Candida spp. DNA Extraction in the Age of Molecular Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
3. Results
3.1. Mechanical Extraction
3.1.1. Bead Beating
3.1.2. Steel-Bullet Beating
3.2. Thermal Extraction
3.3. Enzymatic Extraction
3.4. Chemical Extraction
3.5. Manual vs. Automated Extraction Kits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eggimann, P.; Bille, J.; Marchetti, O. Diagnosis of Invasive Candidiasis in the ICU. Ann. Intensive Care 2011, 1, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hal, S.J.; Marriott, D.J.E.; Chen, S.C.A.; Nguyen, Q.; Sorrell, T.C.; Ellis, D.H.; Slavin, M.A. Australian Candidaemia Study Candidemia Following Solid Organ Transplantation in the Era of Antifungal Prophylaxis: The Australian Experience. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2009, 11, 122–127. [Google Scholar] [CrossRef]
- Ortega, M.; Marco, F.; Soriano, A.; Almela, M.; Martínez, J.A.; López, J.; Pitart, C.; Mensa, J. Candida Species Bloodstream Infection: Epidemiology and Outcome in a Single Institution from 1991 to 2008. J. Hosp. Infect. 2011, 77, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Achkar, J.M.; Fries, B.C. Candida Infections of the Genitourinary Tract. Clin. Microbiol. Rev. 2010, 23, 253–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, N.A.; de Groot, T.; Badali, H.; Abastabar, M.; Chiller, T.M.; Meis, J.F. Potential Fifth Clade of Candida Auris, Iran, 2018. Emerg. Infect. Dis. 2019, 25, 1780–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollef, M.; Micek, S.; Hampton, N.; Doherty, J.A.; Kumar, A. Septic Shock Attributed to Candida Infection: Importance of Empiric Therapy and Source Control. Clin. Infect. Dis. 2012, 54, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Ghanem-Zoubi, N.; Khoury, J.; Arnon, M.; Zorbavel, D.; Geffen, Y.; Paul, M. Risk Factors for Non-Albicans Candidemia Focusing on Prior Antifungal and Immunosuppressive Therapy. Isr. Med. Assoc. J. IMAJ 2019, 21, 303–307. [Google Scholar]
- Pyrgos, V.; Ratanavanich, K.; Donegan, N.; Veis, J.; Walsh, T.J.; Shoham, S. Candida Bloodstream Infections in Hemodialysis Recipients. Med. Mycol. 2009, 47, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Girmenia, C.; Finolezzi, E.; Federico, V.; Santopietro, M.; Perrone, S. Invasive Candida Infections in Patients With Haematological Malignancies and Hematopoietic Stem Cell Transplant Recipients: Current Epidemiology and Therapeutic Options. Mediterr. J. Hematol. Infect. Dis. 2011, 3, e2011013. [Google Scholar] [CrossRef] [Green Version]
- Delaloye, J.; Calandra, T. Invasive Candidiasis as a Cause of Sepsis in the Critically Ill Patient. Virulence 2014, 5, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Martin-Loeches, I.; Antonelli, M.; Cuenca-Estrella, M.; Dimopoulos, G.; Einav, S.; De Waele, J.J.; Garnacho-Montero, J.; Kanj, S.S.; Machado, F.R.; Montravers, P.; et al. ESICM/ESCMID Task Force on Practical Management of Invasive Candidiasis in Critically Ill Patients. Intensive Care Med. 2019, 45, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “Missing 50%” of Invasive Candidiasis: How Nonculture Diagnostics Will Improve Understanding of Disease Spectrum and Transform Patient Care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef]
- Muskett, H.; Shahin, J.; Eyres, G.; Harvey, S.; Rowan, K.; Harrison, D. Risk Factors for Invasive Fungal Disease in Critically Ill Adult Patients: A Systematic Review. Crit. Care 2011, 15, R287. [Google Scholar] [CrossRef] [Green Version]
- Wickes, B.L.; Wiederhold, N.P. Molecular Diagnostics in Medical Mycology. Nat. Commun. 2018, 9, 5135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Beigelman-Aubry, C.; Lamoth, F.; Dunet, V.; Slavin, M.; Richardson, M.D. Diagnosis and Treatment of Invasive Fungal Infections: Looking Ahead. J. Antimicrob. Chemother. 2019, 74, ii27–ii37. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the Empiric Treatment of Candida Bloodstream Infection until Positive Blood Culture Results Are Obtained: A Potential Risk Factor for Hospital Mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.; Robles, J.C.; Causse, M.; Gutiérrez, L.; Cruz Perez, M.; Ferrer, R.; Xercavins, M.; Herrero, E.; Sirvent, E.; Fernández, C.; et al. Polymerase Chain Reaction Versus Blood Culture to Detect Candida Species in High-Risk Patients with Suspected Invasive Candidiasis: The MICAFEM Study. Infect. Dis. Ther. 2019, 8, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Diggle, M.A.; Clarke, S.C. Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples. J. Clin. Microbiol. 2003, 41, 2440–2443. [Google Scholar] [CrossRef] [Green Version]
- Tissari, P.; Zumla, A.; Tarkka, E.; Mero, S.; Savolainen, L.; Vaara, M.; Aittakorpi, A.; Laakso, S.; Lindfors, M.; Piiparinen, H.; et al. Accurate and Rapid Identification of Bacterial Species from Positive Blood Cultures with a DNA-Based Microarray Platform: An Observational Study. Lancet 2010, 375, 224–230. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, M.; Peters, R.P.H.; Catsburg, A.; Rubenjan, A.; Broeke, F.J.; van den Dungen, F.A.M.; van Weissenbruch, M.M.; van Furth, A.M.; Kõressaar, T.; Remm, M.; et al. Development of a Multiplex Real-Time PCR Assay for the Rapid Diagnosis of Neonatal Late Onset Sepsis. J. Microbiol. Methods 2014, 106, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook/current (accessed on 15 January 2023).
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 46, 1813–1821. [Google Scholar] [CrossRef]
- Hage, C.A.; Carmona, E.M.; Epelbaum, O.; Evans, S.E.; Gabe, L.M.; Haydour, Q.; Knox, K.S.; Kolls, J.K.; Murad, M.H.; Wengenack, N.L.; et al. Microbiological Laboratory Testing in the Diagnosis of Fungal Infections in Pulmonary and Critical Care Practice. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019, 200, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, A.L.; Anger, J.T.; Khalique, M.U.; Ackerman, J.E.; Tang, J.; Kim, J.; Underhill, D.M.; Freeman, M.R.; the NIH Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP). Optimization of DNA Extraction from Human Urinary Samples for Mycobiome Community Profiling. PLoS ONE 2019, 14, e0210306. [Google Scholar] [CrossRef] [Green Version]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Sebaa, S.; Boucherit-Otmani, Z.; Courtois, P. Effects of Tyrosol and Farnesol on Candida Albicans Biofilm. Mol. Med. Rep. 2019, 19, 3201–3209. [Google Scholar] [CrossRef] [Green Version]
- Metwally, L.; Fairley, D.J.; Coyle, P.V.; Hay, R.J.; Hedderwick, S.; McCloskey, B.; O’Neill, H.J.; Webb, C.H.; Elbaz, W.; McMullan, R. Improving Molecular Detection of Candida DNA in Whole Blood: Comparison of Seven Fungal DNA Extraction Protocols Using Real-Time PCR. J. Med. Microbiol. 2008, 57, 296–303. [Google Scholar] [CrossRef]
- Hohnadel, M.; Felden, L.; Fijuljanin, D.; Jouette, S.; Chollet, R. A New Ultrasonic High-Throughput Instrument for Rapid DNA Release from Microorganisms. J. Microbiol. Methods 2014, 99, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.M.; Werner, K.E.; Kasai, M.; Francesconi, A.; Chanock, S.J.; Walsh, T.J. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption. J. Clin. Microbiol. 1998, 36, 1625–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danaeifar, M. New Horizons in Developing Cell Lysis Methods: A Review. Biotechnol. Bioeng. 2022, 119, 3007–3021. [Google Scholar] [CrossRef]
- Dettmer, K.; Nürnberger, N.; Kaspar, H.; Gruber, M.A.; Almstetter, M.F.; Oefner, P.J. Metabolite Extraction from Adherently Growing Mammalian Cells for Metabolomics Studies: Optimization of Harvesting and Extraction Protocols. Anal. Bioanal. Chem. 2011, 399, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, Y.; Satoh, K.; Umeda, Y.; Makimura, K. Quantitation of Fungal DNA Contamination in Commercial Zymolyase and Lyticase Used in the Preparation of Fungi. Nippon. Ishinkin Gakkai Zasshi 2009, 50, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Rimek, D.; Garg, A.P.; Haas, W.H.; Kappe, R. Identification of Contaminating Fungal DNA Sequences in Zymolyase. J. Clin. Microbiol. 1999, 37, 830–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, S.; Bartels, A.; Kondakci, M.; Pfeffer, K.; Henrich, B.; Haas, R. Introduction of a Bead Beating Step Improves Fungal DNA Extraction from Selected Patient Specimens. Int. J. Med. Microbiol. 2020, 310, 151443. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Shen, S.; Hou, Y.; Chen, Y.; Wang, T. The Mycobiota of the Human Body: A Spark Can Start a Prairie Fire. Gut Microbes 2020, 11, 655–679. [Google Scholar] [CrossRef]
- Motamedi, M.; Amini, A.; Yazdanpanah, S.; Mahmoodi, M.; Khodadadi, H.; Zalpoor, H. Evaluation of Different DNA Extraction Methods Based on Steel-bullet Beating for Molecular Diagnosis of Onychomycosis. J. Clin. Lab. Anal. 2022, 36, e24657. [Google Scholar] [CrossRef]
- Das, P.; Pandey, P.; Harishankar, A.; Chandy, M.; Bhattacharya, S. A High Yield DNA Extraction Method for Medically Important Candida Species: A Comparison of Manual versus QIAcube-Based Automated System. Indian J. Med. Microbiol. 2016, 34, 533–535. [Google Scholar] [CrossRef]
- Rosenbaum, J.; Usyk, M.; Chen, Z.; Zolnik, C.P.; Jones, H.E.; Waldron, L.; Dowd, J.B.; Thorpe, L.E.; Burk, R.D. Evaluation of Oral Cavity DNA Extraction Methods on Bacterial and Fungal Microbiota. Sci. Rep. 2019, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Menu, E.; Landier, J.; Prudent, E.; Ranque, S.; L’Ollivier, C. Evaluation of 11 DNA Automated Extraction Protocols for the Detection of the 5 Mains Candida Species from Artificially Spiked Blood. J. Fungi 2021, 7, 228. [Google Scholar] [CrossRef] [PubMed]
- Dalla-Costa, L.M.; Morello, L.G.; Conte, D.; Pereira, L.A.; Palmeiro, J.K.; Ambrosio, A.; Cardozo, D.; Krieger, M.A.; Raboni, S.M. Comparison of DNA Extraction Methods Used to Detect Bacterial and Yeast DNA from Spiked Whole Blood by Real-Time PCR. J. Microbiol. Methods 2017, 140, 61–66. [Google Scholar] [CrossRef]
- Lim, D.H.; Jee, H.; Moon, K.C.; Lim, C.S.; Jang, W.S. Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens 2022, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Golbang, N.; Burnie, J.P.; Klapper, P.E.; Bostock, A.; Williamson, P. Sensitive and Universal Method for Microbial DNA Extraction from Blood Products. J. Clin. Pathol. 1996, 49, 861–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; Bos, M.P.; van Meerbergen, B.; Neerken, S.; Catsburg, A.; Dobbelaer, I.; Penterman, R.; Maertens, G.; van de Wiel, P.; Savelkoul, P.; et al. Comparison of Pathogen DNA Isolation Methods from Large Volumes of Whole Blood to Improve Molecular Diagnosis of Bloodstream Infections. PLoS ONE 2013, 8, e72349. [Google Scholar] [CrossRef] [Green Version]
- Löffler, J.; Hebart, H.; Schumacher, U.; Reitze, H.; Einsele, H. Comparison of Different Methods for Extraction of DNA of Fungal Pathogens from Cultures and Blood. J. Clin. Microbiol. 1997, 35, 3311–3312. [Google Scholar] [CrossRef] [Green Version]
- Maaroufi, Y.; Ahariz, N.; Husson, M.; Crokaert, F. Comparison of Different Methods of Isolation of DNA of Commonly Encountered Candida Species and Its Quantitation by Using a Real-Time PCR-Based Assay. J. Clin. Microbiol. 2004, 42, 3159–3163. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Mankotia, S.; Chaubey, B.; Luthra, M.; Singh, R. Role of Biofilm Morphology, Matrix Content and Surface Hydrophobicity in the Biofilm-Forming Capacity of Various Candida Species. J. Med. Microbiol. 2018, 67, 889–892. [Google Scholar] [CrossRef]
- Starke, R.; Jehmlich, N.; Alfaro, T.; Dohnalkova, A.; Capek, P.; Bell, S.L.; Hofmockel, K.S. Incomplete Cell Disruption of Resistant Microbes. Sci. Rep. 2019, 9, 5618. [Google Scholar] [CrossRef] [Green Version]
- Leite, G.M.; Magan, N.; Medina, Á. Comparison of Different Bead-Beating RNA Extraction Strategies: An Optimized Method for Filamentous Fungi. J. Microbiol. Methods 2012, 88, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, J.; Hebart, H.; Brauchle, U.; Schumacher, U.; Einsele, H. Comparison between Plasma and Whole Blood Specimens for Detection of Aspergillus DNA by PCR. J. Clin. Microbiol. 2000, 38, 3830–3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, E.; Ramage, G.; Jones, B.; Warn, P.; Kirkpatrick, W.R.; Patterson, T.F.; Williams, C. Don’t Throw Your Blood Clots Away: Use of Blood Clot May Improve Sensitivity of PCR Diagnosis in Invasive Aspergillosis. J. Clin. Pathol. 2009, 62, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Yoshida-Yamamoto, S.; Nishimura, S.; Okuno, T.; Rakuman, M.; Takii, Y. Efficient DNA Extraction from Nail Clippings Using the Protease Solution from Cucumis Melo. Mol. Biotechnol. 2010, 46, 41–48. [Google Scholar] [CrossRef]
- Miller, D.N.; Bryant, J.E.; Madsen, E.L.; Ghiorse, W.C. Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples. Appl. Environ. Microbiol. 1999, 65, 4715–4724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolano, A.; Stinchi, S.; Preziosi, R.; Bistoni, F.; Allegrucci, M.; Baldelli, F.; Martini, A.; Cardinali, G. Rapid Methods to Extract DNA and RNA from Cryptococcus Neoformans. FEMS Yeast Res. 2001, 1, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, T.; Wang, Y.; Zhang, S.; Lv, Q.; Kong, D.; Jiang, H.; Zheng, Y.; Ren, Y.; Huang, W.; et al. Comparison Analysis of Different DNA Extraction Methods on Suitability for Long-Read Metagenomic Nanopore Sequencing. Front. Cell. Infect. Microbiol. 2022, 12, 820. [Google Scholar] [CrossRef]
- Faggi, E.; Pini, G.; Campisi, E. Use of Magnetic Beads to Extract Fungal DNA. Mycoses 2005, 48, 3–7. [Google Scholar] [CrossRef]
- Petinataud, D.; Berger, S.; Ferdynus, C.; Debourgogne, A.; Contet-Audonneau, N.; Machouart, M. Optimising the Diagnostic Strategy for Onychomycosis from Sample Collection to FUNGAL Identification Evaluation of a Diagnostic Kit for Real-Time PCR. Mycoses 2016, 59, 304–311. [Google Scholar] [CrossRef]
- Hayette, M.-P.; Seidel, L.; Adjetey, C.; Darfouf, R.; Wéry, M.; Boreux, R.; Sacheli, R.; Melin, P.; Arrese, J. Clinical Evaluation of the DermaGenius® Nail Real-Time PCR Assay for the Detection of Dermatophytes and Candida Albicans in Nails. Med. Mycol. 2019, 57, 277–283. [Google Scholar] [CrossRef]
- Hashiyada, M.; Nakayashiki, N.; Funayama, M. Utility Validation of Extraction of Genomic DNA from Hard Tissues, Bone and Nail, Using PrepFilerTM Forensic DNA Extraction Kit. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 172–173. [Google Scholar] [CrossRef]
- Monti, D.; Saccomani, L.; Chetoni, P.; Burgalassi, S.; Tampucci, S.; Mailland, F. Validation of Bovine Hoof Slices as a Model for Infected Human Toenails: In Vitro Ciclopirox Transungual Permeation. Br. J. Dermatol. 2011, 165, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Sahu, S.; Pathak, K. Antifungal Potential of Tolnaftate against Candida Albicans in the Treatment of Onychomycosis: Development of Nail Lacquer and Ex Vivo Characterization. Pharm. Biomed. Res. 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sleven, R.; Lanckacker, E.; Boulet, G.; Delputte, P.; Maes, L.; Cos, P. Development of a Novel in Vitro Onychomycosis Model for the Evaluation of Topical Antifungal Activity. J. Microbiol. Methods 2015, 112, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Walberg, M.; Mørk, C.; Sandven, P.; Jorde, A.T.; Bjørås, M.; Gaustad, P. 18S RDNA Polymerase Chain Reaction and Sequencing in Onychomycosis Diagnostics. Acta Derm. Venereol. 2006, 86, 223. [Google Scholar] [CrossRef] [Green Version]
- Willinger, B.; Obradovic, A.; Selitsch, B.; Beck-Mannagetta, J.; Buzina, W.; Braun, H.; Apfalter, P.; Hirschl, A.M.; Makristathis, A.; Rotter, M. Detection and Identification of Fungi from Fungus Balls of the Maxillary Sinus by Molecular Techniques. J. Clin. Microbiol. 2003, 41, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Rickerts, V.; Khot, P.D.; Ko, D.L.; Fredricks, D.N. Enhanced Fungal DNA-Extraction from Formalin-Fixed, Paraffin-Embedded Tissue Specimens by Application of Thermal Energy. Med. Mycol. 2012, 50, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Gosiewski, T.; Salamon, D.; Szopa, M.; Sroka, A.; Malecki, M.T.; Bulanda, M. Quantitative Evaluation of Fungi of the Genus Candida in the Feces of Adult Patients with Type 1 and 2 Diabetes—A Pilot Study. Gut Pathog. 2014, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.M.; Jabra-Rizk, M.A.; Scheper, M.A.; Leid, J.G.; Costerton, J.W.; Shirtliff, M.E. Microbial Interactions and Differential Protein Expression in Staphylococcus Aureus–Candida Albicans Dual-Species Biofilms. FEMS Immunol. Med. Microbiol. 2010, 59, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Erstad, B.L.; Petty, W.; Nix, D.E. Time to Positive Culture and Identification for Candida Blood Stream Infections. Diagn. Microbiol. Infect. Dis. 2009, 64, 402–407. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clin. Microbiol. Rev. 2014, 27, 490–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phoompoung, P.; Chayakulkeeree, M. Recent Progress in the Diagnosis of Pathogenic Candida Species in Blood Culture. Mycopathologia 2016, 181, 363–369. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Diagnosing Invasive Candidiasis. J. Clin. Microbiol. 2018, 56, e01909-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida Albicans—Biology, Molecular Characterization, Pathogenicity, and Advances in Diagnosis and Control—An Update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef]
- Pilo, P.; Tiley, A.M.M.; Lawless, C.; Karki, S.J.; Burke, J.; Feechan, A. A Rapid Fungal DNA Extraction Method Suitable for PCR Screening Fungal Mutants, Infected Plant Tissue and Spore Trap Samples. Physiol. Mol. Plant Pathol. 2022, 117, 101758. [Google Scholar] [CrossRef]
- Gow, N.A.; Hube, B. Importance of the Candida Albicans Cell Wall during Commensalism and Infection. Curr. Opin. Microbiol. 2012, 15, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Sorgo, A.G.; Heilmann, C.J.; Brul, S.; de Koster, C.G.; Klis, F.M. Beyond the Wall: Candida Albicans Secret(e)s to Survive. FEMS Microbiol. Lett. 2013, 338, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Herrera, J.; Victoria Elorza, M.; Valentín, E.; Sentandreu, R. Molecular Organization of the Cell Wall of Candida Albicans and Its Relation to Pathogenicity. FEMS Yeast Res. 2006, 6, 14–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.-Y.; Cao, Y.-B.; Xu, Z.; Ying, K.; Li, Y.; Xie, Y.; Zhu, Z.-Y.; Chen, W.-S.; Jiang, Y.-Y. CDNA Microarray Analysis of Differential Gene Expression in Candida Albicans Biofilm Exposed to Farnesol. Antimicrob. Agents Chemother. 2005, 49, 584–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domer, J.E. Candida Cell Wall Mannan: A Polysaccharide with Diverse Immunologic Properties. Crit. Rev. Microbiol. 1989, 17, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.A.; Ahmad, A. Candida Auris—The Growing Menace to Global Health. Mycoses 2019, 62, 620–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keighley, C.; Garnham, K.; Harch, S.A.J.; Robertson, M.; Chaw, K.; Teng, J.C.; Chen, S.C.-A. Candida Auris: Diagnostic Challenges and Emerging Opportunities for the Clinical Microbiology Laboratory. Curr. Fungal Infect. Rep. 2021, 15, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Messer, S.A.; Moet, G.J.; Jones, R.N.; Castanheira, M. Candida Bloodstream Infections: Comparison of Species Distribution and Resistance to Echinocandin and Azole Antifungal Agents in Intensive Care Unit (ICU) and Non-ICU Settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int. J. Antimicrob. Agents 2011, 38, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.S.; Farmakiotis, D.; Jiang, Y.; Tarrand, J.J.; Kontoyiannis, D.P. Uncommon Candida Species Fungemia among Cancer Patients, Houston, Texas, USA. Emerg. Infect. Dis. 2015, 21, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Sipsas, N.V.; Lewis, R.E.; Tarrand, J.; Hachem, R.; Rolston, K.V.; Raad, I.I.; Kontoyiannis, D.P. Candidemia in Patients with Hematologic Malignancies in the Era of New Antifungal Agents (2001–2007): Stable Incidence but Changing Epidemiology of a Still Frequently Lethal Infection. Cancer 2009, 115, 4745–4752. [Google Scholar] [CrossRef]
- Marchetti, O.; Bille, J.; Fluckiger, U.; Eggimann, P.; Ruef, C.; Garbino, J.; Calandra, T.; Glauser, M.-P.; Täuber, M.G.; Pittet, D.; et al. Epidemiology of Candidemia in Swiss Tertiary Care Hospitals: Secular Trends, 1991-2000. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 38, 311–320. [Google Scholar] [CrossRef]
- Criseo, G.; Scordino, F.; Romeo, O. Current Methods for Identifying Clinically Important Cryptic Candida Species. J. Microbiol. Methods 2015, 111, 50–56. [Google Scholar] [CrossRef]
- Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Suda, K.J.; Turpin, R.S.; Bearden, D.T. Time to Initiation of Fluconazole Therapy Impacts Mortality in Patients with Candidemia: A Multi-Institutional Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 43, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.; Meltzer, M.I.; Plikaytis, B.D.; Sofair, A.N.; Huie-White, S.; Wilcox, S.; Harrison, L.H.; Seaberg, E.C.; Hajjeh, R.A.; Teutsch, S.M. Excess Mortality, Hospital Stay, and Cost Due to Candidemia: A Case-Control Study Using Data from Population-Based Candidemia Surveillance. Infect. Control Hosp. Epidemiol. 2005, 26, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Delavy, M.; Dos Santos, A.R.; Heiman, C.M.; Coste, A.T. Investigating Antifungal Susceptibility in Candida Species With MALDI-TOF MS-Based Assays. Front. Cell. Infect. Microbiol. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Brown, C.S. Candida Auris: A Review of the Literature. Clin. Microbiol. Rev. 2017, 31, e00029-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, E.S.; Hanson, K.E. Candida Auris: An Emerging Fungal Pathogen. J. Clin. Microbiol. 2018, 56, e01588-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichard, U.; Margraf, S.; Hube, B.; Rüchel, R. A Method for Recovery of Candida Albicans DNA from Larger Blood Samples and Its Detection by Polymerase Chain Reaction on Proteinase Genes. Mycoses 1997, 40, 249–253. [Google Scholar] [CrossRef] [PubMed]
Kit’s Description | Manufacturer | Sample Type | Sample Volume | Pretreatment Method | Extracted DNA (ng/μL) | Species | Reference |
---|---|---|---|---|---|---|---|
Automatic kits | |||||||
IndiSpin Pathogen Kit | Indical Bioscience | inoculated urine * | 200 μL | - | 22.8 | C. albicans | [19] |
IndiSpin Pathogen Kit | Indical Bioscience | inoculated urine * | 200 μL | glass beads | 9.2 | C. albicans | [19] |
IndiSpin Pathogen Kit | Indical Bioscience | inoculated urine * | 200 μL | LB | 39.2 | C. albicans | [19] |
Manual kits | |||||||
In-house protocol | urine ** | 1 mL | LyS | 6 | Candida spp. | [27] | |
In-house protocol | urine ** | 1 mL | LyT | 8 | Candida spp. | [27] | |
In-house protocol | urine ** | 1 mL | LyS LyT | 14 | Candida spp. | [27] | |
In-house protocol | inoculated hooves *** | 20 mg | steel bullet LB phenol chloroform | 244 ± 31.27 | C. albicans | [40] | |
In-house protocol | inoculated hooves *** | 20 mg | freezing steel bullet LB phenol chloroform | 366 ± 49.69 | C. albicans | [40] | |
In-house protocol | inoculated hooves *** | 20 mg | steel bullet LB commercial kit | 169.2 ± 27.94 | C. albicans | [40] | |
In-house protocol | inoculated hooves *** | 20 mg | bead beating LB phenol chloroform | 117 ± 32.48 | C. albicans | [40] | |
QIAamp DNA mini kit | Qiagen | mouth rinse **** | 1 mL | - | 30 | Candida spp. | [42] |
QIAamp DNA mini kit | Qiagen | mouth rinse **** | 10 µL | LyT PK | 15 | Candida spp. | [42] |
QIAamp DNA mini kit | Qiagen | mouth rinse **** | 10 µL | LyT PK silica beads | 10 | Candida spp. | [42] |
In-house protocol | mouth rinse **** | 10 µL | PK SDS phenol chloroform | 18 | Candida spp. | [42] |
Kit’s Description | Manufacturer | Whole Blood Specimens Volume | Pretreatment Method | Detection Limit | Species | Reference |
---|---|---|---|---|---|---|
Automatic kits | ||||||
EZ1TM DNA Tissue Kit * | Qiagen | 200 μL | - | 1400 ng/μL | C.glabrata | [38] |
EZ1TM DNA Tissue Kit * | Qiagen | 200 μL | N2 | 570 ng/μL | C.glabrata | [38] |
NucliSENSTM EasyMAGTM * | Fisher Scientific | 200 µL | CB LB | 10 CFU/mL Ct < 20 | C. albicans C.glabrata C.parapsilosis C.tropicalis C. krusei | [43] |
EZ1TM DNA Blood 200 µL Kit * | Qiagen | 200 µL | - | 106 CFU/mL | [43] | |
EZ1TM DNA Blood 200 µL Kit * | Qiagen | 200 µL | CB LB | 10 CFU/mL Ct < 20 | [43] | |
EZ1TM DNA Tissue Kit * | Qiagen | 190 µL | LyT | 10 CFU/mL Ct < 20 | [43] | |
EZ1TM DNA Tissue Kit * | Qiagen | 100μL−1 mL | - | 103 CFU/mL | C. albicans | [44] |
EZ1TM DNA Tissue Kit * | Qiagen | 100μL−1 mL | TTE LyS LyT | 102 CFU/mL | C. albicans | [44] |
QIAampTM 96DNA QIAcube HT kit * | Qiagen | 200 μL | - | 106 CFU/mL | C. albicans C.glabrata C.parapsilosis C.tropicalis C. krusei | [43] |
Macherey-Nagel™ Pathogène NucleoMag™ * | BioMérieux | 150 μL | - | 106 CFU/mL | [43] | |
Mag-BindTM Viral DNA/RNA kit * | Omega Bio-tek | 200 μL | - | 106 CFU/mL | [43] | |
MagMAX™ Viral/ PathogenNucleic Acid Isolation Kit * | Applied Biosystems MGISP | 400 μL | - | 106 CFU/mL | [43] | |
Chemagic Viral DNA/RNA 300 kit H96 * | PerkinElmer | 200 μL | - | 106 CFU/mL | [43] | |
Virus DNA/RNA Extraction Kit * | MGI | 200 μL | - | 106 CFU/mL | [43] | |
BioextractTM SuperballTM kit * | Biosellal | 200 μL | - | 106 CFU/mL | [43] | |
Maxwell 16 Cell LEV DNA Purification Kit * | Promega Co. | 100μL−1 mL | - | 102 CFU/mL | C. albicans | [44] |
Maxwell 16 Cell LEV DNA Purification Kit * | Promega Co. | 100μL−1 mL | TTE LyS LyT | 102 CFU/mL | C. albicans | [44] |
Maxwell 16 Blood DNA Purification Kit * | Promega Co. | 100μL−1 mL | - | 106 CFU/mL | C. albicans | [44] |
Maxwell 16 Blood DNA Purification Kit * | Promega Co. | 100μL−1 mL | TTE LyS LyT | 102 CFU/mL | C. albicans | [44] |
Manual kits | ||||||
DNeasy Blood and Tissue * | Qiagen | 100μL−1 mL | - | Not detected | C. albicans | [44] |
DNeasy Blood and Tissue * | Qiagen | 100μL−1 mL | TTE Ammonium chloride LyS LyT Bead Beating | 102 CFU/mL | C. albicans | [44] |
QIAamp DNA Blood Min i * | Qiagen | 100μL−1 mL | - | 106 CFU/mL | C. albicans | [44] |
QIAamp DNA Blood Mini * | Qiagen | 100μL−1 mL | LyS LyT Bead Beating | 102 CFU/mL | C. albicans | [44] |
PureLink Genomic DNA Mini * | Invitrogen Co | 100μL−1 mL | - | 106 CFU/mL | C. albicans | [44] |
PureLink Genomic DNA Mini * | Invitrogen Co | 100μL−1 mL | LyS LyT | 106 CFU/mL | C. albicans | [44] |
High Pure PCR Template Preparation * | Roche Inc. | 100μL−1 mL | - | 106 CFU/mL | C. albicans | [44] |
High Pure PCR Template Preparation * | Roche Inc. | 100μL−1 mL | LyS LyT | 103 CFU/mL | C. albicans | [44] |
UMD-Universal CE IVD * | Molzym GmbH & Co. | 100μL−1 mL | - | 101 CFU/mL | C. albicans | [44] |
QIAamp DNA mini kit * | Qiagen | 2 µL | - | < 10 ng/μL | Candida spp.: C. albicans C. glabrata C. parapsilosis C. tropicalis C. famata C. krusei C. dubliniensis C. haemulonii | [41] |
QIAamp DNA mini kit * | Qiagen | 2 µL | SDS β-mercaptoethanol | 20 ng/μL | [41] | |
QIAamp DNA mini kit * | Qiagen | 2 µL | glass beads | 198 ± 18.9 ng/μL | [41] | |
Chelex-100/boiling | Not commercial | 200 μL | - | 104 CFU/mL | C. albicans | [45] |
In-house protocol * | Not commercial | 50–100 µL | guanidinium thiocyanate acid PK | 260 CFU/mL (whole blood) 200 CFU/mL (serum) | C. albicans | [46] |
QIAamp DNA Blood Mini * | Qiagen | 1 mL | Polaris (Biocartis) enrichement LB | 1 CFU/mL Ct < 35 | C. albicans | [47] |
QIAamp DNA Blood Mini * | Qiagen | 5 mL | Polaris (Biocartis) enrichement LB | 1 CFU/mL Ct < 35 | C. albicans | [47] |
In-house protocol ** | - | 3 mL | TTE SDS potasium acetate centrifugation cold ethanol | 1–10 CFU/mL | C. albicans | [48] |
GeneReleaser ** | Eurogentec | 3 mL | LB SDS TTE β-mercaptoethanol | 1–10 CFU/mL | C. albicans | [48] |
QIAamp Tissue ** | Qiagen | 3 mL | LB SDS TTE β-mercaptoethanol | 10 CFU/mL | C. albicans | [48] |
PureGene D 6000 ** | Gentra | 3 mL | LB SDS TTE β-mercaptoethanol | 102 CFU/mL | C. albicans | [48] |
DNAzol ** | Sigma | 3 mL | LB SDS TTE β-mercaptoethanol | 103 CFU/mL | C. albicans | [48] |
PKPC | Not commercial | 400 μL | PK PC TTE | 103 CFU/mL | Candida spp. | [49] |
HLGT | Not commercial | 400 μL | guanidine thiocyanate acid heat lysis | 10 CFU/mL | Candida spp. | [49] |
QIAamp DNA Blood * | Qiagen | 400 μL | - | 10 CFU/mL | Candida spp. | [49] |
High Pure PCR Template Preparation * | Roche Inc. | 400 μL | - | 102 CFU/mL | Candida spp. | [49] |
DNAzol * | Sigma | 400 μL | - | 104 CFU/mL | Candida spp. | [49] |
QIAamp DNA mini kit * | Qiagen | 1 mL | LyT | 96 ± 21 | C. albicans | [31] |
QIAamp DNA mini kit * | Qiagen | 1 mL | glass beads | 89 ± 44 | C. albicans | [31] |
MasterPure yeast DNA purification kit * | Epicentre | 1 mL | TTE | 215 ± 109 | C. albicans | [31] |
BAGH * | Not commercial | 1 mL | benzyl alcohol guanidine hydrochloride TTE | 33 ± 42 | C. albicans | [31] |
Dr GenTle (gene trapping by liquid extraction) * | Takara Bio | 1 mL | TTE | 36 ± 18 | C. albicans | [31] |
yeast DNA extraction reagent (Y-DER) * | Pierce Biotechnology | 1 mL | TTE | 23 ± 10 | C. albicans | [31] |
YeaStar genomic DNA kit * | Zymo Research | 1 mL | TTE | 11 ± 4 | C. albicans | [31] |
Methods | Advantages | Limitations |
---|---|---|
Bead Beating |
|
|
Ultrasonication |
|
|
Steel Bullet Beating |
|
|
High-Speed Cell Disruption |
|
|
Method no. | Extraction Method | Purification Method | Extraction Time (min) | Detection Limit Extracted DNA (ng/μL) |
---|---|---|---|---|
1 | Steel bullet + lysis buffer | phenol-chloroform | 5 | 244 ± 31.27 |
2 | Freezing + Steel bullet + lysis buffer | phenol-chloroform | 60 | 366 ± 49.69 |
3 | Steel bullet + lysis buffer | commercial kit (Yekta Tajhiz Azma, Iran) | 5 | 169.2 ± 27.94 |
Control | Bead beating + lysis buffer | phenol-chloroform | 5 | 117 ± 32.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codreanu, S.I.; Ciurea, C.N. Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms 2023, 11, 818. https://doi.org/10.3390/microorganisms11040818
Codreanu SI, Ciurea CN. Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms. 2023; 11(4):818. https://doi.org/10.3390/microorganisms11040818
Chicago/Turabian StyleCodreanu, Smaranda Ioana, and Cristina Nicoleta Ciurea. 2023. "Candida spp. DNA Extraction in the Age of Molecular Diagnosis" Microorganisms 11, no. 4: 818. https://doi.org/10.3390/microorganisms11040818
APA StyleCodreanu, S. I., & Ciurea, C. N. (2023). Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms, 11(4), 818. https://doi.org/10.3390/microorganisms11040818