Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study
2.2. Pig Holdings
2.3. Sampling and Data Collection
2.4. Bacteriological Examination
2.5. Data Analysis and Statistics
3. Results
3.1. Questionnaire
3.2. Bacteriological Examination
3.3. Resistance Screening
3.4. VITEK 2 Compact AST Examination of Isolates Obtained from Pigs at the End of the Fattening Period
3.5. Multivariable Analysis
4. Discussion
4.1. Bacteriological Examination
4.2. VITEK 2 Compact Examination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khardori, N.; Stevaux, C.; Ripley, K. Antibiotics: From the Beginning to the Future: Part 1. Indian J. Pediatr. 2020, 87, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of Methicillin Resistance Predates the Clinical Use of Antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hughes, V.M.; Datta, N. Conjugative Plasmids in Bacteria of the ‘Pre-Antibiotic’ Era. Nature 1983, 302, 725–726. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic Resistance Is Ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Bishop, C.; Yacoob, Z.; Knobloch, M.J.; Safdar, N. Community Pharmacy Interventions to Improve Antibiotic Stewardship and Implications for Pharmacy Education: A Narrative Overview. Res. Soc. Adm. Pharm. 2019, 15, 627–631. [Google Scholar] [CrossRef]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild Boar as a Reservoir of Antimicrobial Resistance. Sci. Total Environ. 2020, 717, 135001. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Heiden, S.E.; Lübcke, P.K.; Bachmann, L.; Bohnert, J.A.; Zimmermann, D.; Schaufler, K. Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotics 2021, 10, 568. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Schütz, A.K.; Dreyer, S.; Glanz, J.; Schaufler, K.; Conraths, F.J. Genomic Analysis of Esbl-Producing E. coli in Wildlife from North-Eastern Germany. Antibiotics 2022, 11, 123. [Google Scholar] [CrossRef]
- Weber, L.P.; Dreyer, S.; Heppelmann, M.; Schaufler, K.; Homeier-Bachmann, T.; Bachmann, L. Prevalence and Risk Factors for Esbl/Ampc-E. coli in Pre-Weaned Dairy Calves on Dairy Farms in Germany. Microorganisms 2021, 9, 2135. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human Health Implications of Organic Food and Organic Agriculture: A Comprehensive Review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, C.C.; Sanders, W.E., Jr. Emergence of Resistance to Cefamandole: Possible Role of Cefoxitin-Inducible Beta-Lactamases. Antimicrob. Agents Chemother. 1979, 15, 792–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knothe, H.; Shah, P.; Krcmery, V.; Antal, M.; Mitsuhashi, S. Transferable Resistance to Cefotaxime, Cefoxitin, Cefamandole and Cefuroxime in Clinical Isolates of Klebsiella Pneumoniae and Serratia Marcescens. Infection 1983, 11, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.S.; Sit, T.H.; Wong, S.S.; Wong, R.C.; Chow, K.H.; Mak, G.C.; Yam, W.C.; Ng, L.T.; Yuen, K.Y.; Ho, P.L. Escherichia coli Producing Ctx-M Beta-Lactamases in Food Animals in Hong Kong. Microb. Drug Resist. 2006, 12, 145–148. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of Β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- Friese, A.; Schulz, J.; Laube, H.; von Salviati, C.; Hartung, J.; Roesler, U. Faecal Occurrence and Emissions of Livestock-Associated Methicillin-Resistant Staphylococcus Aureus (Lamrsa) and Esbl/Ampc-Producing E. coli from Animal Farms in Germany. Berl. Und Munch. Tierarztl. Wochenschr. 2013, 126, 175–180. [Google Scholar]
- Hordijk, J.; Fischer, E.A.J.; van Werven, T.; Sietsma, S.; van Gompel, L.; Timmerman, A.J.; Spaninks, M.P.; Heederik, D.J.J.; Nielen, M.; Wagenaar, J.A.; et al. Dynamics of Faecal Shedding of Esbl- or Ampc-Producing Escherichia coli on Dairy Farms. J. Antimicrob. Chemother. 2019, 74, 1531–1538. [Google Scholar] [CrossRef]
- Lalak, A.; Wasyl, D.; Zając, M.; Skarżyńska, M.; Hoszowski, A.; Samcik, I.; Woźniakowski, G.; Szulowski, K. Mechanisms of Cephalosporin Resistance in Indicator Escherichia coli Isolated from Food Animals. Vet. Microbiol. 2016, 194, 69–73. [Google Scholar] [CrossRef]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S.K.; Semmler, T. Genomic Diversity and Virulence Potential of Esbl- and Ampc-Β-Lactamase-Producing Escherichia coli Strains from Healthy Food Animals across Europe. Front. Microbiol. 2021, 12, 626774. [Google Scholar] [CrossRef]
- García-Cobos, S.; Köck, R.; Mellmann, A.; Frenzel, J.; Friedrich, A.W.; Rossen, J.W. Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and Ampc Β-Lactamases Producing but No Carbapenem Resistant Ones. PLoS ONE 2015, 10, e0134533. [Google Scholar] [CrossRef]
- Hille, K.; Fischer, J.; Falgenhauer, L.; Sharp, H.; Brenner, G.; Kadlec, K.; Friese, A.; Schwarz, S.; Imirzalioglu, C.; Kietzmann, M.; et al. Zum Vorkommen Von Extended-Spektrum- Und Ampc-Beta-Laktamase-Produzierenden Escherichia coli in Nutztierbeständen: Ergebnisse Ausgewählter Europäischer Studien. Berl. Und Munch. Tierarztl. Wochenschr. 2014, 127, 403. [Google Scholar]
- Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Jouy, E.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; et al. Occurrence of Antimicrobial Resistance among Bacterial Pathogens and Indicator Bacteria in Pigs in Different European Countries from Year 2002–2004: The Arbao-Ii Study. Acta Vet. Scand. 2008, 50, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, K.H.; Damborg, P.; Andreasen, M.; Nielsen, S.S.; Guardabassi, L. Carriage and Fecal Counts of Cefotaxime M-Producing Escherichia coli in Pigs: A Longitudinal Study. Appl. Environ. Microbiol. 2013, 79, 794–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Dohmen, W.; Van Gompel, L.; Schmitt, H.; Liakopoulos, A.; Heres, L.; Urlings, B.A.; Mevius, D.; Bonten, M.J.M.; Heederik, D.J.J. Esbl Carriage in Pig Slaughterhouse Workers Is Associated with Occupational Exposure. Epidemiol. Infect. 2017, 145, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Hering, J.; Hille, K.; Frömke, C.; von Münchhausen, C.; Hartmann, M.; Schneider, B.; Friese, A.; Roesler, U.; Merle, R.; Kreienbrock, L. Prevalence and Potential Risk Factors for the Occurrence of Cefotaxime Resistant Escherichia coli in German Fattening Pig Farms—A Cross-Sectional Study. Prev. Vet. Med. 2014, 116, 129–137. [Google Scholar] [CrossRef]
- Hille, K.; Felski, M.; Ruddat, I.; Woydt, J.; Schmid, A.; Friese, A.; Fischer, J.; Sharp, H.; Valentin, L.; Michael, G.B.; et al. Association of Farm-Related Factors with Characteristics Profiles of Extended-Spectrum Β-Lactamase-/Plasmid-Mediated Ampc Β-Lactamase-Producing Escherichia coli Isolates from German Livestock Farms. Vet. Microbiol. 2018, 223, 93–99. [Google Scholar] [CrossRef]
- Fertner, M.; Boklund, A.; Dupont, N.; Enøe, C.; Stege, H.; Toft, N. Weaner Production with Low Antimicrobial Usage: A Descriptive Study. Acta Vet. Scand. 2015, 57, 38. [Google Scholar] [CrossRef] [Green Version]
- Merlino, J.; Siarakas, S.; Robertson, G.J.; Funnell, G.R.; Gottlieb, T.; Bradbury, R. Evaluation of Chromagar Orientation for Differentiation and Presumptive Identification of Gram-Negative Bacilli and Enterococcus Species. J. Clin. Microbiol. 1996, 34, 1788–1793. [Google Scholar] [CrossRef] [Green Version]
- Vinueza-Burgos, C.; Ortega-Paredes, D.; Narváez, C.; De Zutter, L.; Zurita, J. Characterization of Cefotaxime Resistant Escherichia coli Isolated from Broiler Farms in Ecuador. PLoS ONE 2019, 14, e0207567. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Guenther, S.; Grobbel, M.; Lübke-Becker, A.; Goedecke, A.; Friedrich, N.D.; Wieler, L.H.; Ewers, C. Antimicrobial Resistance Profiles of Escherichia coli from Common European Wild Bird Species. Vet. Microbiol. 2010, 144, 219–225. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis. PLoS ONE 2008, 3, e2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortz, J.; Schuster, C. Statistik für Human—Und Sozialwissenschaftler; Vollständig Überarbeitete und Erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7. [Google Scholar]
- Højsgaard, S.; Halekoh, U.; Yan, J. The R Package Geepack for Generalized Estimating Equations. J. Stat. Softw. 2005, 15, 1–11. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- AGISAR; WHO. Critically Important Antimicrobials for Human Medicine, 5th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Dahms, C.; Hübner, N.O.; Kossow, A.; Mellmann, A.; Dittmann, K.; Kramer, A. Occurrence of Esbl-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany. PLoS ONE 2015, 10, e0143326. [Google Scholar] [CrossRef]
- Österberg, J.; Wingstrand, A.; Jensen, A.N.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLoS ONE 2016, 11, e0157049. [Google Scholar] [CrossRef]
- Zwonitzer, M.R.; Soupir, M.L.; Jarboe, L.R.; Smith, D.R. Quantifying Attachment and Antibiotic Resistance of from Conventional and Organic Swine Manure. J. Environ. Qual. 2016, 45, 609–617. [Google Scholar] [CrossRef]
- Nulsen, M.F.; Mor, M.B.; Lawton, D.E. Antibiotic Resistance among Indicator Bacteria Isolated from Healthy Pigs in New Zealand. N. Z. Vet. J. 2008, 56, 29–35. [Google Scholar] [CrossRef]
- Miranda, J.M.; Vázquez, B.I.; Fente, C.A.; Barros-Velázquez, J.; Cepeda, A.; Abuín, C.M.F. Antimicrobial Resistance in Escherichia coli Strains Isolated from Organic and Conventional Pork Meat: A Comparative Survey. Eur. Food Res. Technol. 2008, 226, 371–375. [Google Scholar] [CrossRef]
- Hasman, H.; Aarestrup, F.M. Relationship between Copper, Glycopeptide, and Macrolide Resistance among Enterococcus Faecium Strains Isolated from Pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother. 2005, 49, 454–456. [Google Scholar] [CrossRef] [Green Version]
- Gebreyes, W.A.; Thakur, S.; Morrow, W.E. Comparison of Prevalence, Antimicrobial Resistance, and Occurrence of Multidrug-Resistant Salmonella in Antimicrobial-Free and Conventional Pig Production. J. Food Prot. 2006, 69, 743–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raasch, S.; Postma, M.; Dewulf, J.; Stärk, K.D.C.; Beilage, E.G. Association between Antimicrobial Usage, Biosecurity Measures as Well as Farm Performance in German Farrow-to-Finish Farms. Porc. Health Manag. 2018, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; et al. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of Drug Resistance: Quinolone Resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.; Shimoda, S.; Shimono, N. Current Epidemiology, Genetic Evolution and Clinical Impact of Extended-Spectrum Β-Lactamase-Producing Escherichia coli and Klebsiella Pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef]
- Gerhold, G.; Schulze, M.H.; Gross, U.; Bohne, W. Multilocus Sequence Typing and Ctx-M Characterization of Esbl-Producing E. coli: A Prospective Single-Centre Study in Lower Saxony, Germany. Epidemiol. Infect. 2016, 144, 3300–3304. [Google Scholar] [CrossRef] [Green Version]
- Kluytmans, J.A.; Overdevest, I.T.; Willemsen, I.; Kluytmans-van den Bergh, M.F.; van der Zwaluw, K.; Heck, M.; Rijnsburger, M.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H.; Johnston, B.D.; et al. Extended-Spectrum Β-Lactamase-Producing Escherichia coli from Retail Chicken Meat and Humans: Comparison of Strains, Plasmids, Resistance Genes, and Virulence Factors. Clin. Infect. Dis. 2013, 56, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, M.; Eller, C.; Wendt, C.; Holfelder, M.; Falgenhauer, L.; Fruth, A.; Grössl, T.; Leistner, R.; Valenza, G.; Werner, G.; et al. Molecular Characterisation of Extended-Spectrum Β-Lactamase (Esbl)-Producing Escherichia coli Isolates from Hospital and Ambulatory Patients in Germany. Vet. Microbiol. 2017, 200, 130–137. [Google Scholar] [CrossRef]
- Schink, A.K.; Kadlec, K.; Kaspar, H.; Mankertz, J.; Schwarz, S. Analysis of Extended-Spectrum-Β-Lactamase-Producing Escherichia coli Isolates Collected in the Germ-Vet Monitoring Programme. J. Antimicrob. Chemother. 2013, 68, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Irrgang, A.; Hammerl, J.A.; Falgenhauer, L.; Guiral, E.; Schmoger, S.; Imirzalioglu, C.; Fischer, J.; Guerra, B.; Chakraborty, T.; Käsbohrer, A. Diversity of Ctx-M-1-Producing E. coli from German Food Samples and Genetic Diversity of the Bla(Ctx-M-1) Region on Inci1 St3 Plasmids. Vet. Microbiol. 2018, 221, 98–104. [Google Scholar] [CrossRef]
- Patel, G.; Bonomo, R.A. “Stormy Waters Ahead”: Global Emergence of Carbapenemases. Front. Microbiol. 2013, 4, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.A.; Käsbohrer, A. Antibiotic Resistance in Escherichia coli from Pigs from Birth to Slaughter and Its Association with Antibiotic Treatment. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism Mcr-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
Sampling 1 | Sampling 2 | Sampling 3 | Sampling 4 | Sampling 5 | |
---|---|---|---|---|---|
Farm 1 | 100% (13/13) | 100% (14/14) | 6.7% (1/15) | 28.6% (4/14) | 76.9% (10/13) |
Farm 2 | 100% (7/7) | 28.6% (2/7) | 71.4% (5/7) | 0.0% (0/7) | 71.4% (5/7) |
Farm 3 | 66.7% (2/3) | 100% (4/4) | 16.7% (1/6) | 100% (4/4) | 50.0% (2/4) |
Farm 4a Pen Run | 0.0% (0/2) 0.0% (0/2) | 50.0% (1/2) 0.0% (0/3) | 0.0% (0/2) 0.0% (0/2) | 0.0% (0/3) 0.0% (0/3) | 0.0% (0/3) 0.0% (0/3) |
Farm 4b Pen Run | 100% (2/2) - | 66.7% (2/3) - | 75.0% (3/4) 100% (3/3) | 100% (5/5) 100% (3/3) | 60.0% (3/5) 33.3% (1/3) |
Farm 5 Pen Run | 50.0% (2/4) 25.0% (1/4) | 71.4% (5/7) 0.0% (0/2) | 57.1% (4/7) 50.0% (3/6) | 9.1% (1/11) 18.2% (2/11) | 81.8% (9/11) 63.6% (7/11) |
Farm 6 Pen Run | 100% (3/3) 100% (3/3) | 75.0% (4/4) 100% (4/4) | 0.0% (0/4) 25.0% (1/4) | 33.3% (1/3) 0.0% (0/3) | 100% (1/1) 100% (1/1) |
Farm 7 Pen Run | 0.0% (0/6) 33.3% (2/6) | 16.7% (1/6) 33.3% (2/6) | 28.6% (2/7) 42.9% (3/7) | 0.0% (0/7) 0.0% (0/7) | 12.5% (1/8) 0.0% (0/8) |
Farm | Number of Tested Samples | Resistance Screening | |||
---|---|---|---|---|---|
Number of Tested Isolates * | 3-MDR | 5-MDR | Resistant to Ciprofloxacin | ||
1 | 106 | 41 | 15 (36.6%) | 2 (4.9%) | 4 (9.8%) |
2 | 98 | 34 | 11 (32.4%) | 2 (5.9%) | 3 (8.8%) |
3 | 113 | 23 | 20 (87.0%) | 4 (17.4%) | 5 (21.7%) |
4a | 113 | 0 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
4b | 132 | 48 | 46 (95.8%) | 7 (14.6%) | 19 (39.6%) |
5 | 240 | 58 | 13 (22.4%) | 1 (1.7%) | 2 (3.4%) |
6 | 134 | 24 | 23 (95.8%) | 2 (8.3%) | 12 (50.0%) |
7 | 200 | 10 | 9 (90.0%) | 0 (0.0%) | 7 (70.0%) |
Farm 1 (Con) | Farm 2 (Con) | Farm 3 (Con) | Farm 4b (Org) | Farm 5 (Org) | Farm 6 (Org) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ampicillin | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
Amoxicillin/Clavulanic acid | S | S | S | S | S | S | S | S | S | I | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Piperacillin | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
Piperacillin/Tazobactam | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Cefuroxime | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
Cefotaxime | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
Ceftazidime | R | S | S | S | R | S | S | S | S | S | S | R | S | R | S | R | S | S | S | S | R | S | S | S |
Cefepime | R | S | S | S | R | S | S | S | S | S | S | R | S | S | S | S | S | S | S | S | S | S | R | S |
Gentamicin | R | S | S | S | R | S | S | I | S | S | S | R | S | S | S | S | S | S | S | S | S | S | S | S |
Amikacin | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Tobramycin | I | S | S | S | I | S | S | R | S | S | S | I | S | S | S | S | S | S | S | S | S | S | S | S |
Ciprofloxacin | R | S | S | S | R | S | S | S | S | S | S | R | R | S | S | S | S | S | S | S | S | S | S | S |
Moxifloxacin | R | S | S | S | R | S | S | S | S | S | S | R | R | R | S | R | S | R | S | S | S | R | R | R |
Fosfomycin | S | S | S | S | S | S | S | I | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Nitrofurantoin | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | I | S | S | S | S | S | S | S |
Trimethoprim | R | R | S | S | R | R | R | S | R | S | S | R | S | S | S | R | S | S | S | S | S | S | S | S |
Trimethoprim/Sulfamethoxazole | R | R | S | S | R | R | R | R | R | S | S | R | S | S | S | R | S | S | S | S | S | S | S | S |
Aztreonam | R | R | R | S | R | R | S | I | S | S | S | R | R | S | S | R | S | S | S | S | S | S | R | R |
Imipenem | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Meropenem | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Ertapenem | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Tigecycline | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Colistin | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meissner, K.; Sauter-Louis, C.; Heiden, S.E.; Schaufler, K.; Tomaso, H.; Conraths, F.J.; Homeier-Bachmann, T. Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms. Microorganisms 2022, 10, 603. https://doi.org/10.3390/microorganisms10030603
Meissner K, Sauter-Louis C, Heiden SE, Schaufler K, Tomaso H, Conraths FJ, Homeier-Bachmann T. Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms. Microorganisms. 2022; 10(3):603. https://doi.org/10.3390/microorganisms10030603
Chicago/Turabian StyleMeissner, Katharina, Carola Sauter-Louis, Stefan E. Heiden, Katharina Schaufler, Herbert Tomaso, Franz J. Conraths, and Timo Homeier-Bachmann. 2022. "Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms" Microorganisms 10, no. 3: 603. https://doi.org/10.3390/microorganisms10030603
APA StyleMeissner, K., Sauter-Louis, C., Heiden, S. E., Schaufler, K., Tomaso, H., Conraths, F. J., & Homeier-Bachmann, T. (2022). Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms. Microorganisms, 10(3), 603. https://doi.org/10.3390/microorganisms10030603