Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence?
Abstract
:1. Introduction
2. The Non-Senescent Metaorganism Hydra
3. Non-Senescent Hydra Defies Common Denominators of Aging via Novel and Conserved Mechanisms
4. Life at the Surface of Hydra´s Ectodermal Epithelium
5. Longevity Factor FOXO Controls Microbiome Resilience in Hydra
6. The Microbiome Modulates Hydra´s Tissue Homeostasis
7. Microbiome Malfunction Drives Cancer Development in Hydra
8. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kenyon, C.; Chang, J.; Gensch, E.; Rudner, A.; Tabtiang, R.A.C. Elegans Mutant That Lives Twice as Long as Wild Type. Nature 1993, 366, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Willcox, B.J.; Donlon, T.A.; He, Q.; Chen, R.; Grove, J.S.; Yano, K.; Masaki, K.H.; Willcox, D.C.; Rodriguez, B.; Curb, J.D. FOXO3A Genotype Is Strongly Associated with Human Longevity. Proc. Natl. Acad. Sci. USA 2008, 105, 13987–13992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, Y.-S. Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Front. Cardiovasc. Med. 2021, 8, 778674. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.J.; Willcox, D.C.; Donlon, T.A.; Willcox, B.J. FOXO3: A Major Gene for Human Longevity—A Mini-Review. Gerontology 2015, 61, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, T.C.G.; McFall-Ngai, M.J. Metaorganisms as the New Frontier. Zoology 2011, 114, 185–190. [Google Scholar] [CrossRef] [Green Version]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a Bacterial World, a New Imperative for the Life Sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [Green Version]
- Douglas, A.E. Simple Animal Models for Microbiome Research. Nat. Rev. Microbiol. 2019, 17, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.V.-A.; Foster, K.R. Why Does the Microbiome Affect Behaviour? Nat. Rev. Microbiol. 2018, 16, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our Gut Microbiome: The Evolving Inner Self. Cell 2017, 171, 1481–1493. [Google Scholar] [CrossRef] [Green Version]
- Wilmanski, T.; Diener, C.; Rappaport, N.; Patwardhan, S.; Wiedrick, J.; Lapidus, J.; Earls, J.C.; Zimmer, A.; Glusman, G.; Robinson, M.; et al. Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nat. Metab. 2021, 3, 274–286. [Google Scholar] [CrossRef]
- Smith, P.; Willemsen, D.; Popkes, M.; Metge, F.; Gandiwa, E.; Reichard, M.; Valenzano, D.R. Regulation of Life Span by the Gut Microbiota in the Short-Lived African Turquoise Killifish. eLife 2017, 6, e27014. [Google Scholar] [CrossRef] [PubMed]
- Stebegg, M.; Silva-Cayetano, A.; Innocentin, S.; Jenkins, T.P.; Cantacessi, C.; Gilbert, C.; Linterman, M.A. Heterochronic Faecal Transplantation Boosts Gut Germinal Centres in Aged Mice. Nat. Commun. 2019, 10, 2443. [Google Scholar] [CrossRef] [PubMed]
- Boehme, M.; Guzzetta, K.E.; Bastiaanssen, T.F.S.; van de Wouw, M.; Moloney, G.M.; Gual-Grau, A.; Spichak, S.; Olavarría-Ramírez, L.; Fitzgerald, P.; Morillas, E.; et al. Microbiota from Young Mice Counteracts Selective Age-Associated Behavioral Deficits. Nat. Aging 2021, 1, 666–676. [Google Scholar] [CrossRef]
- Shin, J.; Noh, J.-R.; Choe, D.; Lee, N.; Song, Y.; Cho, S.; Kang, E.-J.; Go, M.-J.; Ha, S.K.; Chang, D.-H.; et al. Ageing and Rejuvenation Models Reveal Changes in Key Microbial Communities Associated with Healthy Ageing. Microbiome 2021, 9, 240. [Google Scholar] [CrossRef]
- Biagi, E.; Candela, M.; Fairweather-Tait, S.; Franceschi, C.; Brigidi, P. Aging of the Human Metaorganism: The Microbial Counterpart. Age 2012, 34, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Candela, M.; Turroni, S.; Biagi, E.; Carbonero, F.; Rampelli, S.; Fiorentini, C.; Brigidi, P. Inflammation and Colorectal Cancer, When Microbiota-Host Mutualism Breaks. World J. Gastroenterol. 2014, 20, 908–922. [Google Scholar] [CrossRef]
- Keller, J.M.; Surawicz, C.M. Clostridium Difficile Infection in the Elderly. Clin. Geriatr. Med. 2014, 30, 79–93. [Google Scholar] [CrossRef]
- Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients 2020, 12, 3759. [Google Scholar] [CrossRef]
- Jones, O.R.; Scheuerlein, A.; Salguero-Gómez, R.; Camarda, C.G.; Schaible, R.; Casper, B.B.; Dahlgren, J.P.; Ehrlén, J.; García, M.B.; Menges, E.S.; et al. Diversity of Ageing across the Tree of Life. Nature 2014, 505, 169–173. [Google Scholar] [CrossRef]
- Bosch, T.C.G. Hydra and the Evolution of Stem Cells. BioEssays 2009, 31, 478–486. [Google Scholar] [CrossRef]
- McFall-Ngai, M.; Bosch, T.C.G. Chapter Eleven—Animal Development in the Microbial World: The Power of Experimental Model Systems. In Evolutionary Developmental Biology; Gilbert, S.F., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 141, pp. 371–397. ISBN 0070-2153. [Google Scholar]
- Boehm, A.-M.; Khalturin, K.; Anton-Erxleben, F.; Hemmrich, G.; Klostermeier, U.C.; Lopez-Quintero, J.A.; Oberg, H.-H.; Puchert, M.; Rosenstiel, P.; Wittlieb, J.; et al. FoxO Is a Critical Regulator of Stem Cell Maintenance in Immortal Hydra. Proc. Natl. Acad. Sci. USA 2012, 109, 19697–19702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebel, A.; Bosch, T.C.G. Evolution of Human Longevity: Lessons from Hydra. Aging (Albany NY). 2012, 4, 730–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraune, S.; Bosch, T.C.G. Long-Term Maintenance of Species-Specific Bacterial Microbiota in the Basal Metazoan Hydra. Proc. Natl. Acad. Sci. USA 2007, 104, 13146–13151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzenburg, S.; Walter, J.; Künzel, S.; Wang, J.; Baines, J.F.; Bosch, T.C.G.; Fraune, S. Distinct Antimicrobial Peptide Expression Determines Host Species-Specific Bacterial Associations. Proc. Natl. Acad. Sci. USA 2013, 110, E3730–E3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wein, T.; Dagan, T.; Fraune, S.; Bosch, T.C.G.; Reusch, T.B.H.; Hülter, N.F. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat. Front. Microbiol. 2018, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Deines, P.; Hammerschmidt, K.; Bosch, T.C.G. Microbial Species Coexistence Depends on the Host Environment. mBio 2020, 11, e00807-20. [Google Scholar] [CrossRef]
- Bosch, T.C.G.; Zasloff, M. Antimicrobial Peptides-or How Our Ancestors Learned to Control the Microbiome. mBio 2021, 12, e0184721. [Google Scholar] [CrossRef]
- Bosch, T.C.G. Cnidarian-Microbe Interactions and the Origin of Innate Immunity in Metazoans. Annu. Rev. Microbiol. 2013, 67, 499–518. [Google Scholar] [CrossRef] [Green Version]
- Bosch, T.C.G. Rethinking the Role of Immunity: Lessons from Hydra. Trends Immunol. 2014, 35, 495–502. [Google Scholar] [CrossRef]
- Klimovich, A.V.; Bosch, T.C.G. Rethinking the Role of the Nervous System: Lessons From the Hydra Holobiont. Bioessays 2018, 40, e1800060. [Google Scholar] [CrossRef] [Green Version]
- Schröder, K.; Bosch, T.C.G. The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra. mBio 2016, 7, e01184-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathje, K.; Mortzfeld, B.; Hoeppner, M.P.; Taubenheim, J.; Bosch, T.C.G.; Klimovich, A. Dynamic Interactions within the Host-Associated Microbiota Cause Tumor Formation in the Basal Metazoan Hydra. PLoS Pathog. 2020, 16, e1008375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deines, P.; Bosch, T.C.G. Transitioning from Microbiome Composition to Microbial Community Interactions: The Potential of the Metaorganism Hydra as an Experimental Model. Front. Microbiol. 2016, 7, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimovich, A.; Rehm, A.; Wittlieb, J.; Herbst, E.-M.; Benavente, R.; Bosch, T.C.G. Non-Senescent Hydra Tolerates Severe Disturbances in the Nuclear Lamina. Aging (Albany NY) 2018, 10, 951–972. [Google Scholar] [CrossRef]
- Barve, A.; Galande, A.A.; Ghaskadbi, S.S.; Ghaskadbi, S. DNA Repair Repertoire of the Enigmatic Hydra. Front. Genet. 2021, 12, 689. [Google Scholar] [CrossRef]
- Fraune, S.; Anton-Erxleben, F.; Augustin, R.; Franzenburg, S.; Knop, M.; Schröder, K.; Willoweit-Ohl, D.; Bosch, T.C.G. Bacteria–Bacteria Interactions within the Microbiota of the Ancestral Metazoan Hydra Contribute to Fungal Resistance. ISME J. 2015, 9, 1543–1556. [Google Scholar] [CrossRef] [Green Version]
- Lachnit, T.; Bosch, T.C.G.; Deines, P. Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development—An Evolutionary Perspective. mBio 2019, 10, e00355-19. [Google Scholar] [CrossRef] [Green Version]
- Klimovich, A.; Giacomello, S.; Björklund, Å.; Faure, L.; Kaucka, M.; Giez, C.; Murillo-Rincon, A.P.; Matt, A.-S.; Willoweit-Ohl, D.; Crupi, G.; et al. Prototypical Pacemaker Neurons Interact with the Resident Microbiota. Proc. Natl. Acad. Sci. USA 2020, 117, 17854–17863. [Google Scholar] [CrossRef]
- Murillo-Rincon, A.P.; Klimovich, A.; Pemöller, E.; Taubenheim, J.; Mortzfeld, B.; Augustin, R.; Bosch, T.C.G. Spontaneous Body Contractions Are Modulated by the Microbiome of Hydra. Sci. Rep. 2017, 7, 15937. [Google Scholar] [CrossRef]
- Mortzfeld, B.M.; Taubenheim, J.; Fraune, S.; Klimovich, A.V.; Bosch, T.C.G. Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra. Front. Microbiol. 2018, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Wanek, N.; Campbell, R.D. Roles of Ectodermal and Endodermal Epithelial Cells in Hydra Morphogenesis: Construction of Chimeric Strains. J. Exp. Zool. 1982, 221, 37–47. [Google Scholar] [CrossRef]
- Mortzfeld, B.M.; Taubenheim, J.; Klimovich, A.V.; Fraune, S.; Rosenstiel, P.; Bosch, T.C.G. Temperature and Insulin Signaling Regulate Body Size in Hydra by the Wnt and TGF-Beta Pathways. Nat. Commun. 2019, 10, 3257. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bosch, T.C.G. Impact of Microbes on Hydra Development. in press.
- Beard, A.S.; Blaser, M.J. The Ecology of Height: The Effect of Microbial Transmission on Human Height. Perspect. Biol. Med. 2002, 45, 475–498. [Google Scholar] [CrossRef]
- Browne, E.N. The Production of New Hydranths in Hydra by the Insertion of Small Grafts. J. Exp. Zool. 1909, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Broun, M.; Gee, L.; Reinhardt, B.; Bode, H.R. Formation of the Head Organizer in Hydra Involves the Canonical Wnt Pathway. Development 2005, 132, 2907–2916. [Google Scholar] [CrossRef] [Green Version]
- Gee, L.; Hartig, J.; Law, L.; Wittlieb, J.; Khalturin, K.; Bosch, T.C.G.; Bode, H.R. β-Catenin Plays a Central Role in Setting up the Head Organizer in Hydra. Dev. Biol. 2010, 340, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Hobmayer, B.; Rentzsch, F.; Kuhn, K.; Happel, C.M.; Von Laue, C.C.; Snyder, P.; Rothbächer, U.; Holstein, T.W. WNT Signalling Molecules Act in Axis Formation in the Diploblastic Metazoan Hydra. Nature 2000, 407, 186–189. [Google Scholar] [CrossRef]
- Taubenheim, J.; Willoweit-Ohl, D.; Knop, M.; Franzenburg, S.; He, J.; Bosch, T.C.G.; Fraune, S. Bacteria- and Temperature-Regulated Peptides Modulate β-Catenin Signaling in Hydra. Proc. Natl. Acad. Sci. USA 2020, 117, 21459–21468. [Google Scholar] [CrossRef]
- Fane, M.; Weeraratna, A.T. How the Ageing Microenvironment Influences Tumour Progression. Nat. Rev. Cancer 2020, 20, 89–106. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Zhang, J.; Wu, Q.; Fang, H.; Shi, C.; Li, Z.; Lin, C.; Tang, D.; Wang, D. Intestinal Microbiota: A New Force in Cancer Immunotherapy. Cell Commun. Signal. 2020, 18, 90. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut Microbiota Modulation of Chemotherapy Efficacy and Toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Domazet-Lošo, T.; Klimovich, A.; Anokhin, B.; Anton-Erxleben, F.; Hamm, M.J.; Lange, C.; Bosch, T.C.G. Naturally Occurring Tumours in the Basal Metazoan Hydra. Nat. Commun. 2014, 5, 4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Bosch, T.C.G. Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence? Microorganisms 2022, 10, 774. https://doi.org/10.3390/microorganisms10040774
He J, Bosch TCG. Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence? Microorganisms. 2022; 10(4):774. https://doi.org/10.3390/microorganisms10040774
Chicago/Turabian StyleHe, Jinru, and Thomas C. G. Bosch. 2022. "Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence?" Microorganisms 10, no. 4: 774. https://doi.org/10.3390/microorganisms10040774
APA StyleHe, J., & Bosch, T. C. G. (2022). Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence? Microorganisms, 10(4), 774. https://doi.org/10.3390/microorganisms10040774