <0.0001 |
Variables | HM n = 920 n (%) | HSCT n = 357 n (%) | p * |
---|---|---|---|
Nosocomial bacteremia | 616(66.9) | 310 (86.9) | <0.0001 |
Healthcare-associated bacteremia | 238 (25.9) | 39 (10.9) | <0.0001 |
Community-acquired infection | 66 (7.2) | 8 (2.3) | <0.0001 |
Bacteremia with clinical source | 641 (69.7) | 275 (77) | 0.009 |
Central venous catheter infection | 277 (24.7) | 131 (36.7) | <0.0001 |
Abdominal infection | 149 (16.2) | 65 (18.2) | 0.38 |
Respiratory infection | 92 (10) | 26 (7.3) | 0.13 |
Skin and soft tissue infection | 83 (9) | 15 (4.2) | 0.004 |
Urinary tract infection | 39 (4.2) | 4 (1.1) | 0.005 |
Severe mucositis | 24 (2.6) | 26 (7.3) | <0.0001 |
Perianal infection | 22 (2.4) | 10 (2.8) | 0.67 |
Others | 31 (3.7) | 8 (2.4) | 0.29 |
APACHE II score the day of bacteremia (median, IQR) | 13 (10–17) | 13 (9–16) | 0.07 |
APACHE II score ≥ 20 | 143 (15.5) | 44 (12.3) | 0.14 |
Pitt score the day of bacteremia (median, IQR) | 0 (0–1) | 0 (0–2) | 0.54 |
Pitt score ≥ 4 | 60 (6.5) | 27 (7.5) | 0.51 |
Empirical Antibiotic Therapy | |||
Piperacillin–tazobactam | 378 (40.1) | 155 (43.3) | 0.44 |
Carbapenem | 379 (41.1) | 150 (42) | 0.55 |
Vancomycin | 321 (34.9) | 150 (42) | 0.01 |
Amikacin | 109 (11.8) | 61 (17.1) | 0.01 |
Colistin | 129 (14) | 63 (17.6) | 0.10 |
Cefepime | 70 (7.6) | 25 (7) | 0.71 |
Appropriate EAT | 775 (84.2) | 298 (83.5) | 0.73 |
Combined EAT | 317 (34.5) | 146 (40.9) | 0.03 |
Definitive Antibiotic Therapy | |||
Piperacillin–tazobactam | 198 (21.5) | 81 (22.7) | 0.65 |
Carbapenem | 243(26.4) | 100 (28) | 0.56 |
Vancomycin | 130 (14.1) | 81 (22.7) | <0.0001 |
Amikacin | 39 (4.2) | 22 (6.2) | 0.14 |
Colistin | 82 (8.9) | 45 (12.6) | 0.04 |
Cefepime | 66 (7.2) | 25 (7) | 0.91 |
Monotherapy DAT | 798 (86.7) | 298 (83.4) | 0.13 |
Duration of DAT | 12 (8–14) | 11 (8–14) | 0.13 |
Intensive care unit admission required | 178 (19.3) | 69 (19.3) | 0.99 |
Septic shock development | 166 (18) | 61 (17.1) | 0.68 |
Breakthrough bacteremia | 62 (6.7) | 32 (9) | 0.17 |
7-day clinical response | 740 (80.4) | 294 (82.4) | 0.43 |
7-day mortality | 92 (10) | 33 (9.2) | 0.68 |
30-day mortality | 161 (17.5) | 63 (17.6) | 0.95 |
Infection-related 30-day mortality | 102 (11) | 35 (9.8) | 0.28 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
Non-Adjusted OR | 95% CI | p-Value | Adjusted OR | 95% CI | p-Value | |
Allogeneic HSCT | 1.63 | 1.09–2.43 | 0.016 | 1.64 | 0.88–3.06 | 0.11 |
Relapse disease | 1.53 | 1.11–2.11 | 0.010 | 1.69 | 1.04–2.73 | 0.032 |
Refractory disease | 3.01 | 1.98–4.54 | <0.0001 | 3.31 | 1.78–6.15 | <0.0001 |
High-dose corticosteroids | 2.17 | 1.62–2.91 | <0.0001 | 2.13 | 1.38–3.30 | 0.001 |
Polymicrobial bacteremia | 2.11 | 1.29–3.46 | 0.003 | 2.04 | 0.97–4.28 | 0.059 |
Breakthrough bacteremia | 3.12 | 1.99–4.87 | <0.0001 | 1.13 | 0.56–2.28 | 0.728 |
Meropenem-resistant GNB | 4.98 | 3.48–7.12 | <0.0001 | 1.99 | 1.05–3.77 | 0.034 |
Respiratory clinical source | 2.96 | 1.97–4.46 | <0.0001 | 2.27 | 1.23–4.16 | 0.008 |
Inappropriate EAT | 1.67 | 1.17–2.39 | 0.005 | 1.04 | 0.56–1.92 | 0.888 |
Septic shock | 19.72 | 13.88–28.01 | <0.0001 | 8.29 | 5.15–13.22 | <0.0001 |
APACHE II score ≥ 20 | 2.19 | 1.53–3.13 | <0.0001 | 0.72 | 0.39–1.31 | 0.285 |
Pitt score ≥ 4 | 7.89 | 5.01–12.43 | <0.0001 | 1.25 | 0.61–2.59 | 0.533 |
7-day clinical response | 0.03 | 0.02–0.05 | <0.0001 | 0.06 | 0.04–0.09 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, F.; Torres, D.; Laborde, A.; Jordán, R.; Berruezo, L.; Roccia Rossi, I.; Mañez, N.; Tula, L.; Pereyra, M.L.; Nenna, A.; et al. Epidemiology of Bacteremia in Patients with Hematological Malignancies and Hematopoietic Stem Cell Transplantation and the Impact of Antibiotic Resistance on Mortality: Data from a Multicenter Study in Argentina. Pathogens 2024, 13, 933. https://doi.org/10.3390/pathogens13110933
Herrera F, Torres D, Laborde A, Jordán R, Berruezo L, Roccia Rossi I, Mañez N, Tula L, Pereyra ML, Nenna A, et al. Epidemiology of Bacteremia in Patients with Hematological Malignancies and Hematopoietic Stem Cell Transplantation and the Impact of Antibiotic Resistance on Mortality: Data from a Multicenter Study in Argentina. Pathogens. 2024; 13(11):933. https://doi.org/10.3390/pathogens13110933
Chicago/Turabian StyleHerrera, Fabián, Diego Torres, Ana Laborde, Rosana Jordán, Lorena Berruezo, Inés Roccia Rossi, Noelia Mañez, Lucas Tula, María Laura Pereyra, Andrea Nenna, and et al. 2024. "Epidemiology of Bacteremia in Patients with Hematological Malignancies and Hematopoietic Stem Cell Transplantation and the Impact of Antibiotic Resistance on Mortality: Data from a Multicenter Study in Argentina" Pathogens 13, no. 11: 933. https://doi.org/10.3390/pathogens13110933
APA StyleHerrera, F., Torres, D., Laborde, A., Jordán, R., Berruezo, L., Roccia Rossi, I., Mañez, N., Tula, L., Pereyra, M. L., Nenna, A., Costantini, P., Benso, J., González Ibañez, M. L., Eusebio, M. J., Baldoni, N., Barcán, L. A., Lambert, S., Luck, M., Pasterán, F., ... Carena, A., on behalf of the Argentine Group for the Study of Bacteremia in Cancer and Stem Cell Transplant (ROCAS). (2024). Epidemiology of Bacteremia in Patients with Hematological Malignancies and Hematopoietic Stem Cell Transplantation and the Impact of Antibiotic Resistance on Mortality: Data from a Multicenter Study in Argentina. Pathogens, 13(11), 933. https://doi.org/10.3390/pathogens13110933