The Role of Stratified Cumulative Antibiograms in the (Choice of Appropriate Antibiotics in Urinary Tract Infection) Management of Urinary Tract Infections
Abstract
:1. Introduction
- (1)
- Sensitive and specific laboratory diagnostics to confirm the infectious etiology of the condition (biomarkers of infection);
- (2)
- Timely and correctly performed microbiological examination for early identification of the causative agent (or molecular diagnosis of the pathogen);
- (3)
- Appropriate empirical antibiotic treatment (broad-spectrum antibiotics and/or their combination, early administration, adequate dosing, proportional duration of administration);
- (4)
- The identification of patient risk factors associated with a higher incidence of infections caused by MDR strains.
2. Materials and Methods
2.1. Study Design and Setting, Inclusion Criteria
2.2. Statistics
3. Results
3.1. Patient’s Population and Culture Findings
3.2. Sub-Analysis of Antibiotic Susceptibility in Escherichia coli Isolates According to Diagnosis for the Same Medical Facility
3.3. Sub-Analysis of Antibiotic Susceptibility in Escherichia coli Isolates by Medical Facility for the Same Diagnosis
3.4. Age-Specific Sub-Analysis of Antibiotic Susceptibility in Escherichia coli Isolates
3.5. Sub-Analysis of the Incidence of Susceptible and Multidrug-Resistant Strains of Escherichia coli by Age, Diagnosis, Gender, and Health Care Facility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef]
- Foxman, B.; Barlow, R.; D’Arcy, H.; Gillespie, B.; Sobel, J.D. Urinary tract infection: Self-reported incidence and associated costs. Ann. Epidemiol. 2000, 10, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.J.; Weldegiorgis, M.; Carter, E.; Brown, C.; Holmes, A.; Aylin, P. Economic Burden of Community-Acquired Antibiotic-Resistant Urinary Tract Infections: Systematic Review and Meta-Analysis. JMIR Public Health Surveill. 2024, 10, e53828. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Grigoryan, L.; Trautner, B. Urinary Tract Infection. Ann. Intern. Med. 2017, 167, ITC49–ITC64. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.; Köves, B.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; Wagenlehner, F.M.E.; et al. European Association of Urology Guidelines on Urological Infections: Summary of the 2024 Guidelines. Eur. Urol. 2024, 86, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, C.; Yan, Y.; Sun, L.; Li, H. Urinary Tract Infection Etiological Profiles and Antibiotic Resistance Patterns Varied Among Different Age Categories: A Retrospective Study From a Tertiary General Hospital During a 12-Year Period. Front. Microbiol. 2022, 12, 813145. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Hrbacek, J.; Cermak, P.; Zachoval, R. Current Antibiotic Resistance Trends of Uropathogens in Central Europe: Survey from a Tertiary Hospital Urology Department 2011–2019. Antibiotics 2020, 9, 630. [Google Scholar] [CrossRef] [PubMed]
- Aronin, S.I.; Gupta, V.; Dunne, M.W.; Watts, J.A.; Yu, K.C. Regional Differences in Antibiotic-resistant Enterobacterales Urine Isolates in the United States: 2018–2020. Int. J. Infect. Dis. 2022, 119, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Spoorenberg, V.; Hulscher, M.E.; Akkermans, R.P.; Prins, J.M.; Geerlings, S.E. Appropriate antibiotic use for patients with urinary tract infections reduces length of hospital stay. Clin. Infect. Dis. 2014, 58, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Critchley, I.A.; Karlowsky, J.A. Optimal use of antibiotic resistance surveillance systems. Clin. Microbiol. Infect. 2004, 10, 502–511. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Global action plan on antimicrobial resistance. Geneva: WHO; 2015. Available from Hindler JF, Stelling J. Analysis and presentation of cumulative antibiograms: A new consensus guideline from the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 2007, 44, 867–873. [Google Scholar]
- Eden, C.; Ackermann, F. Making Strategy: The Journey of Strategic Management; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- CLSI. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline-Fourth Edition; CLSI document M39-A4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Moehring, R.W.; Hazen, K.C.; Hawkins, M.R.; Drew, R.H.; Sexton, D.J.; Anderson, D.J. Challenges in Preparation of Cumulative Antibiogram Reports for Community Hospitals. J. Clin. Microbiol. 2015, 53, 2977–2982. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Ross, T.; Pitout, J.D.; Church, D.L.; Gregson, D.B. Investigation of sources of potential bias in laboratory surveillance for anti-microbial resistance. Clin. Investig. Med. 2007, 30, E159–E166. [Google Scholar] [CrossRef] [PubMed]
- Klinker, K.P.; Hidayat, L.K.; DeRyke, C.A.; DePestel, D.D.; Motyl, M.; Bauer, K.A. Antimicrobial stewardship and antibiograms: Importance of moving beyond traditional antibiograms. Ther. Adv. Infect. Dis. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 10 December 2024).
- Simner, P.J.; Hindler, J.A.; Bhowmick, T.; Das, S.; Johnson, J.K.; Lubers, B.V.; Redell, M.A.; Stelling, J.; Erdman, S.M. What’s New in Antibiograms? Updating CLSI M39 Guidance with Current Trends. J. Clin. Microbiol. 2022, 60, e0221021. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Neugebauer, M.; Ebert, M.; Vogelmann, R. A clinical decision support system improves antibiotic therapy for upper urinary tract infection in a randomized single-blinded study. BMC Health Serv. Res. 2020, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, A.; Schaeffer, E. Infections of the urinary tract. In Campbell-Walsh Urology, 10th ed.; Wein, A., Kavoussi, L., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 258–260. [Google Scholar]
- Toval, F.; Köhler, C.-D.; Vogel, U.; Wagenlehner, F.; Mellmann, A.; Fruth, A.; Schmidt, M.A.; Karch, H.; Bielaszewska, M.; Dobrindt, U. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J. Clin. Microbiol. 2014, 52, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Herbawi, A.; Abu Taha, A.; Aiesh, B.M.; Sabateen, A.; Zyoud, S.H. Spectrum and antibiotic resistance in community- and hospital-acquired urinary tract infections among adults: Experience from a large tertiary care center in a developing country. Urologia 2024, 91, 394–402. [Google Scholar] [CrossRef]
- Cepas, V.; Soto, S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics 2020, 9, 719. [Google Scholar] [CrossRef]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Mendes, R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS ONE 2019, 14, e0220265. [Google Scholar] [CrossRef]
- Matoušková, M.; Adámková, V.; Čechová, M.; Lahoda Brodská, H. Konsenzuální Postupy v Léčbě Močových Infekcí; Solen: Olomouc, Czech Republic, 2022. [Google Scholar]
- Available online: https://szu.gov.cz/wp-content/uploads/2023/12/PSMR_2021_EC.pdf (accessed on 15 December 2024).
- Corse, L.; Cartwright, A. Investigating trends in antibiotic resistance of Escherichia coli isolated from clinical urine specimens in the Orkney Islands. Microbiology 2024, 170, 001514. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.; Zurayk, M.; Yeung, S.; Terry, J.; Dunn, M.; Nieberg, P.; Wong-Beringer, A. Emergency Department Urinary Antibiograms Differ by Specific Patient Group. J. Clin. Microbiol. 2017, 55, 2629–2636. [Google Scholar] [CrossRef] [PubMed]
- Goodlet, K.J.; Nicolau, D.P.; Nailor, M.D. In Vitro Comparison of Ceftolozane-Tazobactam to Traditional Beta-Lactams and Ceftolozane-Tazobactam as an Alternative to Combination Antimicrobial Therapy for Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01350-17. [Google Scholar] [CrossRef] [PubMed]
- Moise, P.A.; Gonzalez, M.; Alekseeva, I.; Lopez, D.; Akrich, B.; DeRyke, C.A.; Chen, W.T.; Pavia, J.; Palermo, B.; Hackel, M.; et al. Collective assessment of antimicrobial susceptibility among the most common Gram-negative respiratory pathogens driving therapy in the ICU. JAC Antimicrob. Resist. 2021, 3, dlaa129. [Google Scholar] [CrossRef] [PubMed]
- Wangchinda, W.; Aitken, S.L.; Klatt, M.E.; Lephart, P.R.; Smith, A.B.; Pogue, J.M. A Comparison of Different Strategies for Optimizing the Selection of Empiric Antibiotic Therapy for Pneumonia Caused by Gram-Negative Bacteria in Intensive Care Units: Unit-Specific Combination Antibiograms Versus Patient-Specific Risk Factors. Open Forum Infect. Dis. 2024, 11, ofae643. [Google Scholar] [CrossRef]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial Resistance Trends in Urine Escherichia coli Isolates From Adult and Adolescent Females in the United States From 2011 to 2019: Rising ESBL Strains and Impact on Patient Management. Clin. Infect. Dis. 2021, 73, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Golli, A.-L.; Zlatian, O.M.; Cara, M.L.; Olteanu, M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals 2024, 17, 407. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.J.; Lundon, D.J.; McWade, R.; Scanlon, N.; Hannan, M.M.; O’Kelly, F.; Lynch, M. Antibiotic resistance patterns of Escherichia coli urinary isolates and comparison with antibiotic consumption data over 10 years, 2005–2014. Ir. J. Med. Sci. 2017, 186, 733–741. [Google Scholar] [CrossRef]
- Holm, A.; Cordoba, G.; Aabenhus, R. Prescription of antibiotics for urinary tract infection in general practice in Denmark. Scand. J. Prim. Health Care 2019, 37, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Central Coordination Group of the National End of the Czech Republic: Antibiotic consumption in the Czech Republic in 2008–2018—Part 1. Pharmacotherapeutic Information 1/2020. Available online: http://www.sukl.cz/sukl/2020 (accessed on 15 December 2024). (In Czech).
GUH | UC | |||
---|---|---|---|---|
N30 | C61 | N30 | C61 | |
Number of patients | 261 | 40 | 69 | 47 |
gender | ||||
Male | 67 | 40 | 4 | 47 |
Female | 194 | 0 | 65 | 0 |
Age, median years (IQR) | 48 (30–71) | 78 (71–87.7) | 66 (54.5–76) | 77 (74–80) |
C61 | N30 | |||
---|---|---|---|---|
GUH (%) | UC (%) | GUH (%) | UC (%) | |
E. coli | 39 | 35 | 70 | 54 |
Enterococci | 18 | 18 | 6 | 24 |
other Enterobacterales | 28 | 44 | 19 | 14 |
Nonfermenting rods | 12 | 3 | 2 | 0 |
other G+ cocci | 0 | 0 | 3 | 6 |
Candida sp. | 3 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamkova, V.; Matouskova, M.; Adamkova, V.G.; Huptych, M.; Fontana, M. The Role of Stratified Cumulative Antibiograms in the (Choice of Appropriate Antibiotics in Urinary Tract Infection) Management of Urinary Tract Infections. Pathogens 2025, 14, 141. https://doi.org/10.3390/pathogens14020141
Adamkova V, Matouskova M, Adamkova VG, Huptych M, Fontana M. The Role of Stratified Cumulative Antibiograms in the (Choice of Appropriate Antibiotics in Urinary Tract Infection) Management of Urinary Tract Infections. Pathogens. 2025; 14(2):141. https://doi.org/10.3390/pathogens14020141
Chicago/Turabian StyleAdamkova, Vaclava, Michaela Matouskova, Vanda Gabriela Adamkova, Michal Huptych, and Marcela Fontana. 2025. "The Role of Stratified Cumulative Antibiograms in the (Choice of Appropriate Antibiotics in Urinary Tract Infection) Management of Urinary Tract Infections" Pathogens 14, no. 2: 141. https://doi.org/10.3390/pathogens14020141
APA StyleAdamkova, V., Matouskova, M., Adamkova, V. G., Huptych, M., & Fontana, M. (2025). The Role of Stratified Cumulative Antibiograms in the (Choice of Appropriate Antibiotics in Urinary Tract Infection) Management of Urinary Tract Infections. Pathogens, 14(2), 141. https://doi.org/10.3390/pathogens14020141