Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Diets
2.2. Fish Management
2.3. Sampling
2.4. Calculations
2.5. Proximate Composition
2.6. Enzyme Activity Analysis
2.7. Real-Time Quantitative PCR Assay
2.8. Mid-Gut Histological Observation
2.9. Gut Microflora
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Digestive Enzyme Activities
3.3. Gut Morphology
3.4. Liver Antioxidant Capacity
3.5. Liver Immune Function
3.6. Relative mRNA Expression in the Liver
3.7. Gut Microbiota
3.7.1. Intestine Microbial Diversity
3.7.2. Intestine Microbial Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Wu, L.N.; Chen, J.F.; Wu, X.; Xia, J.H.; Meng, Z.N.; Liu, X.C.; Lin, H.R. Whole-genome sequencing of leopard coral grouper (Plectropomus leopardus) and exploration of regulation mechanism of skin color and adaptive evolution. Zool. Res. 2020, 41, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Zhu, X.; Tian, C.; Jiang, M.; Huang, Y.; Li, G.; Zhu, C. LncRNA–miRNA–mRNA ceRNA network of different body colors in Plectropomus leopardus. Front. Mar. Sci. 2023, 10, 1170762. [Google Scholar] [CrossRef]
- Hao, X.; Lin, Z.; Ma, Z.; Yang, Y.; Zhou, C.; Hu, J.; Yu, W.; Lin, H. Effect of Dietary β-Glucan on Growth Performance, Antioxidant Responses, and Immunological Parameters of Coral Trout (Plectropomus leopardus). Fishes 2024, 9, 298. [Google Scholar] [CrossRef]
- Yu, W.; Wen, G.; Lin, H.; Yang, Y.; Huang, X.; Zhou, C.; Zhang, Z.; Duan, Y.; Huang, Z.; Li, T. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of Coral trout Plectropomus leopardus (Lacepede, 1802). Fish Shellfish Immunol. 2018, 74, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Boti, V.; Toli, V.; Efthymiou, C.; Albanis, T. Screening of Commonly Used Antibiotics in Fresh and Saltwater Samples Impacted by Aquacultures: Analytical Methodology, Occurrence and Environmental Risk Assessment. Sustainability 2023, 15, 9199. [Google Scholar] [CrossRef]
- Lieke, T.; Meinelt, T.; Hoseinifar, S.H.; Pan, B.; Straus, D.L.; Steinberg, C.E.W. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 2019, 12, 943–965. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, Y.; Xu, N.; Ding, T.; Cui, K.; Chen, Q.; Zhang, J.; Fang, W.; Mai, K.; Ai, Q. Effects of dietary Astragalus polysaccharides (APS) on survival, growth performance, activities of digestive enzyme, antioxidant responses and intestinal development of large yellow croaker (Larimichthys crocea) larvae. Aquaculture 2020, 517, 734752. [Google Scholar] [CrossRef]
- Mo, W.Y.; Lun, C.H.I.; Choi, W.M.; Man, Y.B.; Wong, M.H. Enhancing growth and non-specific immunity of grass carp and Nile tilapia by incorporating Chinese herbs (Astragalus membranaceus and Lycium barbarum) into food waste based pellets. Environ. Pollut. 2016, 219, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Feng, Z.; Zhang, Y.; Zhu, W. Regulation of dietary astragalus polysaccharide (APS) supplementation on the non-specific immune response and intestinal microbiota of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2019, 94, 517–524. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front. Pharmcol. 2024, 15, 1449101. [Google Scholar] [CrossRef]
- Li, S.P.; Zhao, X.J.; Wang, J.Y. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks. Poult. Sci. 2009, 88, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, K.; Dai, L.; Hou, A.; Meng, P.; Ma, J. Investigating the protective effects of Astragalus polysaccharides on cyclophosphamide-induced bone marrow suppression in mice and bone mesenchymal stem cells. Mol. Immunol. 2024, 171, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ji, H.; Dong, X.; Feng, Y.; Liu, A. Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways. Int. J. Biol. Macromol. 2019, 126, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, X.; Zhou, H.; Mai, K.; He, G. Dietary Astragalus polysaccharides ameliorates the growth performance, antioxidant capacity and immune responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 99, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Jiang, Y.; Chen, Y.J.; Luo, L.; Doolgindachbaporn, S.; Yuangsoi, B. Effects of Astragalus polysaccharides (APS) and chitooligosaccharides (COS) on growth, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 2017, 70, 40–47. [Google Scholar] [CrossRef]
- Pu, Y.; Wu, S. The growth performance, body composition and nonspecific immunity of white shrimps (Litopenaeus vannamei) affected by dietary Astragalus membranaceus polysaccharide. Int. J. Biol. Macromol. 2022, 209, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, X.; Zhang, Y.; Xiao, T.; Zhao, Y.; Wang, H. Astragalus polysaccharide improves the growth, meat quality, antioxidant capacity and bacterial resistance of Furong crucian carp (Furong carp♀ x red crucian carp♂). Int. J. Biol. Macromol. 2023, 244, 124999. [Google Scholar] [CrossRef]
- Wu, S. Dietary Astragalus membranaceus polysaccharide ameliorates the growth performance and innate immunity of juvenile crucian carp (Carassius auratus). Int. J. Biol. Macromol. 2020, 149, 877–881. [Google Scholar] [CrossRef]
- Shi, X.; Wu, C.; Ma, H.; Liu, J.; Fu, C.; Zhou, R.; Jiang, Y.; Zhang, R. Exploring the effects of astragalus polysaccharide food supplementation on growth performance, immunity, antioxidant capacity, and intestinal microflora in Chinese mitten crabs. Aquac. Rep. 2024, 34, 101908. [Google Scholar] [CrossRef]
- Wei, G.; Cai, S.; Wu, Y.; Ma, S.; Huang, Y. Immune effect of Vibrio harveyi formalin-killed cells vaccine combined with chitosan oligosaccharide and astragalus polysaccharides in ♀Epinephelus fuscoguttatus x ♂symbol Epinephelus lanceolatus. Fish Shellfish Immunol. 2020, 98, 186–192. [Google Scholar] [CrossRef]
- Zahran, E.; Risha, E.; Abdelhamid, F.; Mahgoub, H.A.; Ibrahim, T. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2014, 38, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Jia, Y.; Zhang, Z.; Wu, W.; Wu, Z.; Chi, M.; Zhao, Q.; Li, E. The effects of Chinese herbal feed additives on physiological health and detoxification ability in the red claw crayfish, Cherax quadricarinatus, and evaluation of their safety. Aquaculture 2023, 569, 739394. [Google Scholar] [CrossRef]
- Zhu, X.M.; Liu, X.Y.; Xia, C.G.; Li, M.Y.; Niu, X.T.; Wang, G.Q.; Zhang, D.M. Effects of dietary Astragalus Propinquus Schischkin polysaccharides on growth performance, immunological parameters, antioxidants responses and inflammation-related gene expression in Channa argus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 249, 109121. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Lu, Z.; Yang, M.; Li, F.; Zhan, F.; Zhao, L.; Li, Y.; Li, Q.; Li, J.; Li, J.; et al. Astragalus polysaccharides mediate the immune response and intestinal microbiota in grass carp (Ctenopharyngodon idellus). Aquaculture 2021, 534, 736205. [Google Scholar] [CrossRef]
- Qiao, Y.; Liu, C.; Guo, Y.; Zhang, W.; Guo, W.; Oleksandr, K.; Wang, Z. Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult. Sci. 2022, 101, 101905. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.; Zhou, Q.; Huang, X.; Huang, Z.; Li, T.; Wu, Q.; Zhou, C.; Ma, Z.; Lin, H. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer. Int. J. Biol. Macromol. 2022, 207, 850–858. [Google Scholar] [CrossRef]
- Yu, W.; Lin, H.; Yang, Y.; Zhou, Q.; Chen, H.; Huang, X.; Zhou, C.; Huang, Z.; Li, T. Effects of supplemental dietary Haematococcus pluvialison growth performance, antioxidant capacity, immune responses and resistance to Vibrio harveyi challenge of spotted sea bass Lateolabrax maculatus. Aquac. Nutr. 2020, 27, 355–365. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis, 19th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Xie, J.; Niu, J. Evaluation of four macro-algae on growth performance, anti-oxidant capacity and non-specific immunity in golden pompano (Trachinotus ovatus). Aquaculture 2022, 548, 737690. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Q.; Wang, A.; Liu, Y.; Teame, T.; Ran, C.; Yang, Y.; He, S.; Zhou, W.; Olsen, R.E.; et al. Effects of dietary sodium acetate on food intake, weight gain, intestinal digestive enzyme activities, energy metabolism and gut microbiota in cultured fish: Zebrafish as a model. Aquaculture 2020, 523, 735188. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, H.; Qin, C.; Ma, L.; Bi, X.; Song, T.; Sun, X.; Sun, J. Astragalus polysaccharides, cinnamaldehyde and their complexes affected growth, physicochemical parameters, histomorphology and flesh quality of Largemouth bass (Micropterus salmoides). Aquac. Rep. 2024, 35, 101989. [Google Scholar] [CrossRef]
- Sun, S.; Bian, C.; Zhou, N.; Shen, Z.; Yu, M. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: Insights from the brain-gut axis. Int. J. Biol. Macromol. 2023, 243, 125158. [Google Scholar] [CrossRef]
- Huang, Z.; Ye, Y.; Xu, A.; Li, Z. Effects of Astragalus membranaceus Polysaccharides on Growth Performance, Physiological and Biochemical Parameters, and Expression of Genes Related to Lipid Metabolism of Spotted Sea Bass, Lateolabrax maculatus. Aquac. Nutr. 2023, 2023, 6191330. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wen, H.; Jiang, M.; Wu, F.; Tian, J.; Lu, X.; Xiao, J.; Liu, W. Effects of ferulic acid on intestinal enzyme activities, morphology, microbiome composition of genetically improved farmed tilapia (Oreochromis niloticus) fed oxidized fish oil. Aquaculture 2020, 528, 735543. [Google Scholar] [CrossRef]
- Li, Y.; Ran, C.; Wei, K.; Xie, Y.; Xie, M.; Zhou, W.; Yang, Y.; Zhang, Z.; Lv, H.; Ma, X.; et al. The effect of Astragalus polysaccharide on growth, gut and liver health, and anti-viral immunity of zebrafish. Aquaculture 2021, 540, 736677. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, W.N.; Wang, L.J.; Liu, Y.F.; Wang, A.L. Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 36–41. [Google Scholar] [CrossRef]
- Li, L.; Wei, X.F.; Yang, Z.Y.; Zhu, R.; Li, D.L.; Shang, G.J.; Wang, H.T.; Meng, S.T.; Wang, Y.T.; Liu, S.Y.; et al. Alleviative effect of poly-β-hydroxybutyrate on lipopolysaccharide-induced oxidative stress, inflammation and cell apoptosis in Cyprinus carpio. Int. J. Biol. Macromol. 2023, 253, 126784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, M.; Cheng, A.; Hao, E.; Huang, X.; Chen, X. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2020, 100, 126–136. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.; Chen, H.; Zhou, Q.; Zhang, Y.; Huang, X.; Huang, Z.; Li, T.; Zhou, C.; Ma, Z.; et al. Effects of dietary chitosan on the growth, health status and disease resistance of golden pompano (Trachinotus ovatus). Carbohydr. Polym. 2023, 300, 120237. [Google Scholar] [CrossRef]
- Zhu, X.; Hao, R.; Zhang, J.; Tian, C.; Hong, Y.; Zhu, C.; Li, G. Improved growth performance, digestive ability, antioxidant capacity, immunity and Vibrio harveyi resistance in coral trout (Plectropomus leopardus) with dietary vitamin C. Aquac. Rep. 2022, 24, 101111. [Google Scholar] [CrossRef]
- Luo, L.; Meng, X.; Wang, S.; Zhang, R.; Guo, K.; Zhao, Z. Effects of dietary ginger (Zingiber officinale) polysaccharide on the growth, antioxidant, immunity response, intestinal microbiota, and disease resistance to Aeromonas hydrophila in crucian carp (Carassius auratus). Int. J. Biol. Macromol. 2024, 275, 133711. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquac. Int. 2009, 18, 403–414. [Google Scholar] [CrossRef]
- Lin, Z.; Pan, L.; Xie, R.; Li, L.; Wen, J.; Zhou, X.; Dong, X.; Xie, S.; Tan, B.; Liu, H. Effects of dietary artemisinin on growth performance, digestive enzyme activity, intestinal microbiota, antioxidant capacity and immune biomarkers of Coral trout (Plectropomus leopardus). Aquac. Rep. 2023, 29, 101525. [Google Scholar] [CrossRef]
- Paimeeka, S.; Tangsongcharoen, C.; Lertwanakarn, T.; Setthawong, P.; Bunkhean, A.; Tangwattanachuleeporn, M.; Surachetpong, W. Tilapia lake virus infection disrupts the gut microbiota of red hybrid tilapia (Oreochromis spp.). Aquaculture 2024, 586, 740752. [Google Scholar] [CrossRef]
- Mekuchi, M.; Asakura, T.; Sakata, K.; Yamaguchi, T.; Teruya, K.; Kikuchi, J. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE 2018, 13, e0197256. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Zhou, X.M.; Zhou, Y.L.; Kuang, W.M.; Chen, Y.J.; Luo, L.; Dai, F.Y. Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish Shellfish Immunol. 2020, 103, 135–142. [Google Scholar] [CrossRef]
- Shi, H.-T.; Zhao, S.-Z.; Wang, K.-L.; Fan, M.-X.; Han, Y.-Q.; Wang, H.-L. Effects of dietary Astragalus Membranaceus supplementation on growth performance, and intestinal morphology, microbiota and metabolism in common carp (Cyprinus carpio). Aquac. Rep. 2022, 22, 100955. [Google Scholar] [CrossRef]
- Smriga, S.; Sandin, S.A.; Azam, F. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol. Ecol. 2010, 73, 31–42. [Google Scholar] [CrossRef]
- Macias, L.; Mercado, V.; Olmos, J. Assessment of Bacillus species capacity to protect Nile tilapia from A. hydrophila infection and improve growth performance. Front. Cell. Infect. Microbiol. 2024, 14, 1354736. [Google Scholar] [CrossRef]
- Li, Z.; Du, Q.; Jiao, T.; Zhu, Z.; Wan, X.; Ju, C.; Liu, H.; Li, Q. Effects of probiotic supplementary bioflocs (Rhodospirillum rubrum, Bacillus subtilis, Providencia rettgeri) on growth, immunity, and water quality in cultures of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2024, 591, 741141. [Google Scholar] [CrossRef]
- Lin, H.; Tan, B.; Yang, Q. The Effect of Glycerol Monolaurate on Intestinal Health and Disease Resistance in Cage-Farmed Juvenile Pompano Trachinotus ovatus. Aquac. Nutr. 2023, 2023, 8580240. [Google Scholar] [CrossRef]
Parameters | Diets (APS %) | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | |
IBW (g) | 18.61 ± 0.11 | 18.49 ± 0.17 | 18.71 ± 0.07 | 18.50 ± 0.07 | 18.79 ± 0.13 |
FBW (g) | 30.82 ±0.41 a | 32.34 ±0.86 ab | 34.12 ± 0.70 bc | 35.67 ± 0.73 c | 33.38 ± 0.57 b |
WGR (%) | 65.60 ± 1.50 a | 74.95 ± 6.04 ab | 82.34 ± 4.41 bc | 92.86 ± 4.52 c | 77.67 ± 3.85 ab |
SGR (%) | 0.90 ± 0.02 a | 1.00 ± 0.06 ab | 1.07 ± 0.04 bc | 1.17 ± 0.04 c | 1.03 ± 0.04 ab |
SR (%) | 96.67 ± 1.67 | 95.00 ± 2.89 | 100.00 ± 0.00 | 100.00 ± 0.00 | 96.67 ± 1.67 |
VSI (%) | 4.87 ± 0.13 | 4.99 ± 0.11 | 5.17 ± 0.10 | 5.21 ± 0.12 | 5.19 ± 0.18 |
HSI (%) | 1.04 ± 0.04 | 1.05 ± 0.09 | 1.08 ± 0.06 | 1.09 ± 0.04 | 1.06 ± 0.04 |
CF (%) | 2.17 ± 0.04 | 2.19 ± 0.06 | 2.22 ± 0.03 | 2.24 ± 0.06 | 2.12 ± 0.03 |
Parameters | Diets (APS %) | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | |
α-Amylase (U/mg prot) | 0.62 ± 0.05 a | 0.70 ± 0.04 ab | 0.78 ± 0.04 b | 0.85 ± 0.06 b | 0.75 ± 0.04 ab |
Lipase (U/g prot) | 1.34 ± 0.05 a | 1.47 ± 0.06 ab | 1.57 ± 0.09 b | 1.66 ± 0.07 b | 1.54 ± 0.04 ab |
Chymotrypsin (U/mg prot) | 0.92 ± 0.06 | 0.98 ± 0.07 | 1.13 ± 0.05 | 1.16 ± 0.11 | 1.12 ± 0.09 |
Parameters | Diets (APS %) | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | |
SOD activity (U/mg prot) | 41.66 ± 7.72 a | 56.84 ± 2.51 ab | 64.62 ± 6.81 b | 68.79 ± 3.17 b | 60.22 ± 8.51 ab |
CAT activity (U/mg prot) | 7.73 ± 0.45 a | 8.12 ± 0.23 ab | 8.44 ± 0.57 ab | 9.26 ± 0.49 b | 8.07 ± 0.39 ab |
GSH-Px activity (U/mg prot) | 26.80 ± 1.30 a | 29.63 ± 1.74 ab | 31.98 ± 1.18 b | 36.63 ± 1.47 c | 28.88 ± 1.03 ab |
T-AOC levels (U/mg prot) | 0.74 ± 0.02 a | 0.78 ± 0.03 ab | 0.85 ± 0.02 bc | 0.91 ± 0.02 c | 0.80 ± 0.03 ab |
MDA content (nmol/mg prot) | 6.44 ± 0.18 b | 5.89 ± 0.17 b | 4.94 ± 0.21 a | 4.69 ± 0.22 a | 4.84 ± 0.20 a |
Parameters | Diets (APS %) | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | 0.20 | |
ACP activity (U/g prot) | 441.91 ± 6.67 a | 509.27 ± 10.40 b | 535.59 ± 20.48 bc | 563.56 ± 17.67 c | 528.06 ± 9.25 bc |
AKP activity (U/g prot) | 87.01 ± 2.96 a | 98.50 ± 4.57 ab | 99.70 ± 5.84 ab | 105.81 ± 6.99 b | 98.03 ± 3.15 ab |
C3 content (μg/mg prot) | 142.54 ± 9.26 a | 150.56 ± 6.42 a | 188.37 ± 6.75 b | 191.58 ± 9.57 b | 157.58 ± 9.06 a |
C4 content (μg/mg prot) | 27.21 ± 3.96 a | 34.16 ± 1.24 ab | 36.35 ± 2.80 ab | 39.18 ± 2.76 b | 27.70 ± 3.39 a |
IgM content (μg/mg prot) | 49.03 ± 1.12 ab | 45.02 ± 1.67 a | 55.73 ± 3.42 bc | 60.40 ± 2.33 c | 45.43 ± 3.34 a |
LZ activity (μg/mg prot) | 143.92 ± 5.47 a | 148.98 ± 3.70 ab | 164.79 ± 2.43 c | 165.55 ± 4.69 c | 161.48 ± 2.86 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Lin, H.; Lin, Z.; Yang, K.; Hu, J.; Ma, Z.; Yu, W. Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus). Microorganisms 2024, 12, 1980. https://doi.org/10.3390/microorganisms12101980
Hao X, Lin H, Lin Z, Yang K, Hu J, Ma Z, Yu W. Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus). Microorganisms. 2024; 12(10):1980. https://doi.org/10.3390/microorganisms12101980
Chicago/Turabian StyleHao, Xiaoqi, Heizhao Lin, Ziyang Lin, Keng Yang, Jing Hu, Zhenhua Ma, and Wei Yu. 2024. "Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus)" Microorganisms 12, no. 10: 1980. https://doi.org/10.3390/microorganisms12101980
APA StyleHao, X., Lin, H., Lin, Z., Yang, K., Hu, J., Ma, Z., & Yu, W. (2024). Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus). Microorganisms, 12(10), 1980. https://doi.org/10.3390/microorganisms12101980