The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps
Abstract
:1. Introduction
2. Search Procedure
3. Search Results
4. Origin of the Probiotics
5. Set-up of Inoculation Trials for BSFL Rearing
5.1. Substrate Type and Pretreatment
5.2. Environmental Conditions
5.3. Characteristics of the Used BSFL
5.4. Inoculation Strategy
6. Probiotic Inoculation Trials for BSFL Rearing
6.1. Potential of Bacilli
6.2. Potential of Gammaproteobacteria
6.3. Potential of Microbes from Other Classes
6.4. Potential of Polybacterial Inoculants
7. Hurdles in the Evaluation of a Potential Probiotic
7.1. Confirming the Establishment of Probiotic in BSFL
7.2. Differentiating between a Nutritional or a Probiotic Effect for the Inoculated Bacteria
7.3. Impact of the Inoculation Strategy
8. Remaining Knowledge Gaps for BSFL Probiotics
8.1. Expanding Our Fundamental Knowledge on the Role of Microbes in BSFL
8.2. Correlation between Lab-Scale Research and Industrial Scale Production
8.3. Expanding towards Other Probiotic Effects Than Growth Improvement
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Huis, A. Insects as food and feed, a new emerging agricultural sector. J. Insects Food Feed 2020, 6, 27–44. [Google Scholar] [CrossRef] [Green Version]
- International Platform of Insects for Food and Feed. An Overview of the European Market of Insects as Feed. 2021. Available online: https://ipiff.org/wp-content/uploads/2021/04/Apr-27-2021-IPIFF_The-European-market-of-insects-as-feed.pdf (accessed on 10 October 2022).
- Research and Markets. Insect Feed Market—Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027). 2021. Available online: https://www.researchandmarkets.com/reports/4904389/insect-feed-market-growth-trends-COVID-19 (accessed on 10 October 2022).
- Halloran, A.; Flore, R.; Vantomme, P.; Roos, N. Edible Insects in Sustainable Food Systems, 1st ed.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 1–479. [Google Scholar] [CrossRef]
- Mancuso, T.; Pippinato, L.; Gasco, L. The European insects sector and its role in the provision of green proteins in feed supply. Qual. Access Success 2019, 20, 374–381. [Google Scholar]
- Amrul, N.F.; Ahmad, I.K.; Basri, N.E.A.; Suja, F.; Jalil, N.A.A.; Azman, N.A. A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability 2022, 14, 4565. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Čičcková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Studt Solano, N.M.; Roa Gutiérrez, F.; Zurbrügg, C.; Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization 2011, 2, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Gorrens, E.; Van Looveren, N.; Van Moll, L.; Vandeweyer, D.; Lachi, D.; De Smet, J.; Van Campenhout, L. Staphylococcus aureus in substrates for black soldier fly larvae (Hermetia illucens) and its dynamics during rearing. Microbiol. Spectr. 2021, 9, e02183-21. [Google Scholar] [CrossRef]
- International Platform of Insects for Food and Feed. Building Bridges between the Insect Production Chain, Research and Policymakers. 2022. Available online: https://ipiff.org/press-release-building-bridges-between-the-insect-production-chain-research-and-policymakers-september-2019/ (accessed on 10 October 2022).
- Foo, J.L.; Ling, H.; Lee, Y.S.; Chang, M.W. Microbiome engineering: Current applications and its future. Biotechnol. J. 2017, 12, 1600099. [Google Scholar] [CrossRef] [Green Version]
- Albright, M.B.N.; Louca, S.; Winkler, D.E.; Feeser, K.L.; Haig, S.; Whiteson, K.L.; Emerson, J.B.; Dunbar, J. Solutions in microbiome engineering: Prioritizing barriers to organism establishment. ISME J. 2022, 16, 331–338. [Google Scholar] [CrossRef]
- McDonald, A.G.; Tipton, K.F. Enzyme nomenclature and classification: The state of the art. FEBS J. 2021, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Chaucheyras-Durand, F.; Durand, H. Probiotics in animal nutrition and health. Benef. Microbes 2010, 1, 3–9. [Google Scholar] [CrossRef]
- Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals 2021, 11, 3431. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Nabi, M.; Zhang, P.; Zhang, G.; Cai, Y.; Wang, Q.; Zhou, Z.; Ding, Y. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 134, 110335. [Google Scholar] [CrossRef]
- Nakphaichit, M.; Sobanbua, S.; Siemuang, S.; Vongsangnak, W.; Nakayama, J.; Nitisinprasert, S. Protective effect of Lactobacillus reuteri KUB-AC5 against Salmonella Enteritidis challenge in chickens. Benef. Microbes 2018, 10, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Fonty, G. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae. Reprod. Nutr. Dev. 2001, 41, 57–68. [Google Scholar] [CrossRef] [Green Version]
- De Smet, J.; Wynants, E.; Cos, P.; Van Campenhout, L. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl. Environ. Microbiol. 2018, 84, e02722-17. [Google Scholar] [CrossRef] [Green Version]
- Ijdema, F.; De Smet, J.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol. Ecol. 2022, 98, fiac094. [Google Scholar] [CrossRef]
- Gorrens, E.; Van Moll, L.; Frooninckx, L.; De Smet, J.; Van Campenhout, L. Isolation and identification of dominant bacteria from black soldier fly larvae (Hermetia illucens) envisaging practical applications. Front. Microbiol. 2021, 12, 1110. [Google Scholar] [CrossRef]
- Bruno, D.; Bonelli, M.; De Filippis, F.; Di Lelio, I.; Tettamanti, G.; Casartelli, M.; Ercolini, D.; Caccia, S. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. App. Environ. Microbiol. 2019, 85, e01864-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorrens, E.; De Smet, J.; Vandeweyer, D.; Bossaert, S.; Crauwels, S.; Lievens, B.; Van Campenhout, L. The bacterial communities of black soldier fly larvae (Hermetia illucens) during consecutive, industrial rearing cycles. J. Insects Food Feed 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Khamis, F.M.; Ombura, F.L.O.; Akutse, K.S.; Subramanian, S.; Mohamed, S.A.; Fiaboe, K.K.M.; Saijuntha, W.; Van Loon, J.J.A.; Dicke, M.; Dubois, T.; et al. Insights in the global genetics and gut microbiome of black soldier fly, Hermetia illucens: Implications for animal feed safety control. Front. Microbiol. 2020, 11, 1538. [Google Scholar] [CrossRef] [PubMed]
- Jordan, H.R.; Tomberlin, J.K. Microbial influence on reproduction, conversion, and growth of mass produced insects. Curr. Opin. Insect Sci. 2021, 48, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Savio, C.; Mugo-Kamiri, L.; Upfold, J.K. Bugs in bugs: The role of probiotics and prebiotics in maintenance of health in mass-reared insects. Insects 2022, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Yu, Y.Q.; Tomberlin, J.K.; Cai, M.M.; Zheng, L.Y.; Yu, Z.N. Organic side streams: Using microbes to make substrates more fit for mass producing insects for use as feed. J. Insects Food Feed 2021, 7, 597–604. [Google Scholar] [CrossRef]
- Peguero, D.A.; Moritz, G.; Vandeweyer, D.; Zurbrügg, C.; Mathys, A. A review of pretreatment methods to improve agri-food waste bioconversion by black soldier fly larvae. Front. Sustain. Food Syst. 2022, 5, 549. [Google Scholar] [CrossRef]
- Yu, G.; Cheng, P.; Chen, Y.; Li, Y.; Yang, Z.; Chen, Y.; Tomberlin, J.K. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 2011, 40, 30–35. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Xiao, X.; Mazza, L.; Yu, Y.; Cai, M.; Zheng, L.; Tomberlin, J.K.; Yu, J.; van Huis, A.; Yu, Z.; Fasulo, S.; et al. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Somroo, A.A.; ur Rehman, K.; Zheng, L.; Cai, M.; Xiao, X.; Hu, S.; Mathys, A.; Gold, M.; Yu, Z.; Zhang, J. Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production. Waste Manag. 2019, 86, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; ur Rehman, R.; Somroo, A.A.; Cai, M.; Zheng, L.; Xiao, X.; ur Rehman, A.; Rehman, A.; Tomberlin, J.K.; Yu, Z.; et al. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. J. Environ. Manag. 2019, 237, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Callegari, M.; Jucker, C.; Fusi, M.; Leonardi, M.G.; Daffonchio, D.; Borin, S.; Savoldelli, S.; Crotti, E. Hydrolytic profile of the culturable gut bacterial community associated with Hermetia illucens. Front. Microbiol. 2020, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Hasnol, S.; Lim, J.W.; Wong, C.Y.; Lam, M.K.; Ntwampe, S.K.O. Liminal presence of exo-microbes inoculating coconut endosperm waste to enhance black soldier fly larval protein and lipid. Environ. Sci. Pollut. Res. 2020, 24, 24574–24581. [Google Scholar] [CrossRef]
- Kooienga, E.M.; Baugher, C.; Currin, M.; Tomberlin, J.K.; Jordan, H.R. Effects of bacterial supplementation on black soldier fly growth and development at benchtop and industrial scale. Front. Microbiol. 2020, 11, 587979. [Google Scholar] [CrossRef]
- Franks, K.; Kooienga, E.; Sanders, M.; Pendarvis, K.; Yang, F.; Tomberlin, J.K.; Jordan, H.R. The effect of Rhodococcus rhodochrous supplementation on black soldier fly (Diptera: Stratiomyidae) development, nutrition, and waste conversion. J. Insects Food Feed 2021, 7, 397–408. [Google Scholar] [CrossRef]
- Mazza, L.; Xiao, X.; ur Rehman, K.; Cai, M.; Zhang, D.; Fasulo, S.; Tomberlin, J.K.; Zheng, L.; Soomro, A.A.; Yu, Z.; et al. Management of chicken manure using black soldier fly (Diptera: Stratiomyidae) larvae assisted by companion bacteria. Waste Manag. 2020, 102, 312–318. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Zhang, J.; Zhou, Z.; Xiong, Q. Directional changes in the intestinal bacterial community in black soldier fly (Hermetia illucens) larvae. Animals 2021, 11, 3475. [Google Scholar] [CrossRef]
- Opatovsky, I.; Vitenberg, T.; Jonas-Levi, A.; Gutman, R. Does consumption of baker’s yeast (Saccharomyces cerevisiae) by black soldier fly (Diptera: Stratiomyidae) larvae affect their fatty acid composition? J. Insect Sci. 2021, 21, 15. [Google Scholar] [CrossRef]
- Gold, M.; Fowles, T.; Fernandez-Bayo, J.D.; Miner, L.P.; Zurbrügg, C.; Nansen, C.; Bischel, H.N.; Mathys, A. Effects of rearing system and microbial inoculation on black soldier fly larvae growth and microbiota when reared on agri-food by-products. J. Insects Food Feed 2022, 8, 113–127. [Google Scholar] [CrossRef]
- Li, X.; Mei, C.; Luo, X.; Wulamu, D.; Zhan, S.; Huang, Y. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. Insect Sci. 2022. early view. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhao, S.; Chen, X.; Zhang, J.; Ni, H.; Sun, M.; Lin, H.; Liu, X.; Chen, H.; Yang, S. Bacillus velezensis EEAM 10B strengthens nutrient metabolic process in black soldier fly larvae (Hermetia illucens) via changing gut microbiome and metabolic pathways. Front. Nutr. 2022, 9, 880488. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, Y.; Vilcinskas, A.; Kämpfer, P.; Glaeser, S.P. Isolation of Hermetia illucens larvae core gut microbiota by two different cultivation strategies. Antonie Van Leeuwenhoek 2022, 115, 821–837. [Google Scholar] [CrossRef]
- Klüber, P.; Müller, S.; Schmidt, J.; Zorn, H.; Rühl, M. Isolation of bacterial and fungal microbiota associated with Hermetia illucens larvae reveals novel insights into entomopathogenicity. Microorganisms 2022, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Shelomi, M.; Wu, M.K.; Chen, S.M.; Huang, J.J.; Burke, C.G. Microbes associated with black soldier fly (Diptera: Stratiomyidae) degradation of food waste. Environ. Entomol. 2020, 49, 405–411. [Google Scholar] [CrossRef]
- Tegtmeier, D.; Hurka, S.; Mihajlovic, S.; Bodenschatz, M.; Schlimbach, S.; Vilcinskas, A. Culture-independent and culture-dependent characterization of the black soldier fly gut microbiome reveals a large proportion of culturable bacteria with potential for industrial applications. Microorganisms 2021, 9, 1642. [Google Scholar] [CrossRef]
- Schreven, S.J.J.; De Vries, H.; Hermes, G.D.A.; Zeni, G.; Smidt, H.; Dicke, M.; van Loon, J.J.A. Black soldier fly larvae influence internal and substrate bacterial community composition depending on substrate type and larval density. Appl. Environ. Microbiol. 2022, 88, e00084-22. [Google Scholar] [CrossRef]
- Van Campenhout, L. Fermentation technology applied in the insect value chain: Making a win-win between microbes and insects. J. Insects Food Feed 2021, 7, 377–381. [Google Scholar] [CrossRef]
- Schreven, S.J.J.; De Vries, H.; Hermes, G.D.A.; Smidt, H.; Dicke, M.; van Loon, J.J.A. Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiol. Ecol. 2021, 97, fiab054. [Google Scholar] [CrossRef]
- Bosch, G.; Oonincx, D.G.A.B.; Jordan, H.R.; Zhang, J.; van Loon, J.J.A.; van Huis, A.; Tomberlin, J.K. Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed 2020, 6, 95–109. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (animal by-products regulation). Off. J. Eur. Union 2009, L 300, 1–33.
- Gold, M.; Binggeli, M.; Kurt, F.; de Wouters, T.; Reichlin, M.; Zurbrügg, C.; Matthys, A.; Kreuzer, M. Novel experimental methods for the investigation of Hermetia illucens (Diptera: Stratiomyidae) larvae. J. Insect Sci. 2020, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Sandrock, C.; Leupi, S.; Wohlfahrt, J.; Kaya, C.; Heuel, M.; Terranova, M.; Blanckenhorn, W.U.; Windisch, W.; Kreuzer, M.; Leiber, F. Genotype-by-diet interactions for larval performance and body composition traits in the black soldier fly, Hermetia illucens. Insects 2022, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Barbato, M.; Mapelli, F.; Crotti, E.; Daffonchio, D.; Borin, S. Cultivable hydrocarbon degrading bacteria have low phylogenetic diversity but highly versatile functional potential. Int. Biodeterior. Biodegrad. 2019, 142, 43–51. [Google Scholar] [CrossRef]
- Bader, J.; Albin, A.; Stahl, U. Spore-forming bacteria and their utilisation as probiotics. Benef. Microbes 2012, 3, 67–75. [Google Scholar] [CrossRef]
- Bonelli, M.; Bruno, D.; Caccia, S.; Sgambetterra, G.; Cappellozza, S.; Jucker, C.; Tettamanti, G.; Casartelli, M. Structural and functional characterization of Hermetia illucens larval midgut. Front. Physiol. 2019, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Lecocq, A.; Natsopoulou, M.E.; Berggreen, I.E.; Eilenberg, J.; Heckmann, L.H.L.; Nielsen, H.V.; Stensvold, C.R.; Jensen, A.B. Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. J. Insects Food Feed 2021, 7, 975–986. [Google Scholar] [CrossRef]
- Gorrens, E.; (KU Leuven, Department of Microbial and Molecular Systems (M²S), Research Group for Insect Production and Processing, Geel, Belgium); Lecocq, A.; (University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg, Denmark); De Smet, J.; (KU Leuven, Department of Microbial and Molecular Systems (M²S) Research Group for Insect Production and Processing, Geel, Belgium). 2022. Unpublished work.
- Oonincx, D.G.A.B.; Van Broekhoven, S.; van Huis, A.; Van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.M.; Ma, D.W.L. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis. 2009, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty accid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed Sci. Technol. 2020, 259, 114309. [Google Scholar] [CrossRef]
- Lindberg, L.; Vinnerås, B.; Lalander, C. Process efficiency in relation to enzyme pre-treatment duration in black soldier fly larvae composting. Waste Manag. 2022, 137, 121–127. [Google Scholar] [CrossRef]
- Raise, A.; Dupont, S.; Iaconelli, C.; Caliri, C.; Charriau, A.; Gervais, P.; Chambin, O.; Beney, L. Comparison of two encapsulation processes to protect the commensal gut probiotic bacterium Faecalibacterium prausnitzii from the digestive tract. J. Drug Deliv. Sci. Technol. 2020, 56, 101608. [Google Scholar] [CrossRef]
- De Smet, J.; Vandeweyer, D.; Van Moll, L.; Lachi, D.; Van Campenhout, L. Dynamics of Salmonella inoculated during rearing of black soldier fly larvae (Hermetia illucens). Food Res. Int. 2021, 149, 110692. [Google Scholar] [CrossRef]
- Maukonen, J.; Alakomi, H.; Nohynek, L.; Hallamaa, K.; Leppämäki, S.; Mättö, J.; Saarela, M. Suitability of the fluorescent techniques for the enumeration of probiotic bacteria in commercial non-dairy drinks and in pharmaceutical products. Food Res. Int. 2006, 39, 22–32. [Google Scholar] [CrossRef]
- Thompson, C.R.; Brogan, R.S.; Scheifele, L.Z.; Rivers, D.B. Bacterial interactions with necrophagous flies. Ann. Entomol. Soc. Am. 2013, 106, 799–809. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, H.M.; Koning, C.J.M.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233. [Google Scholar] [CrossRef]
- Chapman, C.M.C.; Gibson, G.R.; Rowland, I. Health benefits of probiotics: Are mixtures more effective than single strains? Eur. J. Nutr. 2011, 50, 1–17. [Google Scholar] [CrossRef]
- Sheth, R.U.; Cabral, V.; Chen, S.P.; Wang, H.H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 2016, 32, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.; Ma, S.; Hu, R.; Tomberlin, J.K.; Yu, C.; Huang, Y.; Zhan, S.; Li, W.; Zheng, L.; Yu, Z.; et al. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environ. Pollut. 2018, 242, 634–642. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Saxena, M.J. Feed additives in animal health. In Nutraceuticals in Veterinary Medicine; Ramesh, C.G., Ajay, S., Rajiv, L., Eds.; Springer: Cham, Switzerland; New York, NY, USA, 2019; pp. 345–362. [Google Scholar] [CrossRef]
- Daisley, B.A.; Pitek, A.P.; Chmiel, J.A.; Al, K.F.; Chernyshova, A.M.; Faragalla, K.M.; Burton, J.P.; Thompson, G.J.; Reid, G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 2020, 14, 476491. [Google Scholar] [CrossRef] [Green Version]
- Maciel-Vergara, G.; Jensen, A.B.; Lecocq, A.; Eilenberg, J. Diseases in edible insect rearing systems. J. Insects Food Feed 2021, 7, 621–638. [Google Scholar] [CrossRef]
- Joosten, L.; Lecocq, A.; Jensen, A.B.; Haenen, O.; Schmitt, E.; Eilenberg, J. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomol. Exp. Appl. 2020, 168, 432–447. [Google Scholar] [CrossRef]
- Lecocq, A.; Joosten, L.; Schmitt, E.; Eilenberg, J.; Jensen, A.B. Hermetia illucens adults are susceptible to infection by the fungus Beauveria bassiana in laboratory experiments. J. Insects Food Feed 2021, 7, 63–68. [Google Scholar] [CrossRef]
- Van Moll, L.; De Smet, J.; Cos, P.; Van Campenhout, L. Microbial symbionts of insects as a source of new antimicrobials: A review. Crit. Rev. Microbiol. 2021, 47, 562–579. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Song, J.; Yang, D.; Liu, W.; Chen, H.; Wu, B.; Qian, P. Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae (Hermetia illucens L. [Diptera: Stratiomyidae]). Arch. Virol. 2019, 167, 2277–2284. [Google Scholar] [CrossRef]
Experimental Set-Up | Way of Inoculation | Results Compared with the Control Group 1 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Probiotic Candidate | Origin of the Probiotic | Substrate before Inoculation | Substrate after Inoculation | Temp. (°C) * | RH (%) * | Larval Age at Inoculation (Days) | # of BSFL per Replicate * | Suspension | Pellet | Single Inoculation | Concentration | Weight of BSFL | Protein Content | Fat Content | Conversion Rate | Duration of the Rearing Cycle | Survival Rate | Growth Rate | Gut Colonization | Reference |
Bacillus subtilis S15 | Larval gut | Artificial grain-based diet | Chicken manure | 27–30 | 80 ± 8 | 4 | 100 | ✓ | ✓ | 6 log cfu/g | + | + | ↔ | [33] | ||||||
Bacillus subtilis S16 | + | + | ↔ | |||||||||||||||||
Bacillus subtilis S19 | + | + | + | |||||||||||||||||
Bacillus natto D1 | Diet fed to BSFL | + | + | ↔ | ||||||||||||||||
Rid-X | Product with microbes and enzymes | Standard colony diet | Mixture of restaurant waste and rice straw | 27 | 70 | 6 | ≈2000 | 0.05 to 0.5% (w/w) | + | + | [34] | |||||||||
Bacillus subtilis | Larval gut | Bran-based diet | Chicken manure | 25–45 | NA | 6 | One million | ✓ | ✓ | 6 log cfu/g | + | + | [35] | |||||||
Lactobacillus buchneri L3-9 | Laboratory strain | Standard fly larvae diet | Soybean curd residue | 27 | 70 | 6 | 1000 | ✓ | ✓ | 6 log cfu/g | + | + | + | + | + | + | [36] | |||
Paenibacillus plymyxa strain KMZ (R1) | Soil | Bran-based diet | Dairy and chicken manure in a 2:3 ratio | 27 | 60–70 | 6 | 1000 | ✓ | ✓ | 6 log cfu/g | + | + | ↔ | + | [37] | |||||
“ZRO2” (R2) | Laboratory strain | + | + | ↔ | + | |||||||||||||||
Bacillus strain (R3) | Pig manure fermentation | + | + | ↔ | + | |||||||||||||||
Bacillus strain (R4) | + | + | ↔ | + | ||||||||||||||||
Bacillus strain (R5) | + | + | ↔ | + | ||||||||||||||||
Bacillus strain (R6) | + | + | + | + | ||||||||||||||||
Bacillus licheniformis HI169 | Larval gut | Nutritionally poor diet composed of apple (1/3), pear (1/3) and orange (1/3) | Nutritionally poor diet composed of apple (1/3), pear (1/3) and orange (1/3) | 25 | 60–65 | 9 | 150 | ✓ | ✓ | ≈7 log cfu/g | + | + | [38] | |||||||
Stenotrophomonas maltophilia HI121 | ↔ | ↔ | ||||||||||||||||||
Combination of the two above | + | ↔ | ||||||||||||||||||
Escherichia coli DH5α | Laboratory strain | + | + | |||||||||||||||||
Rid-X | Product with microbes and enzymes | Fresh coconut endosperm waste medium | Coconut endosperm waste | NA | 60–65 | 6 | 20 | ✓ | 0.02% | − | + | − | + | + | − | [39] | ||||
0.10% | ↔ | + | + | ↔ | ↔ | + | ||||||||||||||
0.50% | − | + | − | + | ↔ | − | ||||||||||||||
2.50% | + | + | ↔ | + | ↔ | + | ||||||||||||||
Bifidobacterium breve | NA | Spent grain diet | Gainesville diet | Room temperature | NA | 11 | 100 | ✓ | ≈6 log cfu/g | − | − | [40] | ||||||||
Arthrobacter AK19 | 300 | ✓ | ≈5 log cfu/g | + | + | + | ||||||||||||||
NA | ≈10,000 | ✓ | ✓ | ≈3 log cfu/g | ↔ | ↔ | + | |||||||||||||
Rhodococcus rhodochorus 21198 | ≈10,000 | ✓ | ✓ | ≈3 log cfu/g | ↔ | ↔ | + | |||||||||||||
Rhodococcus rhodochrous 21198 | NA | Gainesville diet | Gainesville diet | 28 | 60 | 11 | 300 | ✓ | ≈5 log cfu/g | + | + | + | [41] | |||||||
Autoclaved Gainesville diet | + | + | + | |||||||||||||||||
Bacillus subtilis (A) | Larval gut | Wheat bran with 75% water content | Chicken manure | 28 | 60–70 | 6 | 500 2 | ✓ | ✓ | 6 log cfu/g | + | + | [42] | |||||||
Kocuria marina (B) | Egg surface | + | + | |||||||||||||||||
Lysinibacillus boronitolerans (C) | + | ↔ | ||||||||||||||||||
Proteus mirabilis (D) | + | + | ||||||||||||||||||
Micrococcus luteus | + | ↔ | ||||||||||||||||||
Enterococcus faecalis | + | ↔ | ||||||||||||||||||
Sporosarcina koreensis | ↔ | |||||||||||||||||||
Gordonia sihwensis | + | ↔ | ||||||||||||||||||
Enterobacter spp. | ↔ | |||||||||||||||||||
Bacillus subtilis | ↔ | |||||||||||||||||||
Polybacteria community (A; B; C; D) at different ratios | See above | Results vary between the different ratios. | ||||||||||||||||||
Lysinibacillus sphaericus | Larval gut | / | Autoclaved food waste | 28 | 60–70 | Directly after hatching | Starting from 2 g of eggs | ✓ | ✓ | NA | + | [43] | ||||||||
Enterococcus faecalis | ↔ | |||||||||||||||||||
Proteus mirabilis | ↔ | |||||||||||||||||||
Citrobacter freundii | ↔ | |||||||||||||||||||
Pseudocitrobacter faecalis | ↔ | |||||||||||||||||||
Pseudocitrobacter anthropi | ↔ | |||||||||||||||||||
Saccaromyces cerevisiae Meyen ex E.C. Hansen | Apple (55%) and beer malt (15%)-based | Yeast liquid from beer brewery waste | 30 | 30 | Directly after hatching | 1000 | ✓ | NA | + | [44] | ||||||||||
Tomato pomace-derived inoculum | Rearing residue | Poultry feed | Tomato pomace | 28 | NA | To 0.8–1.1 mg DM/larva | ≈200 | ✓ | ✓ | 7.5 log cfu/g DM | − | [45] | ||||||||
White wine pomace-derived inoculum | White wine pomace | 8.0 log cfu/g DM | ↔ | |||||||||||||||||
Providencia sp. | Larval gut | Artificial diet (25% corn meal, 75% wheat bran) | Sterilized artificial diet (25% corn meal, 75% wheat bran) | 28 | 70 | Neonate larvae (newly hatched) | 40 germ-free larvae 2 | ✓ | NA | + | + | + | [46] | |||||||
Citrobacter sp. | + | + | + | |||||||||||||||||
Klebsiella sp. | + | + | + | |||||||||||||||||
Dysgonomonas sp. | + | + | + | |||||||||||||||||
Ochrobactrum sp. | + | + | + | |||||||||||||||||
Proteus sp. | − | − | + | |||||||||||||||||
Bacillus velezensis EEAM 10B | Larval gut | Wheat bran | Food waste mixed with ±10% peanut shell powder | 30 | 70 | 3rd instar | NA | NA | NA | + | + | ↔ | ↔ | + | [47] | |||||
Brain heart infusion medium | Autoclaved food waste | 37 | NA | NA | 30 sterile larvae 2 | NA | NA | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorrens, E.; Lecocq, A.; De Smet, J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023, 11, 245. https://doi.org/10.3390/microorganisms11020245
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms. 2023; 11(2):245. https://doi.org/10.3390/microorganisms11020245
Chicago/Turabian StyleGorrens, Ellen, Antoine Lecocq, and Jeroen De Smet. 2023. "The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps" Microorganisms 11, no. 2: 245. https://doi.org/10.3390/microorganisms11020245
APA StyleGorrens, E., Lecocq, A., & De Smet, J. (2023). The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms, 11(2), 245. https://doi.org/10.3390/microorganisms11020245