Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry (Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Fractionation of Ohelo Berry Extract
2.3. Chemical Analysis of Ohelo Fractions
2.4. Bacterial Strains and Growth Conditions
2.5. Agar Well Diffusion Assay
2.6. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentrations (MBC)
2.7. Statistical Analysis
3. Results
3.1. Characterization of Ohelo Berry Fractions
3.2. Inhibition Zones
3.3. MIC and MBC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Burden of Foodborne Illness: Findings. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (accessed on 12 October 2022).
- Scallan, E.; Hoekstra, R.M.; Frederick, J.A.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States–major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.C.; Collins, J.P.; Griffin, P.M.; Shah, H.J.; Boyle, M.M.; Cieslak, P.R.; Dunn, J.; Lathrop, S.; McGuire, S.; Rissman, T.; et al. Decreased Incidence of Infections Caused by Pathogens Transmitted Commonly through Food During the COVID-19 Pandemic–Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2017–2020. MMWR Morb. Mortal Wkly Rep. 2021, 70, 1332–1336. [Google Scholar] [CrossRef]
- Das, Q.; Md Islam, R.; Marcone, M.F.; Warriner, K.; Diarra, M. Potential of berry extracts to control foodborne pathogens. Food Control. 2017, 73, 650–662. [Google Scholar] [CrossRef]
- Wu, B.; Liu, X.; Nakamoto, S.T.; Wall, M.; Li, Y. Antimicrobial activity of ohelo berry (Vaccinium calycinum) juice against Listeria monocytogenes and its potential for milk preservation. Microorganisms 2022, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.; Alakomi, H.; Kähkönen, M.; Heinonen, M.; Helander, I.; Oksman-Caldentey, K.; Puupponen-Pimiä, R. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Montville, T.J.; Matthews, K.R.; Kniel, K.E. Food Microbiology: An Introduction, 3rd ed.; ASM Press: Washington, DC, USA, 2012; pp. 45–91. [Google Scholar]
- Côté, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Antimicrobial effect of cranberry juice and extracts. Food Control. 2011, 22, 1413–1418. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Ilić, D.P.; Troter, D.Z.; Stanojević, L.P.; Zvezdanović, J.B.; Vukotić, D.D.; Nikolić, V.D. Cranberry (Vaccinium macrocarpon L.) fruit juice from Serbia: UHPLC-DAD-MS/MS characterization, antibacterial and antioxidant activities. LWT 2021, 146, 111399. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control. 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Klavins, L.; Mezulis, M.; Nikolajeva, V.; Klavins, M. Composition, sun protective and antimicrobial activity of lipophilic bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) extract fractions. LWT 2021, 138, 110784. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Smith, D.M.; Sporns, P. Handbook of Food Analytical Chemistry, Volume 2: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 457–537. [Google Scholar]
- Oszmianski, J.; Lee, C. Inhibitory effect of phenolics on carotene bleaching in vegetables. J. Agric. Food Chem. 1990, 38, 688–690. [Google Scholar] [CrossRef]
- Lacombe, A.; Wu, V.C.H.; Tyler, S.; Edwards, K. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int. J. Food Microbiol. 2010, 139, 102–107. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, S.; You, L.; Ren, J.; Luo, W.; Chen, W.; Zhao, M. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem. 2013, 139, 1–8. [Google Scholar] [CrossRef]
- Hong, V.; Wrolstad, R.E. Cranberry juice composition. J. Assoc. Off. Anal. Chem. 1986, 69, 199–207. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard—Eighth Edition; CLSI publication M07-A8; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009; Available online: https://simpleshowoflove.weebly.com/uploads/1/4/0/7/14073276/agar_dilution_assay.pdf (accessed on 29 January 2022).
- Lacombe, A.; Wu, V.C.; White, J.; Tadepalli, S.; Andre, E.E. The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiol. 2012, 30, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F. Functional characteristics of dried cranberries. In Dried fruits: Phytochemicals and Health Effects; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2013; pp. 101–126. [Google Scholar]
- Lacombe, A.; McGivney, C.; Tadepalli, S.; Sun, X.; Wu, V.C. The effect of American cranberry (Vaccinium macrocarpon) constituents on the growth inhibition, membrane integrity, and injury of Escherichia coli O157:H7 and Listeria monocytogenes in comparison to Lactobacillus rhamnosus. Food Microbiol. 2013, 34, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Hummer, K.; Durst, R.; Zee, F.; Atnip, A.; Giusti, M.M. Phytochemicals in fruits of Hawaiian wild cranberry relatives. J. Sci. Food Agric. 2014, 94, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.T.Y.; Barbut, S.; Ross, K.; Diarra, M.S.; Balamurugan, S. The effect of cranberry pomace ethanol extract on the growth of meat starter cultures, Escherichia coli O157: H7, Salmonella enterica serovar Enteritidis and Listeria monocytogenes. LWT 2019, 115, 108452. [Google Scholar] [CrossRef]
- Allende, A.; McEvoy, J.; Tao, Y.; Luo, Y. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157: H7 and natural microflora of fresh-cut cilantro. Food Control. 2009, 20, 230–234. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, Y.; Yi, G.; Li, M.; Liao, L.; Yang, C.; Cho, C.; Zhang, B.; Zhu, J.; Zou, K.; et al. Quinic acid: A potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin. Med. 2021, 16, 72. [Google Scholar] [CrossRef] [PubMed]
- Eswaranandam, S.; Hettiarachchy, N.S.; Johnson, M.G. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nis-inincorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J. Food Sci. 2004, 69, FMS79–FMS84. [Google Scholar] [CrossRef]
- Lacombe, A.; Wu, V. The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Qual. Saf. 2017, 1, 3–12. [Google Scholar] [CrossRef]
- Guo, M.; Perez, C.; Wei, Y.; Rapoza, E.; Su, G.; Bou-Abdallah, F.; Chasteen, N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007, 43, 4951–4961. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Wu, H.; Wang, H.; Bian, H.; Zhu, Y.; Xu, W.; Liu, F.; Wang, D.; Fu, L. Antibacterial activity and action mode of chlorogenic acid against Salmonella Enteritidis, a foodborne pathogen in chilled fresh chicken. World. J. Microbiol. Biotechnol. 2020, 36, 24. [Google Scholar] [CrossRef]
- Alshaibani, D.; Zhang, R.; Wu, V.C. Antibacterial characteristics and activity of Vaccinium macrocarpon proanthocyanidins against diarrheagenic Escherichia coli. J. Funct. Foods 2017, 39, 133–138. [Google Scholar] [CrossRef]
- Sánchez-Patán, F.; Barroso, E.; van de Wiele, T.; Jiménez-Girón, A.; Martín-Alvarez, P.J.; Moreno-Arribas, M.V.; Martínez-Cuesta, M.C.; Peláez, C.; Requena, T.; Bartolomé, B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem. 2015, 183, 273–282. [Google Scholar] [CrossRef]
- Kim, T.; Weng, W.; Silva, J.; Jung, Y.; Marshall, D. Identification of Natural Antimicrobial Substances in Red Muscadine Juice against Cronobacter sakazakii. J. Food Sci. 2010, 75, M150–M154. [Google Scholar] [CrossRef] [PubMed]
Fraction * | pH | Sugar and Organic Acids (°Bx/Acid) | Total Phenolics (Gallic Acid Equivalent, mg/mL) | Anthocyanins (cyanidin-3-glucoside Equivalents, mg/L) |
---|---|---|---|---|
F0 | 3.14 ± 0.06 a | 16.3 ± 0.4 a/2.88 ± 0.15 a | 17.05 ± 0.04 a | 462.73 ± 11.52 a |
F1 | 2.68 ± 0.09 b | 15.3 ± 0.6 a/2.13 ± 0.19 b | 0 d | 0 c |
F2 | 2.51 ± 0.03 b | 0 c | 7.95 ± 0.01 b | 20.54 ± 0.83 b |
F3 | 2.05 ± 0.05 c | 0 c | 9.28 ± 0.30 c | 438.18 ± 2.00 a |
Treatment | Bacteria | ||
---|---|---|---|
Escherichia coli O157:H7 | Listeria monocytogenes | ||
Native pH | F0 | 10 ± 0.25 b/20.5 ± 0.5 * A | 20.75 ± 0.25 a |
F1 | - ‡/13 ± 1 * C | 12 ± 1.5 c | |
F2 | -/9.25 ± 0.25 * D | 9.75 ± 0.25 d | |
F3 | -/11.5 ± 0.5 * CD | 14.25 ± 0.25 b | |
Neutralized | F0 | 9.25 ± 0.25 b/11 ± 0 * CD | 13 ± 0 b |
F1 | - | - | |
F2 | - | 8 ± 0 e | |
F3 | - | 11.25 ± 0.25 c | |
Bleach (10% v v−1) | 13 ± 0 a/16.5 ± 0.5 * B | 13.25 ± 0.25 b |
Fraction † | 50% | 25% | 12.5% | 6.25% | 3.12% | 1.56% | 0.78% |
---|---|---|---|---|---|---|---|
F0 | 3.48 ± 0.05 | 3.78 ± 0.03 | 4.15 ± 0.05 | 4.46 ± 0.04 | 4.89 ± 0.02 | 5.72 ± 0.03 | 6.57 ± 0.03 |
F1 | 3.12 ± 0.02 | 3.58 ± 0.02 | 4.09 ± 0.06 | 4.80 ± 0.04 | 5.93 ± 0.07 | 6.48 ± 0.03 | 6.73 ± 0.05 |
F2 | 3.89 ± 0.01 | 4.39 ± 0.04 | 5.21 ± 0.05 | 6.18 ± 0.05 | 6.57 ± 0.03 | 6.74 ± 0.04 | 6.84 ± 0.02 |
F3 | 4.46 ± 0.03 | 5.58 ± 0.03 | 6.34 ± 0.06 | 6.64 ± 0.03 | 6.79 ± 0.02 | 6.87 ± 0.05 | 6.91 ± 0.03 |
Fraction | E. coli O157:H7 | L. monocytogenes | |||
---|---|---|---|---|---|
MIC | MBC | MIC | MBC | ||
Native pH | F0 (GAE, mg mL−1) | 0.53 | 2.13 | 0.27 | 2.13 |
F1 (Bx/acid) | 1.39/0.26 | 5.55/1.06 | 0.69–1.39/ 0.13–0.26 | 5.55/1.06 | |
F2 (GAE, mg mL−1) | 1.99–3.98 | NA * | 0.99 | 3.98 | |
F3 (C3G eq., mg L−1) | 109.55–219.09 | NA | 6.85–13.69 | 109.55 | |
Neutralized | F0 (GAE, mg mL−1) | 4.26–8.53 | 8.53 | 0.53–1.07 | 2.13 |
F1 (Bx/acid) | NA | NA | NA | NA | |
F2 (GAE, mg mL−1) | NA | NA | 0.99 | 3.98 | |
F3 (C3G eq., mg L−1) | NA | NA | 13.69 | 219.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, B.; Nakamoto, S.T.; Imamura, J.L.; Li, Y. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry (Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids. Microorganisms 2022, 10, 2231. https://doi.org/10.3390/microorganisms10112231
Liu X, Wu B, Nakamoto ST, Imamura JL, Li Y. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry (Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids. Microorganisms. 2022; 10(11):2231. https://doi.org/10.3390/microorganisms10112231
Chicago/Turabian StyleLiu, Xiaohan, Biyu Wu, Stuart T. Nakamoto, Joanne L. Imamura, and Yong Li. 2022. "Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry (Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids" Microorganisms 10, no. 11: 2231. https://doi.org/10.3390/microorganisms10112231
APA StyleLiu, X., Wu, B., Nakamoto, S. T., Imamura, J. L., & Li, Y. (2022). Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry (Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids. Microorganisms, 10(11), 2231. https://doi.org/10.3390/microorganisms10112231