Enhancing Benzo[a]pyrene Degradation by Pantoea dispersa MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Strain Screening
2.3. B[a]p Biodegradation Experiments
2.4. B[a]p Detection
2.5. Degradation Product Analysis
2.6. Effect of Sodium Gluconate on Bacterial Growth and Surface Characteristics
2.7. Determination of Emulsifiability
2.8. RNA-seq and RT-qPCR
3. Results
3.1. Screening of Biostimulants
3.2. Sodium Gluconate Enhances Efficient Degradation of B[a]p by MSC14
3.3. Gas Chromatography-Mass Spectrometry Analysis for Inferring Metabolic Pathways of Sodium Gluconate-Enhanced MSC14-Mediated B[a]p Degradation
3.4. Morphological Analysis of P. dispersa MSC14
3.5. Emulsification and Hydrophobicity Analysis
3.6. Transcriptome Analysis
3.6.1. Analysis of Differentially Expressed Genes in MSC14 Stimulated by Sodium Gluconate for B[a]p Degradation
3.6.2. Changes in Metabolic Pathways Stimulated by Sodium Gluconate in MSC14
Entner–Doudoroff (ED) Pathway
PTS and Central Carbon Metabolism Pathways
Glycerol Metabolism
Amino Acid Metabolism Pathways
Fatty Acid Metabolism
3.6.3. Sodium Gluconate Promotes Oxidative Phosphorylation for ATP Production in MSC14
3.6.4. Sodium Gluconate Stimulates DNA Replication Upregulation and Transcription Downregulation in MSC14
3.6.5. Sodium Gluconate Stimulates Homologous Recombination and DNA Repair in MSC14
3.6.6. Regulation of Quorum Sensing Systems in MSC14 Stimulated by Sodium Gluconate
Chemotaxis System and Flagellar Movement
Two-Component System
Sodium Gluconate Stimulates the Production of Biosurfactants in MSC14
4. Discussion
- (1)
- Currently, bacteria capable of degrading B[a]p that have been isolated mainly include Pseudomonas.sp, B. subtilis, and R. wratislaviensis, among others. For instance, R. wratislaviensis achieves a B[a]p degradation rate of 28% after 7 days [13], Pseudomonas sp. Lphe-2 can degrade 53% of B[a]p after 10 days [14], and Pseudomonas sp. S5 achieves a B[a]p degradation rate of 44.02% after 15 days [15]. Additionally, the Actinomycete rjgii-135 degrades 60% of B[a]p after 8 days [16]. In this study, the novel PAHs-degrading bacterium P. dispersa MSC14 demonstrated the capability to degrade 24.41% of 20 mg/L B[a]p after 4 days. The addition of the selected sodium gluconate stimulant at a concentration of 4 g/L stimulated MSC14 to degrade 54.85% of B[a]p after 16 h, the level of B[a]p decreased during from 20 mg/L to 10.97 mg/L. This efficiency surpasses that of many other PAHs-degrading bacteria, exhibiting a shorter degradation time and higher effectiveness.
- (2)
- Metabolites were detected through GC-MS to infer the degradation pathway of B[a]p by the strain P. dispersa MSC14 under sodium gluconate stimulation. Concurrently, transcriptome analysis revealed a significant upregulation of enzymes related to B[a]p degradation, such as yfiH, pht5, and PIR, collectively promoting the degradation of B[a]p. This elucidates the process by which MSC14 degrades B[a]p into salicylic acid salts, entering the TCA cycle, and providing crucial insights into the mechanism of B[a]p degradation by MSC14.
- (3)
- TEM and SEM experiments observed bacterial morphological changes in MSC14 under B[a]p stress. After the addition of sodium gluconate, bacteria gathered, the number of flagella increased, and the number of extracellular polymers was greatly reduced. Combined with the upregulation of the ABC transport system gene, we speculate that sodium gluconate could promote the adsorption and transport of B[a]p by MSC14.
- (4)
- Transcriptome-level analysis elucidated the regulation of metabolic pathways in MSC14 during B[a]p degradation under sodium gluconate stimulation. This included pathways such as the Entner–Doudoroff (ED) Pathway, central carbon metabolism pathways, oxidative phosphorylation, and also involved gene changes related to DNA repair, recombination, replication, and transcription. This study further explained, at the molecular level, how sodium gluconate stimulation modulates MSC14’s metabolic levels, substance transport, energy metabolism, and genetic material to enhance its ability to adapt to B[a]p stress.
- (5)
- DEGs results indicated a significant upregulation of genes related to the quorum sensing (QS) system in MSC14 during B[a]p degradation under sodium gluconate stimulation. QS plays a crucial role in promoting microbial adaptation to complex environments and the circulation, bidirectional utilization, detoxification, absorption, transport, and transformation of organic pollutants. This study proposed the regulatory mechanism of the QS system in MSC14 under sodium gluconate stimulation during B[a]p stress, further detailing the interplay of extracellular polysaccharide secretion, biofilm formation, surfactant production, and flagellar movement in the QS system, providing new insights for enhancing B[a]p degradation.
- (6)
- Surfactant experiments and transcriptome analysis revealed that under B[a]p stress, sodium gluconate could promote MSC14 to secrete biosurfactants. Previous research has indicated a direct correlation between biosurfactants and the degradation of polycyclic aromatic hydrocarbons [32]. Surfactants enhance emulsification and solubilization, thereby promoting the dissolution and degradation efficiency of B[a]p. Hence, this is considered one of the crucial mechanisms by which sodium gluconate stimulates MSC14 to degrade B[a]p.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, C.; Han, Y.; Duan, Y.; Lai, X.; Fu, R.; Liu, S.; Leong, K.H.; Tu, Y.; Zhou, L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ. Res. 2022, 205, 112423. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tao, S.; Price, O.R.; Shen, H.; Jones, K.C.; Sweetman, A.J. Environmental Distributions of Benzo[a]pyrene in China: Current and Future Emission Reduction Scenarios Explored Using a Spatially Explicit Multimedia Fate Model. Environ. Sci. Technol. 2015, 49, 13868–13877. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Clemente, A.; Torres-Palma, R.A.; Penuela, G.A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sci. Total Environ. 2014, 478, 201–225. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 2017, 168, 944–968. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Sun, M.; Balcazar, J.L.; Yu, P.; Hu, F.; Alvarez, P.J.J. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. ISME J. 2023, 17, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Shao, D.; Liu, H.; Feng, J.; Feng, B.; Song, X.; Zhao, Q.; Chu, M.; Jiang, C.; Huang, W.; et al. Metabolomics analysis reveals that benzo[a]pyrene, a component of PM(2.5), promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol. 2017, 13, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, J.; Deng, H.; Gao, C. Benzo[a]pyrene Induces Autophagic and Pyroptotic Death Simultaneously in HL-7702 Human Normal Liver Cells. J. Agric. Food Chem. 2017, 65, 9763–9773. [Google Scholar] [CrossRef]
- Wang, B.; Jin, Z.; Xu, X.; Zhou, H.; Yao, X.; Ji, F. Effect of Tenax addition amount and desorption time on desorption behaviour for bioavailability prediction of polycyclic aromatic hydrocarbons. Sci. Total Environ. 2019, 651 Pt 1, 427–434. [Google Scholar] [CrossRef]
- Sakshi; Haritash, A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch. Microbiol. 2020, 202, 2033–2058. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Wen, D.; Fu, R.; Feng, L. Application of alkyl polyglycosides for enhanced bioremediation of petroleum hydrocarbon-contaminated soil using Sphingomonas changbaiensis and Pseudomonas stutzeri. Sci. Total Environ. 2020, 719, 137456. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.J.; Gaston, L.A.; Li, J.; Fultz, L.M.; DeLaune, R.D.; Dodla, S.K. Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J. Hazard. Mater. 2020, 396, 122595. [Google Scholar] [CrossRef]
- Roy, A.S.; Baruah, R.; Borah, M.; Singh, A.K.; Deka Boruah, H.P.; Saikia, N.; Deka, M.; Dutta, N.; Chandra Bora, T. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeterior. Biodegrad. 2014, 94, 79–89. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. Sci. Total Environ. 2019, 651 Pt 1, 813–821. [Google Scholar] [CrossRef]
- Cao, H.; Wang, C.; Liu, H.; Jia, W.; Sun, H. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci. Rep. 2020, 10, 865. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Zang, T.; Wei, J.; Wu, H.; Wei, C.; Qiu, G.; Li, F. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour. Technol. 2019, 281, 421–428. [Google Scholar] [CrossRef]
- Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; Warshawsky, D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol. 1996, 62, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ruffini Castiglione, M.; Giorgetti, L.; Becarelli, S.; Siracusa, G.; Lorenzi, R.; Di Gregorio, S. Polycyclic aromatic hydrocarbon-contaminated soils: Bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ. Sci. Pollut. Res. Int. 2016, 23, 7930–7941. [Google Scholar] [CrossRef] [PubMed]
- Onyedikachukwu, N.B.; Ifelebuegu, A.; Njunbemere, N. A Comparative Assessment of Pig Manure and Poultry Manure in the Biodegradation of Diesel Contaminated Soil. J. Energy Res. Rev. 2020, 4, 1–13. [Google Scholar]
- Wartell, B.; Boufadel, M.; Rodriguez-Freire, L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. Int. Biodeterior. Biodegrad. 2021, 157, 105156. [Google Scholar] [CrossRef]
- Martin, B.C.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2014, 472, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Wang, Q.; Zhang, Z.; Che, J.; Chen, X.; Tang, Z.; Liu, X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. Environ. Pollut. 2023, 318, 120831. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wan, L.; Zhang, Y.; Li, N.; Li, D.; Zhou, Q. Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. J. Chem. Technol. Biotechnol. 2015, 91, 267–275. [Google Scholar] [CrossRef]
- Valentín, L.; Lu-Chau, T.A.; López, C.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem. 2007, 42, 641–648. [Google Scholar] [CrossRef]
- Mawad, A.M.M.; Abdel-Mageed, W.S.; Hesham, A.E. Quantification of Naphthalene Dioxygenase (NahAC) and Catechol Dioxygenase (C23O) Catabolic Genes Produced by Phenanthrene-Degrading Pseudomonas fluorescens AH-40. Curr. Genom. 2020, 21, 111–118. [Google Scholar] [CrossRef]
- Liu, S.; Guo, C.; Lin, W.; Wu, F.; Lu, G.; Lu, J.; Dang, Z. Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B. Sci. Total Environ. 2017, 609, 1161–1171. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, R.; Kong, D.; Liu, Z.; Wu, X.; Xu, J.; Li, Y. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins. Front. Environ. Sci. Eng. 2019, 14, 9. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, X.; Xiao, Y.; Kong, D.; Li, Y.; Wang, H. Tween 20 regulate the function and structure of transmembrane proteins of Bacillus cereus: Promoting transmembrane transport of fluoranthene. J. Hazard. Mater. 2021, 403, 123707. [Google Scholar] [CrossRef] [PubMed]
- Vilchez-Vargas, R.; Geffers, R.; Suarez-Diez, M.; Conte, I.; Waliczek, A.; Kaser, V.S.; Kralova, M.; Junca, H.; Pieper, D.H. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ. Microbiol. 2013, 15, 1016–1039. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xu, L.; Jia, L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour. Technol. 2013, 140, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, L.; Shao, Z. Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl. Environ. Microbiol. 2018, 84, e01261-18. [Google Scholar] [CrossRef]
- Buesen, R.; Mock, M.; Seidel, A.; Jacob, J.; Lampen, A. Interaction between metabolism and transport of benzo[a]pyrene and its metabolites in enterocytes. Toxicol. Appl. Pharmacol. 2002, 183, 168–178. [Google Scholar] [CrossRef]
- Zang, T.; Wu, H.; Zhang, Y.; Wei, C. The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5. Water Sci. Technol. 2021, 83, 1017–1027. [Google Scholar] [CrossRef]
- Patra, T.; Koley, H.; Ramamurthy, T.; Ghose, A.C.; Nandy, R.K. The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J. Bacteriol. 2012, 194, 3377–3385. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zeng, J.; Huang, K.; Wang, J. Structure of the mannose transporter of the bacterial phosphotransferase system. Cell Res. 2019, 29, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Erni, B.; Zanolari, B. Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J. Biol. Chem. 1986, 261, 16398–16403. [Google Scholar] [CrossRef] [PubMed]
- Reidl, J.; Boos, W. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. J. Bacteriol. 1991, 173, 4862–4876. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.; Tersteegen, A.; Thauer, R.K.; Hedderich, R. Two malate dehydrogenases in Methanobacterium thermoautotrophicum. Arch. Microbiol. 1998, 170, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Nomura, C.T.; Abe, H.; Doi, Y.; Tsuge, T. Poly[(R)-3-hydroxybutyrate] formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway. J. Biosci. Bioeng. 2007, 103, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Heinzen, R.A.; Mo, Y.Y.; Robertson, S.J.; Mallavia, L.P. Characterization of the succinate dehydrogenase-encoding gene cluster (sdh) from the rickettsia Coxiella burnetii. Gene 1995, 155, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Green, G.N.; Fang, H.; Lin, R.J.; Newton, G.; Mather, M.; Georgiou, C.D.; Gennis, R.B. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J. Biol. Chem. 1988, 263, 13138–13143. [Google Scholar] [CrossRef]
- Young, T.W.; Kuhn, N.J.; Wadeson, A.; Ward, S.; Burges, D.; Cooke, G.D. Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: The first of a new class of soluble pyrophosphatase? Microbiology 1998, 144 Pt 9, 2563–2571. [Google Scholar] [CrossRef]
- Stillman, B. Smart machines at the DNA replication fork. Cell 1994, 78, 725–728. [Google Scholar] [CrossRef]
- Xiao, H.; Crombie, R.; Dong, Z.; Onrust, R.; O’Donnell, M. DNA polymerase III accessory proteins. III. holC and holD encoding chi and psi. J. Biol. Chem. 1993, 268, 11773–11778. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Iino, H.; Kim, K.; Kuramitsu, S.; Fukui, K. Evidence for ATP-dependent structural rearrangement of nuclease catalytic site in DNA mismatch repair endonuclease MutL. J. Biol. Chem. 2011, 286, 42337–42348. [Google Scholar] [CrossRef] [PubMed]
- Sriskanda, V.; Shuman, S. A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli. Nucleic Acids Res. 2001, 29, 4930–4934. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Kozlov, A.G.; Roy, R.; Zhang, J.; Korolev, S.; Lohman, T.M.; Ha, T. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 2011, 146, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Shiba, T.; Iwasaki, H.; Nakata, A.; Shinagawa, H. SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: Functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc. Natl. Acad. Sci. USA 1991, 88, 8445–8449. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yuan, M.; Xiao, Y.; Qu, Y.; Ren, Y. Integrated physiological characteristics and temporal transcriptomic analysis reveal the molecular mechanism of Pseudomonas aeruginosa degrading diesel stimulated by extracellular metabolites of euglena. Chem. Eng. J. 2023, 475, 146507. [Google Scholar] [CrossRef]
- Samal, B.; Chatterjee, S. New insight into bacterial social communication in natural host: Evidence for interplay of heterogeneous and unison quorum response. PLoS Genet. 2019, 15, e1008395. [Google Scholar] [CrossRef]
- Evans, K.C.; Benomar, S.; Camuy-Velez, L.A.; Nasseri, E.B.; Wang, X.; Neuenswander, B.; Chandler, J.R. Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J. 2018, 12, 1263–1272. [Google Scholar] [CrossRef]
- Gao, B.; Chi, L.; Tu, P.; Bian, X.; Thomas, J.; Ru, H.; Lu, K. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicol. Lett. 2018, 283, 52–57. [Google Scholar] [CrossRef]
- Milakovic, M.; Vestergaard, G.; Gonzalez-Plaza, J.J.; Petric, I.; Simatovic, A.; Senta, I.; Kublik, S.; Schloter, M.; Smalla, K.; Udikovic-Kolic, N. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ. Int. 2019, 123, 501–511. [Google Scholar] [CrossRef]
- Siryaporn, A.; Goulian, M. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol. Microbiol. 2008, 70, 494–506. [Google Scholar] [CrossRef]
- Elumalai, P.; Parthipan, P.; Huang, M.; Muthukumar, B.; Cheng, L.; Govarthanan, M.; Rajasekar, A. Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants. Environ. Pollut. 2021, 289, 117956. [Google Scholar] [CrossRef] [PubMed]
- Shahryari, S.; Talaee, M.; Haghbeen, K.; Adrian, L.; Vali, H.; Shahbani Zahiri, H.; Noghabi, K.A. New Provisional Function of OmpA from Acinetobacter sp. Strain SA01 Based on Environmental Challenges. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, J.; Dick, R.P.; Li, H.; Shen, D.; Gao, Y.; Waigi, M.G.; Ling, W. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6. Environ. Pollut. 2018, 240, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Waters Christopher, M.; Lu, W.; Rabinowitz Joshua, D.; Bassler Bonnie, L. Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT. J. Bacteriol. 2008, 190, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
EI-1 h | EI-24 h | ES = (EI − 24/EI − 1) × 100 | |
---|---|---|---|
A. MSM+B[a]p | 0 | 0 | 0 |
B. MSM+Sodium gluconate | 0.52 | 0.50 | 96% |
C. MSM+B[a]p+Sodium gluconate | 0.53 | 0.51 | 96% |
Gene ID | Symbol | Description | Log2FC |
---|---|---|---|
K7H94_RS13370 | PHT5 | 4,5-dihydroxyphthalate decarboxylase, Phenanthocyanin metabolism catalyzes 4,5-dihydroxyphthalates to undergo hydroxyl cleavage to produce protocatechuic acid | 2.40 |
K7H94_RS02335 | yfiH | aldehyde dehydrogenase, Oxidize phenolic compounds to quinones | 2.92 |
K7H94_RS09205 | PIR | quercetin 2,3-dioxygenase, Catalyze the oxidation of quercetin 2,3 | 1.96 |
K7H94_RS17420 | fadA | Acetyl-CoA acyltransferase | 1.35 |
K7H94_RS17415 | fadB | Enoyl-CoA isomerase | 2.27 |
K7H94_RS05995 | fadI | Acetyl-CoA acyltransferase | 3.29 |
K7H94_RS06000 | fadJ | Enoyl-CoA isomerase | 1.25 |
K7H94_RS02435 | SDR family oxidoreductase | 2.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, L.; Li, S.; Zhang, S.; Liu, M.; Xia, L.; Ren, Y.; Cui, T. Enhancing Benzo[a]pyrene Degradation by Pantoea dispersa MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation. Microorganisms 2024, 12, 592. https://doi.org/10.3390/microorganisms12030592
Lai L, Li S, Zhang S, Liu M, Xia L, Ren Y, Cui T. Enhancing Benzo[a]pyrene Degradation by Pantoea dispersa MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation. Microorganisms. 2024; 12(3):592. https://doi.org/10.3390/microorganisms12030592
Chicago/Turabian StyleLai, La, Shuqi Li, Shaoping Zhang, Manchun Liu, Lianwei Xia, Yuan Ren, and Tangbing Cui. 2024. "Enhancing Benzo[a]pyrene Degradation by Pantoea dispersa MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation" Microorganisms 12, no. 3: 592. https://doi.org/10.3390/microorganisms12030592
APA StyleLai, L., Li, S., Zhang, S., Liu, M., Xia, L., Ren, Y., & Cui, T. (2024). Enhancing Benzo[a]pyrene Degradation by Pantoea dispersa MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation. Microorganisms, 12(3), 592. https://doi.org/10.3390/microorganisms12030592