A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Finite Element Analysis (FEA)
2.3. The Fabrication of the Piezoelectric Element and the Squiggle Motor
3. Results and Discussion
3.1. Microstructure and the Electrical Properties of BCTS, BCTSH and Mn-Doped BCTSH Ceramics
3.2. Measurement of the Output Characteristics of Lead-Free Piezoelectric Motors
3.3. The Use of Lead-Free BCTSH + Mn Piezoelectric Motors to Pull a Commercial Insulin Syringe
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uchino, K. Piezoelectric ultrasonic motors: Overview. Smart Mater. Struct. 1998, 7, 273–285. [Google Scholar] [CrossRef]
- Uchino, K. Ferroelectric Devices; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Zhao, C.S. Ultrasonic Motors Technologies and Applications; Science Press: Beijing, China, 2007. [Google Scholar]
- Watson, B.; Friend, J.; Yeo, L. Piezoelectric ultrasonic micro/milli-scale actuators. Sens. Actuator. A Phys. 2009, 152, 219–233. [Google Scholar] [CrossRef]
- Siyuan, H.; Chiarot, P.R.; Park, S. A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1049–10611. [Google Scholar] [CrossRef]
- Delibas, B.; Koc, B. A Method to Realize Low Velocity Movability and Eliminate Friction induced Noise in Piezoelectric Ultrasonic Motors. IEEE/ASME Trans. Mechatro. Mechatron. 2020, 25, 2677–2687. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y.; Deng, J.; Wang, L.; Chen, W. A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance and future work perspectives. Sens. Actuator A Phys. 2020, 306, 111971. [Google Scholar] [CrossRef]
- Mizuno, A.; Kajiwara, H.; Tamura, H.; Aoyagi, M.M. Study on Multidegree-of-Freedom Ultrasonic Motor Using Vibration Mode Rotation of Metal Spherical Stator. Actuator 2022, 11, 27. [Google Scholar] [CrossRef]
- Williams, A.L.W.; Brown, W.J. Piezoelectric Motor. U.S. Patent 2,439,499, 13 April 1948. [Google Scholar]
- Henderson, D.A. Simple Ceramic Motor. Inspiring Smaller Products. In Proceedings of the 10th International Conference on New Actuators, Bremen, Germany, 14–16 June 2006; Volume 50, pp. 1–4. [Google Scholar]
- Ali, W.G.; Nagi, G. Embedded Control Design for Insulin Pump. Adv. Mater. Res. 2011, 201–203, 2399–2404. [Google Scholar] [CrossRef]
- Henderson, D. Novel piezo motor enables positive displacement microfluidic pump. New Scale Technol. 2007, 3, 272–275. [Google Scholar]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Academic Press: London, UK; New York, NY, USA, 1971. [Google Scholar]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M.M. Lead-Free Piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Rödel, J.; Jo, W.; Seifert, K.; Anton, E.M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1157. [Google Scholar] [CrossRef]
- Du, H.; Li, Z.; Tang, F.; Qu, S.; Pei, Z.; Zhou, W. Preparation and Piezoelectric Properties of (K0.5Na0.5)NbO3 Lead-Free Piezoelectric Ceramics with Pressure-Less Sintering. Mater. Sci. Eng. B 2006, 131, 83–87. [Google Scholar]
- Kantha, P.; Pengpat, K.; Jarupoom, P.; Intatha, U.; Rujijanagul, G.; Tunkasiri, T. Phase Formation and Electrical Properties of BNLT–BZT Lead-Free Piezoelectric Ceramic System. Curr. Appl. Phys. 2009, 9, 460–466. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhang, B.; Peng, C. Piezoelectric and Ferroelectric Properties of Bi-Compensated (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 Lead-Free Piezoelectric Ceramics. J. Appl. Phys. 2008, 103, 074109. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, X. Effect of B-Site Substitution of Complex Ions on Dielectric and Piezoelectric Properties in (Bi1/2Na1/2)TiO3 Piezoelectric Ceramics. Mater. Chem. Phys. 2008, 108, 413–416. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, G.; Luo, H.; Bowen, C.R.; Zhang, D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 2021, 122, 100836. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Appl. Phys. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.; Zhang, B.; Zhu, J.; Xiao, D. Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-free Ceramics with a Sintering Aid of MnO. Integr. Ferroelectr. 2013, 141, 89–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bowen, C. Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. Mater. Res. Bull. 2019, 112, 426–431. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, Y.; Bao, H.; Gao, J.; Zhou, C.; Ren, X. Large Piezoelectric Effect in Pb-free Ba(Ti,Sn)O-x(Ba,Ca)TiO3 Ceramics. Appl. Phys. Lett. 2011, 99, 122901. [Google Scholar] [CrossRef]
- Zhou, P.F.; Zhang, B.P.; Zhao, L.; Zhu, L.F. Effect of LiF addition on phase structure and piezoelectric propertiesof (Ba,Ca)(Ti,Sn)O3 ceramics sintered at low temperature. Ceram. Int. 2015, 41, 4035–4041. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, B.P.; Zhou, P.F.; Zhu, L.F.; Li, J.F. Effect of Li2O Addition on Sintering and Piezoelectric Properties of (Ba,Ca)(Ti,Sn)O3 Lead-Free Piezoceramics. J. Eur. Ceram. Soc. 2015, 35, 533–540. [Google Scholar] [CrossRef]
- Zhou, P.F.; Zhang, B.P.; Zhao, L.; Zhao, X.K.; Zhu, L.F.; Cheng, L.Q. High Piezoelectricity Due to Multiphase Coexistence in Low-Temperature Sintered (Ba,Ca)(Ti,Sn)O3–CuOx Ceramics. Appl. Phys. Let. 2013, 103, 172904. [Google Scholar] [CrossRef]
- Wu, B.; Xiao, D.; Wu, J.J.; Huang, T.; Wang, Z.; Liu, C.; Li, F.; Zhu, J. Microstructures and Piezoelectric properties of CuO-doped (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 ceramics. J. Electroceram. 2014, 33, 117–120. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, Y.; Wu, H.; Wu, J. Phase boundary design and high piezoelectric activity in (1-x)(Ba0.93Ca0.07)TiO3-xBa(Sn1-yHfy)O3 lead-free ceramics. J. Alloy. Compd. 2016, 66, 372–379. [Google Scholar]
- Jin, J.; Wan, D.; Yang, Y.; Li, Q.; Zha, M. A linear ultrasonic motor using (K0.5Na0.5)NbO3 based lead-free piezoelectric ceramics. Sens. Actuators A Phys. 2011, 165, 410–414. [Google Scholar] [CrossRef]
- Li, E.; Kakemoto, H.; Hoshina, T.; Tsurumi, T. A Shear-Mode Ultrasonic Motor Using Potassium Sodium Niobate-Based Ceramics with High Mechanical Quality Factor. Jap. J. Appl. Phys. 2008, 47, 7702–7706. [Google Scholar] [CrossRef]
- Doshida, Y.; Kishimoto, S.; Irieda1, T.; Tamura, H.; Tomikawa, Y.; Hirose, S. Miniature Ultrasonic Motor Using Shear Mode of Potassium Sodium Niobate-Based Lead-Free Piezoelectric Ceramics. Jap. J. Appl. Phys. 2008, 45, 09KD11. [Google Scholar]
- Li, E.; Sasaki, R.; Hoshina, T.T.; Takeda, H.; Tsurumi, T. Double-Mode Miniature Cantilever-Type Ultrasonic Motor Using Lead-Free Array-Type Multilayer Piezoelectric Ceramics. Jap. J. Appl. Phys. 2009, 47, 4242–4247. [Google Scholar]
- Tsai, C.C.; Chao, W.H.; Chu, S.Y.; Hong, C.S.; Weng, C.M.; Su, H.H. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature. AIP Adv. 2016, 6, 125024. [Google Scholar] [CrossRef]
- Jiang, X.P.; Li, L.; Chen, C.; Wang, X.J.; Li, X.H. Effects of Mn-Doping on the Properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 Lead-Free Ceramics. J. Alloys Compd. 2013, 574, 88–91. [Google Scholar] [CrossRef]
- Zheng, M.; Hou, Y.; Zhu, M.; Zhang, M.; Yan, H. Shift of Morphotropic Phase Boundary in High-Performance Fine-Grained PZN–PZT Ceramics. J. Eur. Ceram. Soc. 2014, 34, 2275–2283. [Google Scholar] [CrossRef]
- Jiansirisomboon, S.; Watcharapasorn, A. Effects of alumina nano-particulates addition on mechanical and electrical properties of barium titanate ceramics. Curr. Appl. Phys. 2008, 8, 48–52. [Google Scholar] [CrossRef]
- Kalyani, A.K.; Brajesh, K.; Senyshyn, A.; Ranjan, R. Orthorhombic-Tetragonal Phase Coexistence and Enhanced Piezo-Response at Room Temperature in Zr, Sn, and Hf Modified BaTiO3. Appl. Phys. Lett. 2014, 104, 252906. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Ravichandran, G. Ferroelectric perovskites for electromechanical actuation. Acta Mater. 2003, 51, 5941–5960. [Google Scholar] [CrossRef]
- Zhang, S.T.; Kounga, A.B.; Jo, W.; Jamin, C.; Seifert, K.; Granzow, T.; Roedel, J.; Damjanovic, D. High-Strain Lead-free Antiferroelectric Electrostrictors. Adv. Mater. 2009, 21, 4716–4720. [Google Scholar] [CrossRef]
- Zuo, R.Z.; Fu, J.; Yin, G.Z.; Li, X.L.; Jiang, J.Z. Electric field induced phase instability in typical (Na,K)(Nb,Sb)O3-LiTaO3 ceramics near orthorhombic and tetragonal phase boundary. Appl. Phys. Lett. 2012, 101, 092906. [Google Scholar] [CrossRef]
- Lebrun, L.; Petit, L.; Gonnard, P. Piezoelectric motor using a (1,1) non-axisymmetric mode. Ultrasonics 1996, 34, 251–255. [Google Scholar] [CrossRef]
- Lebrun, L.; Petit, L.; Briot, R.; Gonnard, P. Electromechanical conversion in an ultrasonic motor using a non-axisymmetric (1,1) mode. Smart Mater. Struct. 2007, 6, 47–52. [Google Scholar] [CrossRef]
- Blood Sugar, Wikipedia, the Free Encyclopedia. Available online: http://en.wikipedia.org/wiki/blood_sugar (accessed on 1 January 2022).
Property | BCTS | BCTSH | BCTSH + Mn |
---|---|---|---|
Density (g/cm3) | 5.8 | 5.7 | 5.8 |
kp (%) | 0.435 | 0.49 | 0.364 |
k31 (%) | 0.25 | 0.29 | 0.21 |
d33 (pC/N) | 383 | 313 | 230 |
d31 (pC/N) | −88.7 | −71.6 | −52 |
Qm | 107.5 | 122.4 | 340.8 |
) | 17.25 | 19.65 | 14.15 |
(at 1 kHz) | 3728.4 | 2131.2 | 1895.7 |
Tanδ (at 1 kHz) | 0.026 | 0.027 | 0.024 |
θ (polarizing angle) | 83 | 86 | 86 |
TO-T (°C) | 40 | 50 | 44 |
TC (°C) | 97 | 112 | 123 |
Material | PZT | BCTSH | BCTSH + 2 Mn | |||
---|---|---|---|---|---|---|
fr (kHZ) | A: 36.07 | B: 36.20 | A: 32.11 | B: 32.17 | A: 39.23 | B: 38.95 |
fa (kHZ) | A: 36.67 | B: 37.02 | A: 32.50 | B: 32.47 | A: 39.55 | B: 39.40 |
Driving Frequency (kHZ) | A: 36.13 | B: 36.13 | A: 32.14 | B: 32.14 | A: 39.09 | B: 39.09 |
Z (Ω) | A: 604.8 | B: 711 | A: 254.63 | B: 195.97 | A: 423.8 | B: 437.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-C.; Chu, S.-Y.; Chao, W.-H.; Hong, C.-S. A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability. Actuators 2022, 11, 248. https://doi.org/10.3390/act11090248
Tsai C-C, Chu S-Y, Chao W-H, Hong C-S. A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability. Actuators. 2022; 11(9):248. https://doi.org/10.3390/act11090248
Chicago/Turabian StyleTsai, Cheng-Che, Sheng-Yuan Chu, Wei-Hsiang Chao, and Cheng-Shong Hong. 2022. "A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability" Actuators 11, no. 9: 248. https://doi.org/10.3390/act11090248
APA StyleTsai, C. -C., Chu, S. -Y., Chao, W. -H., & Hong, C. -S. (2022). A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability. Actuators, 11(9), 248. https://doi.org/10.3390/act11090248