Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications
Abstract
:1. Introduction
2. Materials and Magnetoelectric Properties of Core–Shell Structured MENPs
3. Common Synthesis Strategies of Core–Shell Structured MENPs
4. Magnetoelectricity Measurements of Core–Shell Structured MENPs
5. Applications of MENPs
5.1. Drug Delivery
5.2. Brain Imaging
5.3. Brain Stimulation
5.4. Cell Regeneration
5.5. Electrocatalysts
6. Outlook and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Xue, P.; Lu, Y.; Zhu, X. Microstructural, Optical and Magnetic Characterizations of BiFeO3 Multiferroic Nanoparticles Synthesized via a Sol-Gel Process. J. Alloy. Compd. 2018, 731, 471–477. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mansour, S.F.; El-Dek, S.I.; Abu-Abdeen, M. Conduction and Magnetization Improvement of BiFeO3 Multiferroic Nanoparticles by Ag+ Doping. Mater. Res. Bull. 2014, 49, 352–359. [Google Scholar] [CrossRef]
- Viehland, D.; Li, J.F.; Yang, Y.; Costanzo, T.; Yourdkhani, A.; Caruntu, G.; Zhou, P.; Zhang, T.; Li, T.; Gupta, A.; et al. Tutorial: Product Properties in Multiferroic Nanocomposites. J. Appl. Phys. 2018, 124, 061101. [Google Scholar] [CrossRef]
- Kirkwood, N.; Singh, B.; Mulvaney, P. Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer. Adv. Mater. Interfaces 2016, 3, 1600868. [Google Scholar] [CrossRef]
- Zaiats, G.; Ikeda, S.; Kinge, S.; Kamat, P.V. Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Appl. Mater. Interfaces 2017, 9, 30741–30745. [Google Scholar] [CrossRef]
- Yang, X.; Mutlugun, E.; Zhao, Y.; Gao, Y.; Leck, K.S.; Ma, Y.; Ke, L.; Tan, S.T.; Demir, H.V.; Sun, X.W. Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes. Small 2014, 10, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Z.; Liu, J.H.; Dong, M.; Müller, L.; Chatzipirpiridis, G.; Hu, C.; Terzopoulou, A.; Torlakcik, H.; Wang, X.; Mushtaq, F.; et al. Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-like Cell Delivery and Neuronal Differentiation. Mater. Horiz. 2019, 6, 1512–1516. [Google Scholar] [CrossRef]
- Liu, L.; Chen, B.; Liu, K.; Gao, J.; Ye, Y.; Wang, Z.; Qin, N.; Wilson, D.A.; Tu, Y.; Peng, F. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation. Adv. Funct. Mater. 2020, 30, 1910108. [Google Scholar] [CrossRef]
- Marino, A.; Arai, S.; Hou, Y.; Sinibaldi, E.; Pellegrino, M.; Chang, Y. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano 2015, 9, 7678–7689. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, B.; Kim, Y.; Kim, S.K. Ultra-High Rate of Temperature Increment from Superparamagnetic Nanoparticles for Highly Efficient Hyperthermia. Sci. Rep. 2021, 11, 4969. [Google Scholar] [CrossRef]
- Noh, B.I.; Yang, S.C. Ferromagnetic, Ferroelectric, and Magnetoelectric Properties in Individual Nanotube-Based Magnetoelectric Films of CoFe2O4/BaTiO3 Using Electrically Resistive Core-Shell Magnetostrictive Nanoparticles. J. Alloy. Compd. 2022, 891, 161861. [Google Scholar] [CrossRef]
- Gich, M.; Frontera, C.; Roig, A.; Fontcuberta, J.; Molins, E.; Bellido, N.; Simon, C.; Fleta, C. Magnetoelectric Coupling in ε-Fe2O3 Nanoparticles. Nanotechnology 2006, 17, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Lotey, G.S.; Verma, N.K. Magnetoelectric Coupling in Multiferroic Tb-Doped BiFeO3 Nanoparticles. Mater. Lett. 2013, 111, 55–58. [Google Scholar] [CrossRef]
- Rajaram Patil, D.; Chai, Y.; Kambale, R.C.; Jeon, B.G.; Yoo, K.; Ryu, J.; Yoon, W.H.; Park, D.S.; Jeong, D.Y.; Lee, S.G.; et al. Enhancement of Resonant and Non-Resonant Magnetoelectric Coupling in Multiferroic Laminates with Anisotropic Piezoelectric Properties. Appl. Phys. Lett. 2013, 102, 062909. [Google Scholar] [CrossRef]
- Ryu, J.; Priya, S.; Uchino, K.; Kim, H.-E. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. J. Electroceramics 2002, 8, 107–119. [Google Scholar] [CrossRef]
- Ortega, N.; Kumar, A.; Scott, J.F.; Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites. Jpn. J. Appl. Phys. 2001, 40, 4948–4951. [Google Scholar] [CrossRef] [Green Version]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric Laminate Composites: An Overview. J. Am. Ceram. Soc. 2008, 91, 351–358. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Kumari, S.; Rack, P.D. Magnetoelectric Composites: Applications, Coupling Mechanisms, and Future Directions. Nanomaterials 2020, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Pourhosseiniasl, M.; Dong, S. Review of Multi-Layered Magnetoelectric Composite Materials and Devices Applications. J. Phys. D Appl. Phys. 2018, 51, 243001. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Chen, H.; Wang, J.; Wei, Y.; Zaeimbashi, M.; He, Y.; Matyushov, A.; Sun, C.; Sun, N. A Review of Thin-Film Magnetoelastic Materials for Magnetoelectric Applications. Sensors 2020, 20, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gray, D.; Berry, D.; Gao, J.; Li, M.; Li, J.; Viehland, D. An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor. Adv. Mater. 2011, 23, 4111–4114. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Detection of Pico-Tesla Magnetic Fields Using Magneto-Electric Sensors at Room Temperature. Appl. Phys. Lett. 2006, 88, 062510. [Google Scholar] [CrossRef] [Green Version]
- Shah, S. Multiferroics: Towards a Magnetoelectric Memory Related Papers. Nat. Mater. 2008, 7, 425–426. [Google Scholar]
- Israel, C.; Kar-Narayan, S.; Mathur, N.D. Converse Magnetoelectric Coupling in Multilayer Capacitors. Appl. Phys. Lett. 2008, 93, 173501. [Google Scholar] [CrossRef]
- Kambale, R.C.; Yoon, W.H.; Park, D.S.; Choi, J.J.; Ahn, C.W.; Kim, J.W.; Hahn, B.D.; Jeong, D.Y.; Chul Lee, B.; Chung, G.S.; et al. Magnetoelectric Properties and Magnetomechanical Energy Harvesting from Stray Vibration and Electromagnetic Wave by Pb(Mg1/3Nb 2/3)O3-Pb(Zr,Ti)O3 Single Crystal/Ni Cantilever. J. Appl. Phys. 2013, 113, 204108. [Google Scholar] [CrossRef]
- Zhuang, X.; Leung, C.M.; Sreenivasulu, G.; Gao, M.; Zhang, J.; Srinivasan, G.; Li, J.; Viehland, D. Upper Limit for Power Conversion in Magnetoelectric Gyrators. Appl. Phys. Lett. 2017, 111, 163902. [Google Scholar] [CrossRef]
- Li, N.; Liu, M.; Zhou, Z.; Sun, N.X.; Murthy, D.V.B.; Srinivasan, G.; Klein, T.M.; Petrov, V.M.; Gupta, A. Electrostatic Tuning of Ferromagnetic Resonance and Magnetoelectric Interactions in Ferrite-Piezoelectric Heterostructures Grown by Chemical Vapor Deposition. Appl. Phys. Lett. 2011, 99, 192502. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Geng, L.D.; Tan, Y.; Ma, J.; Zhang, L.; Sanghadasa, M.; Ngo, K.; Ghosh, A.W.; Wang, Y.U.; Priya, S. Colossal Tunability in High Frequency Magnetoelectric Voltage Tunable Inductors. Nat. Commun. 2018, 9, 4998. [Google Scholar] [CrossRef] [Green Version]
- Kim, D. Planar Magneto-Dielectric Metasubstrate for Miniaturization of a Microstrip Patch Antenna. Microw. Opt. Technol. Lett. 2012, 54, 2871–2874. [Google Scholar] [CrossRef]
- Song, H.; Hwang, G.-T.; Ryu, J.; Choi, H. Stable Output Performance Generated from a Magneto-Mechano-Electric Generator Having Self-Resonance Tunability with a Movable Proof Mass. Nano Energy 2022, 101, 107607. [Google Scholar] [CrossRef]
- Sebastian, V. Design of Magnetostrictive Nanoparticles for Magnetoelectric Composites. Mater. Chem. Front. 2017, 6, 1368–1390. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, E.; Toledo, D.; Smith, I.T.; Navarrete, B.; Furman, N.; Hernandez, A.F.; Telusma, M.; McDaniel, D.; Liang, P.; et al. Colossal Magnetoelectric Effect in Core-Shell Magnetoelectric Nanoparticles. Nano Lett. 2020, 20, 5765–5772. [Google Scholar] [CrossRef]
- Gao, R.; Xue, Y.Z.; Wang, Z.; Chen, G.; Fu, C.; Deng, X.; Lei, X.; Cai, W. Effect of Particle Size on Magnetodielectric and Magnetoelectric Coupling Effect of CoFe2O4@BaTiO3 Composite Fluids. J. Mater. Sci. Mater. Electron. 2020, 31, 9026–9036. [Google Scholar] [CrossRef]
- Venkata Siva, K.; Kaviraj, P.; Arockiarajan, A. Improved Room Temperature Magnetoelectric Response in CoFe2O4-BaTiO3 Core Shell and Bipolar Magnetostrictive Properties in CoFe2O4. Mater. Lett. 2020, 268, 127623. [Google Scholar] [CrossRef]
- Khizroev, S.; Liang, P. Engineering Future Medicines with Magnetoelectric Nanoparticles: Wirelessly Controlled, Targeted Therapies. IEEE Nanotechnol. Mag. 2020, 14, 23–29. [Google Scholar] [CrossRef]
- Khizroev, S. Technobiology’s Enabler: The Magnetoelectric Nanoparticle. Cold Spring Harb. Perspect. Med. 2019, 9, a034207. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Canales, A.; Anikeeva, P. Neural Recording and Modulation Technologies. Nat. Rev. Mater. 2017, 2, 16093. [Google Scholar] [CrossRef] [PubMed]
- Hoque Apu, E.; Nafiujjaman, M.; Sandeep, S.; Makela, A.V.; Khaleghi, A.; Vainio, S.; Contag, C.H.; Li, J.; Balasingham, I.; Kim, T.; et al. Biomedical Applications of Multifunctional Magnetoelectric Nanoparticles. Mater. Chem. Front. 2022, 6, 1368–1390. [Google Scholar] [CrossRef]
- Kujawska, M.; Kaushik, A. Exploring Magneto-Electric Nanoparticles (MENPs): A Platform for Implanted Deep Brain Stimulation. Neural Regen. Res. 2023, 18, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, D.; Abbasi, S.A.; Latifi Gharamaleki, N.; Kim, E.; Jin, C.; Kim, S.; Hwang, J.; Kim, J.-Y.; Chen, X.-Z.; et al. Multi-Target Cell Therapy Using a Magnetoelectric Microscale Biorobot for Targeted Delivery and Selective Differentiation of SH-SY5Y Cells via Magnetically Driven Cell Stamping. Mater. Horiz. 2022, 9, 3031–3038. [Google Scholar] [CrossRef]
- Guduru, R. Bionano Electronics: Magneto-Electric Nanoparticles for Drug Delivery, Brain Stimulation and Imaging Applications; Florida International University: Miami, FL, USA, 2013. [Google Scholar]
- el Azim, H.A. Magneto-Electric Nanocarriers for Drug Delivery: An Overview. J. Drug Deliv. Sci. Technol. 2017, 37, 46–50. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.; Torlakcik, H.; Steuer, C.; Hoop, M.; Siringil, E.C.; Marti, X.; Limburg, G.; Stipp, P.; Nelson, B.J.; et al. Magnetoelectrically Driven Catalytic Degradation of Organics. Adv. Mater. 2019, 31, 1901378. [Google Scholar] [CrossRef] [Green Version]
- Yue, K.; Guduru, R.; Hong, J.; Liang, P.; Nair, M.; Khizroev, S. Magneto-Electric Nano-Particles for Non-Invasive Brain Stimulation. PLoS ONE 2012, 7, e44040. [Google Scholar] [CrossRef] [Green Version]
- Guduru, R.; Liang, P.; Yousef, M.; Horstmyer, J.; Khizroev, S. Mapping the Brain’s Electric Fields with Magnetoelectric Nanoparticles. Bioelectron. Med. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Guduru, R.; Liang, P.; Runowicz, C.; Nair, M.; Atluri, V.; Khizroev, S. Magneto-Electric Nanoparticles to Enable Field-Controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells. Sci. Rep. 2013, 3, 2953. [Google Scholar] [CrossRef] [Green Version]
- Mhambi, S.; Fisher, D.; Tchoula Tchokonte, M.B.; Dube, A. Permeation Challenges of Drugs for Treatment of Neurological Tuberculosis and Hiv and the Application of Magneto-Electric Nanoparticle Drug Delivery Systems. Pharmaceutics 2021, 13, 1479. [Google Scholar] [CrossRef]
- Betal, S.; Dutta, M.; Cotica, L.F.; Bhalla, A.S.; Guo, R. Control of Crystalline Characteristics of Shell in Core-Shell Magnetoelectric Nanoparticles Studied Using HRTEM and Holography. Ferroelectrics 2016, 503, 68–76. [Google Scholar] [CrossRef]
- Reaz, M.; Haque, A.; Ghosh, K. Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3 –Iron Oxide Core–Shell Nanoparticles. Nanomaterials 2020, 10, 563. [Google Scholar] [CrossRef] [Green Version]
- Tanasă, E.; Andronescu, E.; Cernea, M.; Oprea, O.C. Fe3O4/BaTiO3 Composites with Core-Shell Structure. Bull. Ser. B 2019, 81, 171–180. [Google Scholar]
- Ryu, H.; Murugavel, P.; Lee, J.H.; Chae, S.C.; Noh, T.W.; Oh, Y.S.; Kim, H.J.; Kim, K.H.; Jang, J.H.; Kim, M.; et al. Magnetoelectric Effects of Nanoparticulate Pb(Zr0.52Ti 0.48)O3-NiFe2O4 Composite Films. Appl. Phys. Lett. 2006, 89, 102907. [Google Scholar] [CrossRef] [Green Version]
- Corral-Flores, V.; Bueno-Baqués, D.; Ziolo, R.F. Synthesis and Characterization of Novel CoFe2O4-BaTiO3 Multiferroic Core-Shell-Type Nanostructures. Acta Mater. 2010, 58, 764–769. [Google Scholar] [CrossRef]
- Zhu, Q.; Xie, Y.; Zhang, J.; Liu, Y.; Zhan, Q.; Miao, H.; Xie, S. Multiferroic CoFe2O4-BiFeO3 Core-Shell Nanofibers and Their Nanoscale Magnetoelectric Coupling. J. Mater. Res. 2014, 29, 657–664. [Google Scholar] [CrossRef]
- Jang, J.; Beum Park, C. Magnetoelectric Dissociation of Alzheimer’s β-Amyloid Aggregates. Sci. Adv. 2022, 8, eabn1675. [Google Scholar] [CrossRef]
- Pandey, P.; Ghimire, G.; Garcia, J.; Rubfiaro, A.; Wang, X.; Tomitaka, A.; Nair, M.; Kaushik, A.; He, J. Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation. ACS Sens. 2021, 6, 340–347. [Google Scholar] [CrossRef]
- Wang, P.; Toledo, D.; Zhang, E.; Telusma, M.; McDaniel, D.; Liang, P.; Khizroev, S. Scanning Probe Microscopy Study of Cobalt Ferrite-Barium Titanate Coreshell Magnetoelectric Nanoparticles. J. Magn. Magn. Mater. 2020, 516, 167329. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The Evolution of “sol-Gel” Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, F.; Torlakcik, H.; Vallmajo-Martin, Q.; Siringil, E.C.; Zhang, J.; Röhrig, C.; Shen, Y.; Yu, Y.; Chen, X.Z.; Müller, R.; et al. Magnetoelectric 3D Scaffolds for Enhanced Bone Cell Proliferation. Appl. Mater. Today 2019, 16, 290–300. [Google Scholar] [CrossRef]
- Hadjikhani, A.; Rodzinski, A.; Wang, P.; Nagesetti, A.; Guduru, R.; Liang, P.; Runowicz, C.; Shahbazmohamadi, S.; Khizroev, S. Biodistribution and Clearance of Magnetoelectric Nanoparticles for Nanomedical Applications Using Energy Dispersive Spectroscopy. Nanomedicine 2017, 12, 1801–1822. [Google Scholar] [CrossRef] [PubMed]
- Stimphil, E.; Nagesetti, A.; Guduru, R.; Stewart, T.; Rodzinski, A.; Liang, P.; Khizroev, S. Physics Considerations in Targeted Anticancer Drug Delivery by Magnetoelectric Nanoparticles. Appl. Phys. Rev. 2017, 4, 021101. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhao, Y.; Huang, R.; Zhao, Y.; Zhou, H. Multiferroic Ferrite/Perovskite Oxide Core/Shell Nanostructures. J. Mater. Chem. 2010, 20, 10665–10670. [Google Scholar] [CrossRef]
- Lather, S.; Gupta, A.; Dalal, J.; Verma, V.; Tripathi, R.; Ohlan, A. Effect of Mechanical Milling on Structural, Dielectric and Magnetic Properties of BaTiO3–Ni0.5Co0.5Fe2O4 Multiferroic Nanocomposites. Ceram. Int. 2017, 43, 3246–3251. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Li, J.-F.; Viehland, D.; Nain, A. Nanoparticles Deposition at Specific Sites Using Aligned Fiber Networks. Open J. Inorg. Non-Met. Mater. 2012, 2, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Rondinone, A.J.; Samia, A.C.S.; Zhang, Z.J. Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe2O4 Spinel Ferrite Nanocrystallites. J. Phys. Chem. B 1999, 103, 6876–6880. [Google Scholar] [CrossRef]
- Chhabra, V.; Lal, M.; Maitra, A.N.; Ayyub, P. Nanophase BaFe12O19 Synthesized from a Nonaqueous Microemulsion with Ba- and Fe-Containing Surfactants. J. Mater. Res. 1995, 10, 2689–2692. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Maiti, H.S. Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route. J. Am. Ceram. Soc. 2005, 88, 1349–1352. [Google Scholar] [CrossRef]
- Dutta, D.P.; Tyagi, A.K. Weak Room Temperature Ferromagnetism and Ferroelectric Behavior in Sonochemically Synthesized Bismuth and Iron Codoped SrTiO3 Nanoparticles. Mater. Lett. 2015, 164, 368–371. [Google Scholar] [CrossRef]
- Betal, S.; Dutta, M.; Cotica, L.F.; Bhalla, A.; Guo, R. BaTiO3 Coated CoFe2O4-Core-Shell Magnetoelectric Nanoparticles (CSMEN) Characterization. Integr. Ferroelectr. 2015, 166, 225–231. [Google Scholar] [CrossRef]
- Song, H.; Peddigari, M.; Kumar, A.; Lee, S.; Kim, D.; Park, N.; Li, J.; Patil, D.R.; Ryu, J. Enhancement of Magnetoelectric (ME) Coupling by Using Textured Magnetostrictive Alloy in 2-2 Type ME Laminate. J. Alloy. Compd. 2020, 834, 155124. [Google Scholar] [CrossRef]
- Yoo, K.; Jeon, B.G.; Chun, S.H.; Patil, D.R.; Lim, Y.J.; Noh, S.H.; Gil, J.; Cheon, J.; Kim, K.H. Quantitative Measurements of Size-Dependent Magnetoelectric Coupling in Fe3O4 Nanoparticles. Nano Lett. 2016, 16, 7408–7413. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.; Silva, M.; Lanceros-Mendez, S. Determination of the Magnetostrictive Response of Nanoparticles via Magnetoelectric Measurements. Nanoscale 2015, 7, 9457–9461. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Xiao, Z.; Liu, X.; Wu, C.; Wu, K.; Liu, A.; Wei, D.; Sun, J.; Zhou, L.; et al. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv. Healthc. Mater. 2021, 10, 2100695. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Mandal, K. Large Magnetoelectric Properties in CoFe2O4:BaTiO3 Core-Shell Nanocomposites. J. Magn. Magn. Mater. 2015, 377, 441–445. [Google Scholar] [CrossRef]
- Rao, B.N.; Kaviraj, P.; Vaibavi, S.R.; Kumar, A.; Bajpai, S.K.; Arockiarajan, A. Investigation of Magnetoelectric Properties and Biocompatibility of CoFe2O4-BaTiO3 Core-Shell Nanoparticles for Biomedical Applications. J. Appl. Phys. 2017, 122, 164102. [Google Scholar] [CrossRef]
- Kozielski, K.L.; Jahanshahi, A.; Gilbert, H.B.; Yu, Y.; Francisco, D.E.; Alosaimi, F.; Temel, Y.; Sitti, M. Nonresonant Powering of Injectable Nanoelectrodes Enables Wireless Deep Brain Stimulation in Freely Moving Mice. Sci. Adv. 2021, 7, eabc4189. [Google Scholar] [CrossRef]
- Alfareed, T.M.; Slimani, Y.; Almessiere, M.A.; Shirsath, S.E.; Hassan, M.; Nawaz, M.; Khan, F.A.; Al-Suhaimi, E.A.; Baykal, A. Structure, Magnetoelectric, and Anticancer Activities of Core-Shell Co0.8Mn0.2R0.02Fe1.98O4@BaTiO3 Nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). Ceram. Int. 2022, 48, 14640–14651. [Google Scholar] [CrossRef]
- Kim, D.; Efe, I.; Torlakcik, H.; Terzopoulou, A.; Veciana, A.; Siringil, E.; Mushtaq, F.; Franco, C.; von Arx, D.; Sevim, S.; et al. Magnetoelectric Effect in Hydrogen Harvesting: Magnetic Field as a Trigger of Catalytic Reactions. Adv. Mater. 2022, 34, 2270139. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.Z.; Veciana, A.; Hoop, M.; Nelson, B.J.; Pané, S. Magnetoelectric Reduction of Chromium(VI) to Chromium(III). Appl. Mater. Today 2022, 26, 101339. [Google Scholar] [CrossRef]
- Nair, M.; Guduru, R.; Liang, P.; Hong, J.; Sagar, V.; Khizroev, S. Externally Controlled On-Demand Release of Anti-HIV Drug Using Magneto-Electric Nanoparticles as Carriers. Nat. Commun. 2013, 4, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Gao, J.; Wang, P.; Nagesetti, A.; Andrews, P.; Masood, S.; Vriesman, Z.; Liang, P.; Khizroev, S.; Jin, X. In Vivo Wireless Brain Stimulation via Non-Invasive and Targeted Delivery of Magnetoelectric Nanoparticles. Neurotherapeutics 2021, 18, 2091–2106. [Google Scholar] [CrossRef]
- Nagesetti, A.; Rodzinski, A.; Stimphil, E.; Khanal, T.S.C.; Wang, P.; Guduru, R.; Liang, P.; Agoulnik, I.; Horstmyer, J.; Khizroev, S. Multiferroic Coreshell Magnetoelectric Nanoparticles as NMR Sensitive Nanoprobes for Cancer Cell Detection. Sci. Rep. 2017, 7, 1610. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.S.; Nagesetti, A.; Guduru, R.; Liang, P.; Stimphil, E.; Hadjikhani, A.; Salgueiro, L.; Horstmyer, J.; Cai, R.; Schally, A.; et al. Magnetoelectric Nanoparticles for Delivery of Antitumor Peptides into Glioblastoma Cells by Magnetic Fields. Nanomedicine 2018, 13, 423–438. [Google Scholar] [CrossRef]
- Kaushik, A.; Nikkhah-Moshaie, R.; Sinha, R.; Bhardwaj, V.; Atluri, V.; Jayant, R.D.; Yndart, A.; Kateb, B.; Pala, N.; Nair, M. Investigation of Ac-Magnetic Field Stimulated Nanoelectroporation of Magneto-Electric Nano-Drug-Carrier inside CNS Cells. Sci. Rep. 2017, 7, 45663. [Google Scholar] [CrossRef] [Green Version]
- Betal, S.; Saha, A.K.; Ortega, E.; Dutta, M.; Ramasubramanian, A.K.; Bhalla, A.S.; Guo, R. Core-Shell Magnetoelectric Nanorobot—A Remotely Controlled Probe for Targeted Cell Manipulation. Sci. Rep. 2018, 8, 1755. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.; Yndart, A.; Atluri, V.; Tiwari, S.; Tomitaka, A.; Gupta, P.; Jayant, R.D.; Alvarez-Carbonell, D.; Khalili, K.; Nair, M. Magnetically Guided Non-Invasive CRISPR-Cas9/GRNA Delivery across Blood-Brain Barrier to Eradicate Latent HIV-1 Infection. Sci. Rep. 2019, 9, 3928. [Google Scholar] [CrossRef] [Green Version]
- Corr, S.A.; Byrne, S.J.; Tekoriute, R.; Meledandri, C.J.; Brougham, D.F.; Lynch, M.; Kerskens, C.; O’Dwyer, L.; Gun’ko, Y.K. Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. J. Am. Chem. Soc. 2008, 130, 4214–4215. [Google Scholar] [CrossRef]
- Bok, I.; Haber, I.; Qu, X.; Hai, A. In Silico Assessment of Electrophysiological Neuronal Recordings Mediated by Magnetoelectric Nanoparticles. Sci. Rep. 2022, 12, 8386. [Google Scholar] [CrossRef]
- Kaushik, A.; Rodriguez, J.; Rothen, D.; Bhardwaj, V.; Jayant, R.D.; Pattany, P.; Fuentes, B.; Chand, H.; Kolishetti, N.; El-Hage, N.; et al. MRI-Guided, Noninvasive Delivery of Magneto-Electric Drug Nanocarriers to the Brain in a Nonhuman Primate. ACS Appl. Bio Mater. 2019, 2, 4826–4836. [Google Scholar] [CrossRef]
- Shahzad, K.; Mushtaq, S.; Rizwan, M.; Khalid, W.; Atif, M.; Din, F.U.; Ahmad, N.; Abbasi, R.; Ali, Z. Field-Controlled Magnetoelectric Core-Shell CoFe2O4@BaTiO3 Nanoparticles as Effective Drug Carriers and Drug Release in Vitro. Mater. Sci. Eng. C 2021, 119, 111444. [Google Scholar] [CrossRef]
- Pardo, M.; Khizroev, S. Where Do We Stand Now Regarding Treatment of Psychiatric and Neurodegenerative Disorders? Considerations in Using Magnetoelectric Nanoparticles as an Innovative Approach. WIREs Nanomed. Nanobiotechnology 2022, 14, e1718. [Google Scholar] [CrossRef]
- Lee, S.; Cortese, A.J.; Gandhi, A.P.; Agger, E.R.; McEuen, P.L.; Molnar, A.C. A 250 Μm × 57 Μm Microscale Opto-Electronically Transduced Electrodes (MOTEs) for Neural Recording. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1256–1266. [Google Scholar] [CrossRef]
- Kaushik, A.; Jayant, R.D.; Nikkhah-Moshaie, R.; Bhardwaj, V.; Roy, U.; Huang, Z.; Ruiz, A.; Yndart, A.; Atluri, V.; El-Hage, N.; et al. Magnetically Guided Central Nervous System Delivery and Toxicity Evaluation of Magneto-Electric Nanocarriers. Sci. Rep. 2016, 6, 25309. [Google Scholar] [CrossRef]
- Betal, S.; Dutta, M.; Shrestha, B.; Cotica, L.; Tang, L.; Bhalla, A.; Guo, R. Cell Permeation Using Core-Shell Magnetoelectric Nanoparticles. Integr. Ferroelectr. 2016, 174, 186–194. [Google Scholar] [CrossRef]
- Sisken, B.F.; Walker, J.; Orgel, M. Prospects on Clinical Applications of Electrical Stimulation for Nerve Regeneration. J. Cell. Biochem. 1993, 51, 404–409. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Zhu, C.; Xia, Y. Inverse Opal Scaffolds and Their Biomedical Applications. Adv. Mater. 2017, 29, 1701115. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, K.; Hasija, V.; Sharma, V.; Sharma, S.; Raizada, P.; Singh, M.; Saini, A.K.; Hosseini-Bandegharaei, A.; Thakur, V.K. Systematic Review on Applicability of Magnetic Iron Oxides–Integrated Photocatalysts for Degradation of Organic Pollutants in Water. Mater. Today Chem. 2019, 14, 100186. [Google Scholar] [CrossRef]
Authors (Year) | Material | Synthesis Method | ME Voltage Coefficient (V/cm.·Oe) | ME Measurement Method | Application | |
---|---|---|---|---|---|---|
Magnetostrictive Core | Piezoelectric Shell | |||||
Chaudhuri et al. (2015) [78] | CoFe2O4 (CFO) | BaTiO3 (BTO) | Hydrothermal/Sol–gel method | 0.00813 | Dynamic ME measurement (Bulk composite) | - |
Rao et al. (2017) [79] | CoFe2O4 (CFO) | BaTiO3 (BTO) | Sol–gel method | 0.00918 | Drug Delivery | |
Kozielski et al. (2021) [80] | CoFe2O4 (CFO) | BaTiO3 (BTO) | Sol–gel method | 0.00000276 | Brain Stimulation | |
Almessiere et al. (2022) [81] | CoMnRFeO4 (CoMnRFe) | BaTiO3 (BTO) | Sol–gel method | 0.0249 | Drug Delivery | |
Park et al. (2022) [59] | CoFe2O4 (CFO) | BiFeO3 (BFO) | Sol–gel method | 10~30 | Oscilloscopic ME measurements (Multiple MENPs) | Brain Stimulation |
Pane et al. (2019) [48] | CoFe2O4 (CFO) | BiFeO3 (BFO) | Hydrothermal/Sol–gel method | 405 | Point I-V ME measurement (Single MENPs) | Electrocatalysts |
Mushtaq et al. (2019) [63] | CoFe2O4 (CFO) | BiFeO3 (BFO) | Hydrothermal method | 1400 | Cell Regeneration | |
Fan et al. (2021) [77] | Fe3O4 (FO) | BaTiO3 (BTO) | Hydrothermal/Sol–gel method | 260 | Brain Stimulation | |
Song et al. (2022) [45] | CoFe2O4 (CFO) | BaTiO3 (BTO) | Sol–gel method | 47 | Cell Regeneration | |
Pane et al. (2022) [82] | CoFe2O4 (CFO) | BiFeO3 (BFO) | Hydrothermal/Sol–gel method | 325 | Electrocatalysts | |
Nelson et al. (2022) [83] | CoFe2O4 (CFO) | BiFeO3 (BFO) | Hydrothermal/Sol–gel method | 1700 | Electrocatalysts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Listyawan, M.A.; Ryu, J. Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications. Actuators 2022, 11, 380. https://doi.org/10.3390/act11120380
Song H, Listyawan MA, Ryu J. Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications. Actuators. 2022; 11(12):380. https://doi.org/10.3390/act11120380
Chicago/Turabian StyleSong, Hyunseok, Michael Abraham Listyawan, and Jungho Ryu. 2022. "Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications" Actuators 11, no. 12: 380. https://doi.org/10.3390/act11120380
APA StyleSong, H., Listyawan, M. A., & Ryu, J. (2022). Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications. Actuators, 11(12), 380. https://doi.org/10.3390/act11120380